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ABSTRACT

This paper is concerned with the design of a rudder roll stabili-
zation (RRS) system by the internal model control (IMC) method.
The proposed method directly shapes the output sensitivity function
which relates the wave disturbance to the ship roll motion, to achieve
good disturbance rejection.  Under the IMC structure, the sensitivity
functions depend linearly on a design transfer function and this makes
it easy to satisfy the internal stability condition.  A reference condi-
tioning technique is employed in the design that takes the limited
actuator authority into the controller design consideration to avoid
unknowingly pushing the actuator beyond its saturation and slew rate
limitation boundaries.  Numerical results indicate that very good roll
reduction is achieved for sinusoidal disturbance and reasonable roll
reduction is obtained for a narrow band type of disturbance generated
by passing a white noise sequence through a second order shaping
filter.

INTRODUCTION

Ship roll stabilization has been an area of active
research since 1970s.  This is because the roll motion
greatly effects the comfort of the crew and the operation
of onboard equipment.  The antirolling water tanks and
the fin stabilizers are the best known roll stabilizing
devices in use [1].  However these approaches typically
involve complicated mechanisms and also require extra
space.  Consequently, alternative approach based on
utilization of existing equipment such as the rudder on
board ship seems to be quite attractive [2].

The main purpose of the rudder is to control the
yaw motion; that is, the heading of the ship in course-
keeping or course-changing maneuvers [3].  However,

it is observed that there is an inward roll induced by the
rudder immediately after initialization of the turning
maneuver.  The rudder roll stabilization (RRS) concept
is based on utilization of the rudder induced inward roll,
which is known as the undershoot behavior that charac-
terizes the so-called nonminimum phase system with
the existence of right-half-plane zeros in the corre-
sponding transfer function [4].

To avoid interference with the heading control of
the ship, and to achieve effective roll reduction, the
bandwidth of the rudder roll control system must be
higher than that of the rudder yaw control system, which
implies that the rudder slew rate limit should be high
enough to achieve satisfactory roll reduction perfor-
mance [5].  Thus, the RRS is aiming at reducing the high
frequency wave induced roll motion rather than the low
frequency steady state heeling.  This is quite different
from the purpose of a heading control autopilot, where
compensating for the low frequency yaw motion is of
main concern [3].

Many design methods have been applied to the
design of the RRS system.  For instance, the LQG
method [6], the H∞ control method [7], the adaptive LQ
method [8] and the robust control design method [9]
have been proposed.  Commercial product that incorpo-
rating the RRS and fin roll stabilization in forming an
integrated roll reduction system has been proposed [10].
RRS for naval vessels has been extensively studied and
satisfactory roll reduction performance has been re-
ported [11].

The main difficulty of the rudder roll stabilization
system lies on the limited rudder angle and rudder rate
that may cause performance degradation and even cause
system instability, if they are not properly taken care of
[3].  Automatic gain reduction has been proposed in
dealing with the slew rate limitation problem [12].  An
improved control method has been proposed that
combines a predictive control and a classical feedback
control in forming a hybrid RRS system.  Consistent
performance under various sea states are reported with
relatively low demand on the required rudder rate [13].

To maximize the roll stabilization performance,
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without causing instability to the system, the saturation
(SAT) and slew rate limitation (SRL) have to be taken
into design consideration.  A reference conditioning
technique will be employed that modifies the reference
input such that the rudder command is always equal to
the actual input into the plant [14].  This allows full
utilization of the limited actuator power, without push-
ing beyond the SAT and SRL boundaries unknowingly.

Since the disturbance rejection performance of the
RRS system depends on the sensitivity function that
reveals the effect of the disturbance on the roll motion
of the ship, it is reasonable to directly shape the output
sensitivity function under the internal model control
(IMC) framework.  The IMC design method is charac-
terized by a model-based approach that provides
explicit relationship between the structure of the con-
troller and that of the plant model.  Moreover, the
controller can be conveniently parameterized in terms
of a speed of response parameter, which allows the user
to tune the controller to meet specific control objective
[15].

Numerical simulations with respect to a ship model
reported in [5] will be conducted to evaluate the perfor-
mance of the proposed design method.

