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a constant speed υ.  A schematic drawing is shown in
Fig. 1.  This model includes four parameters, namely the
mass m of the slider, the stiffness k of elastic support
component, the friction bound ry between slider and belt
(or the friction coefficient µ), and the belt running speed
υ .  It is a simple model to simulate the self-excited
vibration behavior of tool-workpiece interaction due to
contact friction.

Let z denote the relative displacement of the slider
to the belt,

z = x − υt, (1)

and so the relative velocity is

   z = x – υ, (2)

where a superposed dot represents time differentiation.
Assuming the friction law between the slider and the
belt obeys the relation as shown in Fig. 2(a), where ra

denote the contact friction force and ry is a constant
friction bound independent of relative speed; hence, the
equation of motion of the slider can be written as

  mx(t) + kx(t) + ra(t) = 0, (3)

where m is the mass of the slider, and k is the stiffness
of the spring which connects to the slider through an

Keywords: Coulomb’s friction, cutting vibration, abnormal stop, limit
cycle, Hopf bifurcation.

ABSTRACT

In this paper we study a single-degree-of-freedom model with
the parallel presence of a linear spring and a Coulomb’s contact
friction device, the mass slider of which is mounted on the belt which
running forward at a constant speed.  We prove that no matter what the
parameters are, the mass upon starting to slide never comes to stick on
the belt.  The oscillating amplitude of the slider is proportional to the
belt running speed υ , and is inverse proportional to the natural
frequency ω.  In order to depress the vibration amplitude we may
either decrease the belt running speed, increase the stiffness, or
decrease the mass; however, the last two strategies may lead to high
frequency oscillation of the tool.  Increasing the friction bound ry

gives no effect on the vibration amplitude, but increases the mean of
vibration of the slider; conversely, increasing the stiffness makes the
decreasing of the mean of vibration.  We also investigate the friction
behavior under the dependence of the friction force bound on relative
speed, whose curve has negative slope when the relative speed is less
than a critical value υ*.  According to the qulitative analysis in the
phase plane we give simple criteria of the parameters for the stable
equilibrium point as well as for the stable limit cycle.  When υ varies
from υ > υ* to υ < υ*, there undergoes a subcritical Hopf bifurcation
of the long term behavior.

INTRODUCTION

Machine tool chatter is a well known self-excited
vibration in metal cutting [1, 2], which in turns limits
the productivity of the cutting process.  The machine
tool’s and/or workpiece’s structural dynamics and the
cutting process interact to produce the conditions that
lead to chatter.  How to avoid chattering and how to
depress its vibration amplitude are thus the main sub-
jects in the material manufacturing and fabrication. In
this paper we study a single-degree-of-freedom model
with the parallel presence of a linear spring and a
Coulomb’s contact friction device, the mass slider of
which is mounted on the belt which running forward at

Fig. 1. The mass-spring-friction slider, where the friction refers to the
Coulomb’s dry friction between the mass and the belt.
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elastic support.  In terms of z the above equation is
recast to

   mz(t) + kz(t) + ra(t) = p(t), p(t) : = – kυt, (4)

where ra is the friction force acting in a direction
opposite to the direction of the relative motion, and p(t)
denotes external loading.

MODELING  FRICTION

The following expression

   
ra =

ry if z > 0 or x > υ,

– ry if z < 0 or x < υ (5)

is usually employed to represent the two-valuedness of
the Coulomb’s dry contact friction.  If the contact
surfaces are horizontal on the earth ground, ry = µmg,
where g is the acceleration of gravity and µ is the
coefficient of friction.  This formalism is correct but
incomplete.  In fact, the friction force ra may take any
value between ry and −ry when z  = 0; therefore, the
following expression provides a more precise
description,

   

ra

= ry if z > 0 or x > υ,

∈ [ – ry, ry] if z = 0 or x = υ,

= – ry if z < 0 or x < υ.
(6)

Nevertheless, the formalism (6), although correct,
is not complete yet, since it still lacks a two-way rela-
tion between z  and ra.  For completeness we need a
sliding rule and a complementary trio as follows [3]:

   z =
Λ
ry

2 ra, (7)

|ra| ≤ ry, (8)

  Λ ≥ 0, (9)

   ra Λ = ryΛ, (10)

where Λ  is the friction power, so that Λ is the dissipated
energy due to friction.  According to this formulation
the relation of ra and z is schematically shown in Fig. 2
(a).  More importantly, it depicts the relation of ra to z,
not to z  as the ones in Eqs. (5) and (6).

