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ABSTRACT

The analysis developed in Tsai [1] is extended to consider the
parametrically resonant motion of a stratified two-layer fluid in a two-
dimensional rectangular basin forced to oscillate vertically.  The
modulation equation governing the slowly-varying amplitude of the
interface is derived using method of multiple scales.  For steady
harmonic response, the present result compares well with available
experimental measurements for the low frequency region.  The dis-
crepancy increases, however, for high-frequency response.

INTRODUCTION

The phenomenon of parametric resonance arises in
a variety of free-surface problem (see e.g. Miles and
Henderson [2]).  In contrast to forced resonance, in
which the forcing gives rise to an inhomogeneity in the
governing equation of motion, parametric excitation
appears as coefficient of the governing differential
equation.

In this note, we extend the perturbation analysis
developed in Tsai [1] for resonant motion of one-layer
free-surface flow to the motion of a stratified two-layer
fluid in a two-dimensional rectangular basin subject to
a vertical oscillation −ae cos ωet.  The densities of the
lower and upper fluids are ρ' and ρ" respectively, with
the lower layer heavier than the upper layer (ρ' > ρ").
For convenience, in what follows, all physical variables
are non-dimensionalized by the half length of the basin
L, and the timescale 2ωe.  A coordinate system fixed
with the basin is chosen so that the origin and x-axis are
in the undisturbed interface, z is positive upwards, the
side walls of the basin are at x = ±1, and the lower
bottom and the upper lid are at z = −h ' and z = h"
respectively.

BOUNDARY  VALUE  PROBLEM

For ideal, incompressible and irrotational fluids,
the velocity potentials of lower and upper flows, Φ'(x, z,
t) and Φ"(x, z, t), satisfy the Laplace equations with the
solid boundary conditionson on the side walls, bottom
and lid.  The kinematic boundaryconditions on the
interface z = ζ(x, t) are

   ∂ζ
∂t

+ ∂ζ
∂x

∂Φ
∂x – ∂Φ

∂z = 0 , (1)

where Φ = Φ' and Φ".  The dynamic boundary condition
of the interface is

   ∂Φ'
∂t

+ 1
2

∇Φ ' ⋅ ∇Φ ' + 4(N 2µ + εcos 2t)ζ

   = ρ[∂Φ"
∂t

+ 1
2

∇Φ " ⋅ ∇Φ " + 4(N 2µ + εcos 2t)ζ ] ,      (2)

where the density ration ρ = ρ"/ρ' < 1, the nondimensional
amplitude of excitation ε = ae/L « O(1), µ = (µ' + ρµ")/
(1 − ρ), µ' = (mπ tanh mπh’)−1, and µ" = (mπ tanh mπh")−1.
We consider here the 1/2-subharmonic resonance of the
mth-mode standing wave, so that N = Ω/ωe = 1/2 + λε ,
where Ω = (g/(Lµ))1/2 is the dimensional natural fre-
quency of the mth-mode internal standing wave, and λ
is the detuning parameter.

MULTIPLE-SCALE  ANALYSIS

Multiple-scale analysis of the boundary value prob-
lem is processed with the same long timescale τ = εt and
the asymptotic expansions of Φ', Φ'' and ζ  as for the
free-surface Faraday resonance (e.g. Tsai [1] and
Ockendon and Ockendon [3]) or for the cross wave in a
rectangular tank (e.g. Tsai and Yue [4]):    Φ = Σi = 1

∞ εi / 2Φi

and    ζ = Σi = 1
∞ εi / 2ζ i .  For the Laplace equation and the

homogeneous Neumann conditions on the side wall,
bottom and lid, the equations are linear and the velocity
potentials Φ' and Φ" satisfy the same form of linear
equations for all asymptotic orders.  Expanding the
kinematic and dynamic interfacial conditions (1) and
(2) in Taylor series about the mean interface z = 0 and
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substituting the asymptotic series for ζ , Φ' and Φ", we
obtain, at each order i, linearized interfacial condition
for ζ i,  Φi

'  and   Φi
" .  The boundary value problem at first

and second orders can then be solved readily.   At the
leading order, O(ε1/2), the velocity potentials  Φ1

'  and   Φ1
"

   Φ1
' = 1

2
[B(τ )e – it + c.c.] cos kx

cosh k(z + h ')
k sinh kh'

,        (3a)

   Φ1
" = – 1

2
[B(τ )e – it + c.c.] cos kx

cosh k(z – h ')
k sinh mkh"

,      (3b)

where the complex amplitude B = C + iD and k = mπ.  At
the third order, combining the kinematic and dynamic
interfacial conditions for  Φ3