EQUATIONS  OF  MOTION  AND  DISTURBANCE
MODELING

A. Equations of Motion

It is well-known that to fully represent a rigid body
motion in space requires a six-degree-of-freedom
approach.  However, for slow merchant ships like the
large oil tankers, it is often assumed that the ship
maneuvering motion can be regarded as a three-degree-
of-freedom horizontal plane rigid body motion, which
includes surge (translation along the x axis), sway
(translation along the y axis) and yaw (rotation about the
z axis) (see Fig. 1).  However, for high speed container
ships or naval vessels like the frigates, the rudder in-
duced roll motion (rotation about the x axis) is not
negligible.  Hence, it is necessary to include the roll
mode into the surge-sway-yaw-based maneuvering
equations.

The equations of motion describing the dynamics
of a ship are readily obtained from Newton’s law in
space-fixed coordinate x0 − y0 (see Fig.1).  However, to
take advantage of the symmetry property of a ship, a
ship-fixed coordinate system x − y is preferred.  With
the origin for the axis system taken at the center of
gravity of the ship, the steering equations of motion
within ship-fixed coordinate system can be written as

  m(u – vr) = X (1a)

  m(v + ur) = Y (1b)

  Izr = N (1c)

  Ixp = K (1d)

where
m : = the mass of the ship ,
u : = the surge speed; (speed in the x direction),
v : = the sway speed; (speed in the y direction),
p : = the roll rate; (angular rate about the x axis),
r : = the yaw rate; (angular rate about the z axis),
Iz : = the moment of inertia of the ship about the z axis,
X : = the force applied on the ship in the x direction,
Y : = the force applied on the ship in the y direction,
N : = the moment applied on the ship about the z axis,
K : = the moment applied on the ship about the x axis.

The forces X, and Y, and moments K, and N can be
expressed as functions of the states u, v, r, p, their time
derivatives   u, v, r, p  and the rudder angle δ.  Hence,

   X = X(u, v, r, u, v, r, φ, p, p, δ) (2a)

   Y = Y(u, v, r, u, v, r, φ, p, p, δ) (2b)

   N = N(u, v, r, u, v, r, φ, p, p, δ) (2c)

   K = K(u, v, r, u, v, r, φ, p, p, δ) (2d)

The state φ is the roll angle, and it is the integration
of the roll rate p.

As the relationships between X, Y, N and K and the
state variables are difficult to determine, Taylor series
expansion has been suggested to expand the right hand
sides of Eqs. (2) while keeping only the linear terms [1].
Substitution of the expansion terms into Eqs. (1) and
note that upon linearization with respect to a straight
line motion with a constant forward speed u0 , the surge
equation is decoupled and the following linearized
coupled sway-yaw-roll equations follow

Fig. 1.  Sway-yaw-roll motion coordinate system.
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   m(v – u0r) = YV V + YvV + Yϕϕ + YPP + YPP + Yrr

   + Yrr + Yδδ (3a)

   Ixϕ = KPP + KPP – mg GM φ + KVV + KVV + Krr

   + Krr + Kδδ (3b)

   Izψ = Nrr + Nrr + Nφφ + NPP + NPP + NVV

   + NVV + Nδδ (3c)

where   YV, Yv, .....  indicate the hydrodynamic coefficients;
for instance, YV indicates the derivative of the sway
force Y to the sway speed V evaluated at the reference
condition, and   GM  is the metacentric height, which
indicates the restoring capability of a ship in roll motion.

Taking the Laplace transform of Eqs. (3a)-(3c),
and after eliminating the sway speed V and yaw rate r,
the following transfer function relating the roll angle φ
to the rudder angle δ can be obtained:

   Φ
δ =

K1(1 + T3s)(1 + T4s)
(s2 + 2ζωns + ωn

2)(1 + T1s)(1 + T2s) (4)

where the terms (1 + T1s), (1 + T2s), (1 + T3s) and (1 +
T4s) are due to coupling effects from the sway and yaw
motions.

In practice, it can be assumed that the sway speed
V is proportional to the yaw rate r during a turning
maneuver [3].  This assumption seems to be well justi-
fied since it has been observed that during a turning
maneuver, the sway speed V and yaw rate r show very
similar patterns, which is closely-related to the so-
called cancellation effect [16].