In view of Eq. (4), the restoring force r(t) of the
slider is decomposed as

r = ra +rb (11)

with ra modeled by Eqs. (7)-(10) and rb by

  rb = kz. (12)

Thus, the relation between the restoring force function
r(t) and the relative displacement function z(t) is de-
scribed by Eqs. (7)-(12), which may be schematically
illustrated in Fig. 2(b).

Equation (7) is a sliding rule, giving a two-way
relation between the relative velocity z  and the friction
force ra via a proportional multiplier equal to the fric-
tion power Λ  divided by the friction bound squared   ry

2 .
Equation (8) specifies an admissible range of the fric-
tion force.  Equation (9) forbids a negative friction
power, so that the relative velocity is either zero or in
the same directional sense as that of friction force.
Equation (10) allows either (the sticking phase) Λ  = 0
or (the sliding phase) |ra| = ry.  Equation (11) is the
decomposition of the restoring force.  Equation (12) is
a linearly elastic law for the spring force.

SLIDING  AND  STICKING

1. Two phases

The complementary trios (8)-(10) imply that there
Fig. 2. (a) The relation of friction force ra and relative displacement z, (b)

the relation of restoring force r and relative displacement z.
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are precisely two phases:
(i) Λ  > 0 and |ra| = ry,
(ii) Λ  = 0 and |ra| ≤ ry.

For phase (i), Λ  > 0 and |ra| = ry, so    Λ = raz  > 0 by
Eq. (7).  For phase (ii), Λ  = 0 and |ra| ≤ ry, so z  = 0 by
Eq. (7) and then    Λ = raz  = 0.  Therefore, the friction
power formula

   Λ = raz

holds for the two phases.
Phase (i) is nothing but the sliding phase, since

   Λ = raz  > 0 means z  ≠ 0 so that the contact surfaces slide
relative to each other and dissipation occurs due to
friction between the sliding surfaces.  Phase (ii) is
obviously the sticking phase, since Λ  = 0 drastically
reduces Eq. (7) to z  = 0, which indicates that the contact
surfaces are sticking together.  In the sliding phase, the
sliding friction causes positive dissipation, while in the
sticking phase the slider moves together with the belt
and no dissipation occurs.  Thus the history of the
motion of the slider may be composed of a succession of
contiguous time intervals, sliding-phase intervals being
interlaced with sticking-phase intervals, but the time
duration of a sticking-phase interval can be finite, infi-
nite (permanent sticking), or zero.

2. The sliding phase

In this subsection and the next one we are going to
derive the governing equations for the two phases,
which will soon be seen to be expressed in terms of not
only the relative displacement function z(t) but also the
restoring force function r(t).  In terms of r(t), Eq. (4)
changes to

  mz(t) + r(t) = p(t). (13)

It follows from Eqs. (11) and (12) that

r(t) = r(ti) + ra(t) − ra(ti) + k[z(t) − z(ti)] (14)

for the two time instants t and ti.  Substituting Eq. (14)
for r in Eq. (13), we have

  mz(t) + kz(t) + ra(t) = p(t) – r(ti) + ra(ti) + kz(ti).   (15)

In a sliding-phase interval, |ra| = ry, so

SLIDING   ra(t) = ra(ti), (16)

where the initial time ti is chosen to be the start-to-slide
t ime t sl ide of  the s l iding-phase interval  under
consideration.  Hence, Eq. (15) can be simplified to

SLIDING     mz(t) + kz(t) = p(t) – r(ti) + kz(ti).     (17)

Including the restoring force on the right-hand side, this
equation should be supplemented with

SLIDING    r(t) = r(ti)+ k[z(t) − z(ti)], (18)

which is Eq. (14) but with Eq. (16) been taken into
account.  Equations (17) and (18) together are the
sliding-phase governing equations for z(t) and r(t).  They
are coupled together.

3. The sticking phase

In a sticking-phase interval, Λ  = 0, so by Eqs. (7)
and (12) we have

STICKING    rb(t) = rb(ti), (19)

STICKING    z(t) = z(ti), (20)

where the initial time ti is now chosen as the start-to-
stick time tstick of the sticking-phase interval.  In view of
Eqs. (13) and (20) the restoring force is given by

STICKING    r(t) = p(t). (21)

Equations (20) and (21) together are the sticking-phase
governing equations for z(t) and r(t).

The above analysis shows that the slider is de-
scribed by the linear equations (20) and (21) during the
sticking phase, but governed by the linear equations
(17) and (18) in the sliding phase.  Hence it is a two-
phase linear system with a slide-stick switch.