'  and  Φ3
"  gives rise to the

nonhomogeneous equation at z = 0:

   ∂2Φ3
'

∂t 2
+ µ∂Φ3

'

∂z – ρ[
∂2Φ3

"

∂t 2
+ µ∂Φ3

"

∂z ] = F(Φ1
' , Φ1

") ,       (4)

where    F(Φ1
' , Φ3

")  represents nonhomogeneous forcing
function of the third-order interfacial condition.  Sup-
pressing the secular terms in (4) to avoid resonance
yields the evolution equation for the amplitude B(τ) as

   µ dB
dτ + i2µλB – iβB* – iΓB2B* = 0 , (5)

where

β = 1,    Γ = 1
1 – ρ (Γ' – ρΓ") ,

   Γ' = –
p 2

'

8
(k 2µ '2 + k 2µµ ' –

µ
µ '

– 1) –
p 2

4
(k 2µµ ' – 1)

   +
q 2

4
(k 2µµ ' + 1) + k 2

64
(µ ' – µ) ,

   Γ" = –
p 2

"

8
(k 2µ"2 – k 2µµ" +

µ
µ"

– 1) +
p 2

4
(k 2µµ" + 1)

   –
q 2

4
(k 2µµ" – 1) – k 2

64
(µ" + µ) ,

   
p 2 =

3k 4µ 'µ"(ρµ"2 – µ '2) + k 2(ρ – 1)µ 'µ"

16(ρµ ' + µ")

   
q 2 = –

k 2(ρµ"2 – µ '2) + (ρ – 1)
8(ρµ" + µ ')

,

   
p 2

' =
3k 4µ 'µ"(ρµ"2 – µ '2) + k 2µ '[(3 – ρ)µ" + 2ρµ ']

8(µ" + ρµ ')
.

   
p 2

" =
3k 4µ 'µ"(ρµ"2 – µ '2) + k 2µ"[(1 – 3ρ)µ ' – 2µ"]

8(µ" + ρµ ')
.

The limiting case, ρ = 0, of (5) corresponds to the
evolution equation of free-surface Faraday wave as in
Tsai [1], Ockendon and Ockendon [3] and Miles [5].

STATIONARY  RESPONSES

The stationary solutions of (5) and the linear sta-
bility analyses results are: For µλ  < −β/2 when Γ  > 0,
and µλ > β/2 when Γ< 0, the only critical point is a stable
center at C = 0, D = 0.  For |µλ| < β/2, the zero solution
C = 0, D = 0 becomes an unstable saddle point and the
stable centers are at C = 0, D = ±[(2µλ + sgn(Γ)β)/Γ]1/2.
For µλ > β/2 when Γ >0, and µλ < −β/2 when Γ < 0, there
are three stable centers: C = 0, D = 0 and C = 0, D =
±[(2µλ − sgn(Γ)β)/Γ]1/2 and two unstable saddle points:
C = ±[(2µλ − sgn(Γ)β)/Γ]1/2, D = 0.  Note that µλ  = β/2
and −β/2 correspond to sub- (super-) and supercritical
(subcritical) pitchfork bifurcation points for Γ  > 0 (Γ  <
0).

In Fig. 1, the stable stationary (harmonic) re-
sponses of the present analysis, D = ±[(2µλ + sgn(Γ)β)/
Γ ]1/2, are compared with the experimental measure-
ments of Sekerzh-Zen’kovich and Kalinichenko [6].
Note that the experiments were carried out with a free
surface on the upper lid, but the free surface was not
perturbed within the range of excitation frequency as
indicated in Sekerzh-Zen’kovich and Kalinichenko[6].
The rectangular tank, with width 2L = 11.2 cm, was
filled with distilled water (ρ = 1 g/cm3) in lower layer
and kerosene (ρ = 0.782 g/cm3) in upper layer, each with
equal thickness (6.8 cm).   In Fig. 1, the dimensional
amplitudes of harmonic responses (cm) are plotted ver-
sus the excitation frequency (Hz) for m = 1, 3/2 and 2
internal standing-wave modes.  The comparisons are
fairly good for the first-mode (m = 1) wave, but for
higher modes the theoretical results overpredict the
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Fig. 1. Comparisons between the present theory (———) and experimen-
tal measurements (m =1 (o), 3/2 (∆) and 2 (•)) of Sekerzh-Zen’kovich
and Kalinichenko [6] for the harmonic response of the stratified
two-layer Faraday problemas a function of the excitation frequency.
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responses.  The discrepancy for the higher modes might
arise form the relatively higher wave slopes for which
the weakly nonlinear analysis above become invalid.
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