Consequently, Eq. (4) is further reducible to the
following form:

   Φ
δ =

K0(1 + T6s)
(s2 + 2ζωns + ωn

2)(1 + T5s) (5)

where the sway-yaw linear dependency relationship has
been absorbed into the coefficient K0.

System identification techniques have been ap-
plied to identify the roll-rudder transfer function based
on sea trial data.  Practical identification experiences
indicate that direct identifying Eq. (4) would result in an
ill-conditioning problem, which once again, can be
attributed to the cancellation effect reported in [16].
Hence, it is often necessary to directly identify the
simplified transfer function defined by Eq. (5).  The
following numerical values are obtained from identifi-
cation results based on sea trial data of a warship [5].
We have

   Φ
δ =

K0(1 – 4.5s)
(1 + 8.2s)(s2 + 0.25s + 0.25) (6)

where Ko is a speed dependent gain coefficient,
specifically, K0 = 0.140 for a speed of 18 kt.  Eq. (6) will
be taken as the plant model  G  to be used in the model-
based IMC design method described in latter section.  It
is seen that the zero corresponding to the numerator
dynamics of Eq.(6) is a positive value; namely, on the
right half plane and this corresponds to the so-called
nonminimum phase system.

Fig. 2 gives the frequency response diagram of the
rudder-roll transfer function defined by Eq. (6).  A
resonant peak at ω = 0.5 rad/sec  indicates the oscilla-
tory characteristics of the rudder-roll system.

With the roll-rudder transfer function defined by
Eq. (6), starboard turning maneuvers are conducted for
δ = −20° and −30°.  The numerical results are given in
Fig. 3.  It is seen that there is an initial undershoot,
which corresponds to the rudder-induced inward roll
and the larger is the rudder angle, the larger the under-
shoot is.  Besides, the steady state outward roll angle
increases linearly with respect to the applied rudder
angle.  This initial undershoot phenomenon character-
izes the so-called nonminimum phase system, where a
right half plane zero exists in the system transfer function.

B. Hydrodynamic aspect of the rudder- induced roll

Referring to Fig. 4 the rudder induced force FR

appears immediately, once the rudder has reached the
starboard position.  The rudder force FR now generates
a clockwise moment MR that rolls the ship inwards. It
should be noted that the rudder induced force FR also
results in a sideway kick phenomenon.

Since the size of the ship is significantly larger
than that of the rudder, the hull induced force FH due to
existence of drift angle built up much slowly.  However
once FH comes in, a counter clockwise moment MH is
generated that outweighs the rudder-induced moment
MR and an outward roll is generated.  When the ship

Fig. 2.  Bode plot of rudder-roll transfer function.
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gradually rolls outwards, a restoring moment is gener-
ated to counteract the hull force induced moment MH.
Eventually, the ship will reach a steady outward roll
angle when the restoring moment is equal but in oppo-
site direction to the hull force induced moment MH.  The
steady outward roll angle is approximately proportional
to the square of the ship speed and proportional to the
rudder angle but inversely proportional to the metacen-
tric height   GM  [1].

It is the inward roll phenomenon caused by the
rudder moment MR will be applied in reducing the roll
motion of a ship steering in seaways.  However, power
of the steering gear has to be significantly increased to
achieve a rudder rate up to 12 deg/sec to result in an
effective RRS system.

C. Rudder saturation and slew rate limitation

The steering gear has associated with two non-

linearities; that is, the saturation (SAT) and slew rate
limitation (SRL).  The rudder angles are assumed to be
within ±30 deg and the rudder rate limits are within ±15
deg/sec.  The rudder SAT and SRL are implemented in
the structure given in Fig. 5.

The value of ε in the lag box can be adjusted to
represent the achievable SRL.