4. The slide-slide condition

It is interesting to find the condition under which
the time duration of a sticking-phase interval be zero.
The transition (say at time t) from a sliding-phase
interval to a sticking-phase interval of nonzero time
duration is possible only if | p(t) − kz(t) | < ry.  Otherwise,
a sliding-phase interval will continue to another slid-
ing-phase interval with a sticking phase of zero time
duration present in between the two sliding-phase
intervals, but both the sliding-phase intervals are mod-
eled by the same governing equations.

If at the time instant t

|p(t) − kz(t)| ≥ ry, (22)

the duration of the sticking-phase interval is zero, re-
sulting in the slider moving from a sliding-phase inter-
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val to another sliding-phase interval.  Therefore, Eq.
(22) may be called the slide-slide condition.

RESPONSES

1. Exact solution

To input p(t) = −kυt, z(t) in the sliding phase can be
derived by solving Eq. (17),

z(t) = z(ti) +  υ
ω  sinω(t − ti) −    r(ti)

k  [1 − cosω(t − ti)]

+ υ[ti cos ω(t − ti) − t], (23)

where ω : =   k / m  is the natural frequency of the mass
component, and   z(ti)  is set to be zero by letting ti the
start-to-slide time.  Containing the restoring force on
the right-hand side, Eq. (23) should be supplemented
with Eq. (18).  From Eqs. (23) and (1) it follows that

   
x(t) = x(ti) + υ

ω
sin ω(t – ti) –

r(ti)
k + υti

   [1 – cos ω(t – ti)]. (24)

In the sticking phase z is simply given by Eq. (20),
such that x is as simple as

x(t) = x(ti) + υ(t − ti). (25)

2. The start-to-slide time

Owing to the simplicity of the sticking-phase
equations, the start-to-slide time t = tslide, which is the
end time of the preceding sticking-phase interval, can
be determined exactly by solving

|kυt + rb(ti)| = ry. (26)

The resultant is

   tslide =
ry – rb(ti)

kυ . (27)

However, if rb(ti) ≥ ry we let tslide = ti, which means
that the mass already has the potential to slide at the
initial time ti.

3. The start-to-stick time

Since when a sticking-phase interval is switched
on a sliding-phase interval is switched off at the same
instant, the start-to-stick time tstick of the sticking-phase
interval is the end time of the sliding phase, which is
determined by solving z  = 0 for t = tstick with z(t) given
by Eq. (23), that is,

   x(t) = υ cos ω(t – ti) –
ωr(ti)

k + ωυ ti sin ω(t – ti) = υ.
(28)

Therefore, the start-to-stick time tstick is found to
be

   tstick = ti + 2π
ω . (29)

At this time moment tstick, z  = 0 and x  = υ, and thus the
slider moves together with the belt.  However, we shall
prove that such co-moving has zero time duration.

ABNORMAL  STOP  OF  THE  SLIDER

Some results about the responses are shown in Fig.
3, in which the parameters used were m = 5 kN s2/cm, k
= 50 kN/cm, ry = 10 kN, and υ = 5 cm/s.  Stops with zero
duration may be further classified into two types [3, 4]:
normal stop and abnormal stop.  The former occurs
when the relative displacement reaches a local extre-
mum and the mass reverses its direction of motion after

Fig. 3. Displaying a typical response in terms of (a) the time history of z, (b)
the time history of relative velocity z , (c) the phase plane   (z, z) , (d)
the time history of x, (e) the time history of mass velocity x, and (f)
the phase plane   (x, x) .
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a turning point.  The criteria for normal stop is

|p(t) − kz(t)| ≥ ry and ra(t)   z(t)  < 0 (30)

at the time moment t with   z(t)  = 0.  The abnormal stop
occurs when the relative displacement is large than its
local minimum and, upon seperation, the mass moves in
the same direction as its motion prior to the stop.  The
criteria for abnormal stop is

|p(t) − kz(t)| ≥ ry and ra(t)   z(t)  > 0 (31)

at the time moment t with   z(t)  = 0.  In Fig. 3 the
phenomena of abnormal stop relative motion are shown
with time history of z(t) in Fig. 3(a), the time history of
relative velocity   z(t)  in Fig. 3(b), and the phase plane

  (z, z)  in Fig. 3(c).  Simultaneously, the motion of the
slider are shown with time history of x(t) in Fig.  3(d),
the time history of mass velocity   x(t)  in Fig. 3(e), and
the phase curve   (x, x)  in Fig. 3(f).

We shall prove that no matter what the system
parameters are, the contact motion of slider and belt is
of abnormal stop type with zero time duration.  For
simplicity we let all initial values to be zero in addition
to   x(ti)  = υ.  Thus, we have

   tslide =
ry

kυ , (32)

   tstick = tslide + 2π
ω . (33)

At t = tstick, we have

   z(tstick) = – 2πυ
ω , (34)

   rb(tstick) = – 2kπυ
ω , (35)

   p(tstick) = – kυ
ry

kυ + 2π
ω . (36)

Substituting these equations into |p(t) − rb(t)| at t =
tstick, we find that

|−ry| ≥ ry. (37)

It just fulfills the requirement of the first condition in
Eq. (31) for the zero time duration of the stop, such that
at the time moment t = tstick the slider never really sticks
on the belt and a rebound of z is shown in Fig. 3(c).  It
is of the abnormal stop type motion because the second
condtion ra(t)   z(t)  > 0 in Eq. (31) at t = tstick is also
fulfilled.

From Eqs. (24) and (28) it follows that

   
x – z(ti) +

r(ti)
k

2

+ x
ω

2
= υ

ω
2

+
r(ti)

k + υti

2

.
(38)

Substituting Eq. (32) for ti, r(ti) = −ry, and z(ti) = 0 into
the above equation, we obtain

   x –
ry

k

2

+ x
ω

2
= υ

ω
2
. (39)

Upon the sliding starts, the slider never sticks on
the belt, and the phase trajectory    (x, x / ω)  traces repeat-
edly on a circle with center (ry/k, 0) and radius υ/ω.  In
phase plane this single closed orbit is called limit cycle;
see Fig. 3(f).  From Eq. (24) it is clear that no matter
what the initial condition is, the slider motion approaches
the same periodic solution.  This is a particular property
of self-excited vibration system.  For forced vibration
system the vibration frequency is determined by the
external forcing, but for self-excited system the vibra-
tion frequency is the natural frequency of its linearized
system.  For the free vibration of undamped system the
vibration amplitude is determined by the initial
conditions, but for self-excited system the vibration
amplitude is determined by the system parameters and
is independent to the initial conditions.

FRICTION  FORCE  DEPENDING  ON  RELATIVE
SPEED

Instead of the constant friction bound used in the
previous sections let us consider a more complicated
law of friction force [5]:

   ra(t) = rysgn (z) – α1z + α2z3, (40)

where sgn is the signum function, i.e.,   sgn (z) = z / z  if
z  ≠ 0.  ry, α1 and α2 are three experimentally determined
constants.  In Fig. 4 the curve is plotted with ry = 10 kN,
α1 = 1 kN s/cm and α2 = 0.01 kN s3/cm3.  It shows that
the friction force-speed curve may have negative slope
when the relative speed is less than a critical value υ*.
It is known that the negative slope of the curve is
responsible for the energy that is supplied to the
vibration, and thus may render self-excited vibration in
the course of contact friction [6].

Substituting Eq. (40) for ra into Eq. (3), we obtain

   mx(t) + kx(t) + rysgn (x – υ) – α1(x – υ) + α2(x – υ)3

 = 0, (41)

where z  is replaced by x  − υ in view of Eq. (1).  The
above equation can be written as

   d
dt

x
y =

y
1
m[rysgn (υ – y) – α1(υ – y) + α2(υ – y)3 – kx]

,

(42)
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where y : = x .  Let x  = 0 and y  = 0 we obtain the equili-
brium point

   
(x0, y0) =

ry – α1υ + α2υ3

k , 0 . (43)

Substituting the equilibrium point into the Jaco-
bian matrix of the flow field, we get

    J = 0 1
– ω2 1

m (α1 – 3α2υ2)
. (44)

The eigenvalues of J determine the stability of the
equilibrium point (x0, y0).  The characteristic equation
for the eigenvalues λ  is

λ2 − qλ  + ω2 = 0, (45)

where

   q: =
α1 – 3α2υ2

m . (46)

When q < 0 the equilibrium point is stable; otherwise, it
is unstable.  In the later we shall give three examples to
disclose such behavior.