D. Wave disturbance

The wave disturbance will be modeled as an output
disturbance, which is generated by passing a white
noise through a second order shaping filter given by

   H(s) =
Kws

s2 + 2ζωes + ωe
2 (7)

where Kw is a coefficient that can be adjusted to repre-
sent wave strength effect; ζ  is a damping ratio and ωe is
the encounter frequency.  Typically, ζ  is between 0.05
to 0.1 and ωe is between 0.3 to 1.3 rad/sec [3].  In the
simulation study, ζ is set to 0.075, ωe is 0.4 and Kw is 10,
which result in a narrow band type of disturbance.  It can
be observed that the most often adopted Pierson-
Moskowitz wave spectrum does exhibit concentration
of wave energy at certain frequency and the JONSWAP
spectrum is even more peaked [3].  Hence, the narrow
band wave disturbance is a reasonable assumption.  To
a first order approximation, wave motions are linear and
the hull response can be obtained as a superposition of
the wave induced motion and that created by rudder
activity.  In order to examine the effectiveness of the
proposed controller, a pure sinusoidal type of wave
disturbance will also be employed in the simulation
study.

E. Rudder roll stabilization (RRS) system structure

The basic structure of the RRS system can be
represented by the block diagram shown in Fig. 6.

The reference signal φref is set to zero, which
indicates the desired stabilized horizontal position.  The

Fig. 3. Starboard turning maneuver rudder induced roll with δ = −20° and
−30°.

Fig. 4.  Rudder induced rolling force diagram.

Fig. 5. Rudder saturation (SAT) and slew rate limitation (SRL) implementa-
tion.
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controller C will be designed with the internal model
control (IMC) approach presented in latter section, and
the rudder SAT and SRL will be directly taken into the
design consideration.

INTERNAL  MODEL  CONTROL  (IMC)  METHOD

The IMC design method will be discussed in this
section.  Specifically, the advantages of IMC method
will be highlighted, and the design procedure described.

A. IMC parameterization

A block diagram of the IMC structure and classical
feedback structure are shown in Fig. 7A and Fig. 7B
respectively.  The IMC and classical feedback struc-
tures are equivalent under the following transformations:

  C =
Q

1 – QG
(8a)

  Q = C
1 + CG

(8b)

Where C is the controller, G is the process being
controlled,  G  is the process model, and Q is a design
transfer function.  In Figs. 7A-7B, r is the reference
input, y is the output, u is the control, di is the input
disturbance and do is the external disturbance.  Equiva-
lence between Fig. 7A and Fig. 7B can be readily seen
by transforming the dash box to a signal block and is
represented by the relation shown in Eq. (8a).

The IMC structure shown in Fig. 7A shows that if
there are no modeling uncertainties and there is no
disturbance, there is no need of feedback.  Moreover,
the feedback signal in the IMC structure represents
uncertainty about the process and the disturbance.  Eq.
(8b) implies that the controller C is parameterized in
terms of the design transfer function Q.  It also indicates
that the controller is directly dependent on the model  G .

Hence, the IMC structure can be interpreted as param-
eterization of the entire stabilizing controller structure,
where the design transfer function Q appears in Eq. (8a)
plays the role of the parameter.

B. IMC design procedure

In summary, the IMC parameterization design
method leads to the following controller:

  C =
Q

1 – QG
(9a)

where  G  is the process model and Q is a design transfer
function defined as

  Q = FGinv (9b)

where Ginv is an approximation to the inverse of the
process model  G , and F is a closed-loop specification
filter, called, alternatively, the modulating filter, given
in the form

   F = 1
(1 + βs)n (9c)

where n is an integer chosen to make Q bi-proper.  That
is, the order of the numerator is equal to the order of the
denominator, and β is a design parameter that character-
izes the speed of response of the closed-loop system.

The presence of the term Ginv in Eq. (9b) derives
from the observation that a controller with the inverse
structure of the process being controlled performs per-
fectly under the ideal case.  Specifically, Ginv is derived

Fig. 6.  RRS system, with SAT/SRL limitations.

Fig. 7.  (a)IMC structure, (b)Classical feedback structure.
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as follows.  Assume

   G =
Bs ⋅ Bu
As ⋅ Au

(10a)

then

   Ginv =
As ⋅ Au

Bs ⋅ (Bu)
s = 0

(10b)

where As, Au represent the stable and unstable poles
respectively, and Bs, Bu represent the minimum phase
and nonminimum phase zeros respectively.  For a
nonminimum phase system, direct inversion of the term
Bu is not allowed; otherwise the stability criterion will
be violated.  However, it is desirable to extract useful
information from the term Bu without violating the
stability criterion; specially, the DC gain value of Bu is
the piece of information being retained.

C. Internal stability

Referring to the classical feedback structure shown
in Fig. 7B, assume that G =  G ; that is, the process model
exactly describes the process being controlled.  Then
the corresponding loop is called the nominal loop.  It is
well known that to ensure internal stability for the
nominal loop, the following nominal sensitivity func-
tions have to be stable [15]:

  T = Y
R =

CG

1 + CG
(11a)

  So = Y
Do

= 1
1 + CG

(11b)

  Si = Y
Di

=
G

1 + CG
(11c)

  Su = U
R = C

1 + CG
(11d)

where T is the nominal complementary sensitivity
function, So is the nominal output sensitivity function,
Si is the nominal input sensitivity function and Su is the
nominal control sensitivity function.  Satisfaction of the
stability criterion by the sensitivity functions defined
by Eqs. (11) ensures that  between any two points in the
loop, the input-output relation is stable.

Referring to the IMC structure depicted in Fig. 7A,
the sensitivity functions defined by Eqs. (11) can be
rewritten in terms of the design transfer function Q and
the model G  as follows:

  T = QG (12a)

  So = 1 – QG (12b)

  Si = (1 – QG)G (12c)

Su = Q (12d)

Comparing Eqs.(11) with Eqs. (12), it is seen that
the sensitivity functions are nonlinear in the controller
C but are linear in the design transfer function Q.  The
above observation clearly indicates the advantage of the
IMC structure over the classical feedback structure in
terms of satisfaction of the internal stability criterion.
To see this, under the IMC structure, given a stable
process model  G , internal stability is satisfied by choos-
ing a stable and proper design transfer function Q.
However, under the classical feedback structure, given
a stable process model  G , internal stability is not guar-
anteed by choosing a stable and proper controller C.

 SENSITIVITY  FUNCTION-BASED  APPROACH

Referring to Fig. 7A, it follows that

Y = T • R + S0 • D0 + Si • Di (13)

where Y is the system output, R is the reference input, Di

and Do are the input and output disturbances.  The
sensitivity function T, So, Si are given by Eqs. (12a)-
(12c).

Since the purpose of the RRS  system is to maintain
an upright position, the reference input is zero.
Moreover, the wave disturbance will be treated as out-
put disturbance.  Hence, reduction of the wave-induced
rolling motion can be achieved by proper selection of
the output sensitivity function So defined by Eq. (12b).
Specifically, a notch filter type of sensitivity function
will be selected with the center frequency located near
the dominant wave frequency.  In the followings, the
controller design will be based on the process model  G
defined by the rudder-roll transfer function given by Eq.
(6).

Select the output sensitivity function So to have the
form of a standard notch filter as

   So(s) =
s2 + 2ς*ωns + ωn

2

(s + ωn)2 (14)

It follows from Eqs.(9b), (10b) and (12b) that the
modulating filter F is then given by

   F(s) =
2(1 – ς*)ωns

Bu (s)
s = 0(s + ωn)2 (15)

With F(s) given by (15), the corresponding design
transfer function Q defined by Eq. (9b) becomes
improper.  However, in the IMC approach, the design
transfer function Q is required to be bi-proper.  Hence,
F(s) can be modified as follows
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   F(s) =
2(1 – ς*)ωns

Bu (s)
s = 0(s + ωn)2(s + r)2 (16)

where r is another design parameter to produce a bi-
proper and stable design transfer function Q given by

   Q =
2(1 – ς*)ωns(1 + 8.2s)(s2 + 0.25s + 0.25)

(s + ωn)2(s + r)2      (17)

The term Bu(s)|s = 0 represents the DC gain of the
nonminimum zero, and for our ship model defined by
Eq. (6), it  reduces to identity.

The corresponding output sensitivity function So

is derived as

  So(s) = N(s)
D(s) (18a)

where

N(s) = s4 + 2(ωn + r)s3

   + (1.26ωn – 1.26ς*ωn + ωn
2 + 4rωn + r2)s2

   + ωn(2rωn + 2r2 + 0.28ς* – 0.28)s + ωn
2r2  (18b)

D(s) = (s + ωn)2(s + r)2 (18c)

In Eqs. (18), the parameters ωn, ς*,and r can be
treated as the design parameters that determine the
shape of the notch filter.