According to Eq. (40) the governing equation of
the relative displacement in the sliding phase is given by

   mz(t) – α1z(t) + α2z3(t) + kz(t) = p(t) – r(ti) + kz(ti),
(47)

where

   r(t) = r(ti) + k[z(t) – z(ti)] – α1z(t) + α2z3(t).        (48)

In order to integrate Eq. (47), we appeal to the
numerical scheme developed by Liu [7].

    
u1

j + 1 = u1
j +

2τ u j 2
+ 2τ 2f j ⋅ u j

u j 2
– τ 2 f j 2 f1

j, (49)

    
u2

j + 1 = u2
j +

2τ u j 2
+ 2τ 2f j ⋅ u j

u j 2
– τ 2 f j 2 f2

j, (50)

where τ  = ∆t/2,   u1
j  : = u1(j∆t) and so on, and

  f1(t) = u2(t), f2(t) = 1
m[p(t) – r(ti) + ku1(ti) – ku1(t)

   + α1u2(t) – α2u2
3(t)],

  u1(t) = z(t) + a, u2(t) = z(t),

   u(t)
2

= u1
2(t) + u2

2(t) , f(t)
2

= f1
2(t) + f2

2(t),

    f(t) ⋅ u(t) = f1(t)u1(t) + f2(t)u2(t).

a is a constant to avoid the zero denominator in Eqs. (49)
and (50).  If u1(t) and u2(t) were calculated, x(t) = z(t) +
υt = u1(t) − a + υt and   x(t) = z(t)  + υ = u2(t) + υ follow
straightforward.

By employing the above scheme we have calcu-
lated three type responses.  In Fig. 5 we let α1 = 1 kN s/
cm and α2 = 0.05 kN s3/cm3 and the other parameters are
the same as the ones used in Fig. 3.  For this case we have
q = −0.55 s−1, such that the equilibrium point is stable.
Because the eigenvalues are complex the orbit as shown
in Fig. 5(c) is spiraled into the equilibrium point.  For
the second case we let α1 = 1 kN s/cm and α2 = 1/75 kN
s3/cm3, such that q = 0 and the equilibrium point is
neutral stable.  After a long time elapsed the orbit tends
to a small size periodic orbit as shown in Fig. 5(f).  For
the third case we let α1 = 1 kN s/cm and α2 = 0.01 kN s3/
cm3, such that q = 0.05 s−1 and the equilibrium point is
unstable, and instead of we have a stable limit cycle as
shown in Fig. 5(i).  This steady slide-stick vibration is
different from the ones in Fig. 3, of which α1 = α2 = 0
leads to a neutral stable equilibrium point and a non-
sticking limit cycle.  The limit cycles in Figs. 3(f) and 5
(i) almost have the same size; the vibration amplitude
seems to be dominated by υ/ω.  In order to obtain a
stable limit cycle a simple criterion is given as follows:

α1 − 3α2υ2 ≥ 0. (51)

Let us denote the critical speed of the belt by υ* :
=   α1 / (3α2)  as shown in Fig. 4, which gives the
minimum friction force bound at υ*.  It indicates that

Fig. 4. The friction force depends on relative speed through the relation ra

= ry sgn  (z)  − α1z  + α2  z3 , where α1 and α2 are experimentally
determined constants.
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when υ > υ* (q < 0) the slider motion tends to a stable
equilibrium point, and when υ < υ* (q > 0) the slider
motion tends to a stable limit cycle.  Thus, we say that
when υ varies from υ > υ* to υ < υ* there undergoes a
subcritical Hopf bifurcation [8, 9].

CONCLUSIONS

Even the model employed to simulate the friction
pair behavior of tool and workpiece on the cutting
process was too simple, it may let us capture the main
influence factors for vibration in such interaction.  First
we have proved that no matter what the parameters are,
the mass upon starting to slide never comes to stick on
the belt. In terms of the relative displacement we call
such stop abnormal.  Then according to Eq. (39) we
drew the following conclusions. The oscillating ampli-
tude of the slider was proportional to the speed υ of the
running belt, and was inverse proportional to the natural
frequency ω.  In order to depress the vibration ampli-
tude we could decrease the belt running speed, increase
the stiffness or decrease the mass of the tool; however,
the last two strategies may induce high frequency oscil-

lation of the tool.  Increasing the friction bound ry (or the
friction coefficient µ) gave no effect on the vibration
amplitude, but increased the mean of vibration.  For the
speed-dependent friction force law, we have investi-
gated its friction behavior according to the qulitative
analysis in the phase plane.  The formula (51) give a
simple criterion for the appearance of stable limit cycle.
We prove that when υ varies from υ > υ* to υ < υ* there
undergoes a subcritical Hopf bifurcation of the behavior.
The size of limit cycle is determined mainly by υ/ω, and
is less dependent on the speed-related coefficients α1

and α2.
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