Finally, with respect to the system transfer func-
tion given by (6) the controller can be computed from
Eq. (9a) as

  C(s) =
N1(s)
D1(s) (19a)

where

N1(s) = 2(1 - ς*)ωn(8.2s2 + s)(s2 + 0.25s + 0.25)
(19b)

D1(s) = s4 + 2(ωn + r)s3

   + (1.26ωn – 1.26ς*ωn + ωn
2 + 4rωn + r2)s2

   +ωn(2rωn + 2r2 + 0.28ς* – 0.28)s + ωn
2r2

(19c)

It is to be noted that the controller given by Eqs.
(19) is bi-proper. Namely, the order of the numerator is
equal to that of the denominator.

REFERENCE  CONDITIONING  TECHNIQUE

It is well-known that saturation (SAT) and slew

rate limitation (SRL) nonlinearities of control input to
an open-loop stable system may cause performance
degradation.  Indeed, the system will grow very fast
during the saturation and slew rate limitation period and
may reach values that are uncontrollable with limited
actuator authority [17].

It is certainly possible to design a controller that
never reaches the SAT and SRL bounds; however, this
will inevitably degrade the performance.  In an RRS
problem, it is desirable to move the rudder as quickly as
possible to counteract the wave disturbance.  Thus, it is
necessary to bring the actuator to its SAT and SRL
boundaries in order to achieve the goal.

The reference conditioning technique has been
proposed to deal with saturating input for unstable
linear system [18].  In this paper both the actuator SAT
and SRL are considered [14].  Specifically, the refer-
ence input is modified in such a way that the controller
states are consistent with actual control inputs into the
plant.  The control signal never attempts to take on
values beyond the bound imposed by the SAT and SRL,
and the linear design properties are preserved.

A. Rudder saturation conditioning

The configuration of the reference conditioning
filter is presented as follows.  Given a bi-proper control-
ler C described by Eqs. (19), it is possible to describe the
controller in terms of a strictly proper term and a
feedthrough term as follows:

C = C0 + C1 (20)

where C0 is the feedthrough term and C1 is the strictly
proper term.  Let φ be the actual roll angle and let R be
the reference angle.  Consider the following control
law:

u* = C(R − φ)

= C0(R − φ) + C1(R − φ) (21)

The control input based on Eq. (21) may lead to
saturation and slew rate limitation if the actual roll
angle φ is very different from the reference angle R.
Thus, it is possible to choose a new reference angle to
avoid the above condition.

Let us assume for this moment there is only SAT
limitation.  Let Rnew be the modified reference angle,
which can be calculated by solving for the following
relation:

C1(Rnew − φ) + C0(Rnew − φ)

= SAT[C1(Rnew − φ) + C0(R − φ)] (22)
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where SAT[•] is a saturation function.  Solving Eq. (22)
for Rnew, we have

Rnew =   1
C0

{SAT[C1(Rnew − φ) − C0φ + C0R]

− [C1(Rnew − φ) − C0φ]} (23)

Rearranging Eq. (23), it follows that

Rnew =   1
C0

{SAT[u1 + C0R] − u1} (24)

where

u1 = C1(Rnew − φ) − C0φ (25)

Note that the left-hand side (LHS) of Eq. (22) is the
actual input into the plant that will not activate the
saturation nonlinearity.

Let us call the LHS of Eq. (22) u and write

u = C1(Rnew − φ) + C0(Rnew − φ) (26)

Substitution of Eq. (25) into Eq. (26) gives

u = u1 + C0Rnew (27)

The relationships described by Eqs. (22)-(27) can
be realized in terms of the configuration shown in Fig.
8.

B. Rudder saturation and slew rate limitation condition-
ing

If both saturation and slew rate limitation are
considered, Eq. (24) is modified as

Rnew =   1
C0

{(SAT + SRL)[u1 + C0R] − u1} (28)

where (SAT + SRL)[u1 + C0R] implies that both the
saturation and slew rate limitation constraints are
imposed on the term u1 + C0R.  The conditioning scheme

with SAT and SRL constraints is realized with the con-
figuration shown in Fig. 9.

To take into account the presence of SAT and SRL
in the system, one would like to ‘alert’ the controller
whenever either one of these non-linearities is activated.
At this point the controller should stop ‘pushing’, since
either the rudder reaches its motion limit or its motion
rate limit.  This is accomplished by passing the control
signal through the system presented in the dash line
rectangle shown in Fig. 9.

Summarizing, the control state is now calculated
based on the difference between Rnew and φ.  This
ensures the control state is always consistent with the
actual input into the plant.  Thus, it is possible to
execute the RRS very quickly by complying with lim-
ited actuator power, without introducing the saturation
and slew rate limitation nonlinearities.

NUMERICAL  SIMULATIONS

Recall that for the wave model generated by pass-
ing white noise sequence through a shaping filter de-
fined by Eq. (7).  In the following computations, the
damping ratio ς is set to 0.075, the encounter frequency
ωe is set to 0.4 rad/sec and the wave strength factor Kw

is set to 10, which will give a wave-induced roll motion
with root mean square (RMS) value around 12 deg.  The
wave shaping filter employed in the simulation study is
then given by

  H(s) = 10s
s2 + 0.06s + 0.16

(29)

The design parameters that determine the charac-
teristics of the output sensitivity functions defined by
Eq. (18) are selected as follows.  Specifically, ωn = 0.08,

Fig. 8.  Controller realization with SAT. Fig. 9.  Controller realization with SAT and SRL.
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ς* = 11.9 and r = 1.
The corresponding output sensitivity function S0

of our design is then given by

  So(s) = s4 + 2.16s3 + 0.2277s2 + 0.417s + 0.0064
s4 + 2.16s3 + 1.3264s2 + 0.1728s + 0.0064

(30)

Finally, the controller C(s) defined by Eq. (19) can
be computed as

  C(s) = – 14.3008s4 – 5.3192s3 – 4.0112s2 – 0.436s
s4 + 2.16s3 + 0.2277s2 + 0.417s + 0.0064

(31)

The Bode plot of the output sensitivity function
S0(s) defined by Eq. (30) is shown in Fig. 10.  It can be
seen that the center frequency of the notch is located
near 0.4 rad/sec.  Hence, an effective roll reduction can
be expected for wave disturbance with dominating fre-
quency around 0.4 rad/sec.

It is to be noted that as the magnitude of the output
sensitivity function So is pushed down near the dominat-
ing encounter wave frequency, it pops up at some other
frequency regions.  This is the so-called water bed
effect, which characterizes the nonminimum phase
systems.  Consequently, inevitable trade-off exists in
the RRS controller design.  Namely, attenuating the
wave disturbance near the center frequency is accompa-
nied by magnifying  of the wave disturbance at other
frequency.  Hence, careful design of the notch filter to
capture the dominating frequency is very important to
achieve good roll stabilization performance.

To illustrate the feasibility of the proposed RRS
design method, a pure sinusoidal type of disturbance
with an amplitude of 15°, frequency of 0.4 rad/sec is
taken as the output disturbance.  The stabilized results
are given in Fig. 11A and the rudder angle employed is
given in Fig. 11B.  It is clear that for the simple sine
wave disturbance, very good roll reduction is achieved
with minimal control effort required.  Specifically, the

roll motion amplitude is reduced from 15° to 3° and the
rudder angle command is within ±30°.

The more realistic narrow band type of wave dis-
turbance generated by passing a white noise sequence
through the shaping filter defined by Eq. (29) is  also
examined to evaluate the performance of the proposed
RRS system.  To give a benchmark performance of the
proposed controller, it is first assumed that there is no
SAT or SRL limitation on the rudder.  Fig. 12A shows
the roll angle history with and without the controller and
Fig. 12B gives the rudder angle time history.  It is seen
that the roll angle has been reduced significantly.
Specifically, the root mean square (RMS) value of the
roll angle has been reduced from 12.5° to 4.5°, which
corresponds to a 66% roll  angle reduction ratio defined
as follows:

Roll reduction ratio

  =
RMScontroller off – RMScontroller on

RMScontroller off
(32)

However, the rudder angle demand is well beyond
the SAT and SRL boundaries.  The RMS value of the
rudder angle is 28.9 deg.

Figs. 13-14 give the simulation results by taking

Fig. 10.  Bode plot of the output sensitivity function So(s).
Fig. 11. (a)Roll reduction for sinusoidal disturbance; (b)Rudder angle for

sinusoidal disturbance.
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the limited actuator authority into consideration based
on the block diagram of Fig. 6.  Specifically, the rudder
command generated from the controller is compared
with the SAT and SRL constraints.  If the rudder com-
mand is within the SAT and SRL boundaries, the rudder
command is directly taken as the actual rudder input.
However, if the rudder command goes beyond the SAT
or SRL bound, the actual rudder input will be set to the
SAT or SRL boundary value.  It is to be noted that in this
case, the SAT and SRL are not taken directly into the
controller design consideration.  Namely, the controller
is not aware of the limited actuator authority.  Hence, a
large rudder command beyond the SAT and SRL might
be generated.

Specifically, Fig. 13A shows the roll angle history
with rudder SAT = ±30° and SRL = ±12°/sec, and Fig.
14A shows the roll angle history with SRL = ±30° and
SRL = ±15°/sec.  The roll angle  reduction ratio achieved
is 28.5% for SRL = ±12°/sec and is 32.2% for SRL =
±15°/sec.  This is in agreement with the general obser-
vation that the RRS performance improves as the rudder

Fig. 12. (a)Roll reduction for narrow band disturbance, no SAT/SRL
constraints; (b)Rudder angle for narrow band disturbance, no SAT/
SRL constraints.

Fig. 13. (a)Roll reduction for narrow band disturbance, SRL = ±12°/sec,
without reference conditioning; (b)Rudder command for narrow
band disturbance, SRL = ±12°/sec, without reference conditioning;
(c)Actual rudder angle for narrow band disturbance, SRL = ±12°
/sec, without reference conditioning.

rate increases.
As can be seen from Fig. 13B and Fig. 14B that the

rudder command is well beyond the SAT and SRL
boundaries.  Hence, the actual rudder angles are reduced
to comply with the steering gear SAT and SRL constraints.

Figs. 15-16 show the stabilized results of the
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proposed controller design method by using the refer-
ence conditioning technique in taking the actuator SAT
and SRL into the design consideration.  Same as previ-
ous simulations, the maximum rudder angle is limited
within ±30° and the maximum rudder rate is ±12°/sec

and ±15°/sec respectively.  Specifically, Figs. 15 corre-
spond to ±12°/sec SRL and Figs. 16 correspond to
±15°/sec SRL.  The roll reduction ratio is 36.4% for a
SRL of ±12°/sec, and the roll reduction ratio is 49.1%
for the SRL of ±15°/sec.

Fig. 14. (a)Roll reduction for narrow band disturbance, SRL = ±15°/sec,
without reference conditioning; (b)Rudder command for narrow
band disturbance, SRL = ±15°/sec, without reference conditioning;
(c)Actual rudder angle for narrow band disturbance, SRL = ±15°
/sec without reference conditioning.

Fig. 15. (a)Roll reduction for narrow band disturbance, SRL = ±12°/sec,
with reference conditioning; (b)Rudder command for narrow band
disturbance, SRL = ±12°/sec, with reference conditioning; (c)
Actual rudder angle for narrow band disturbance, SRL = ±12°/sec,
with reference conditioning.
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Fig. 16. (a)Roll reduction for narrow band disturbance, SRL = ±15°/sec,
with  reference conditioning; (b)Rudder command for narrow band
disturbance,SRL = ±15°/sec, with reference conditioning; (c)Ac-
tual rudder angle for narrow band disturbance, SRL = ±15°/sec,
with reference conditioning.

By comparing the rudder commands of Figs. 15B
-16B with those of Figs.13B-14B, it can be observed
that the rudder angle commands are within the SAT and
SRL boundaries while employing the reference condi-
tioning  technique, which takes the limited actuator

authority into the design consideration.
Moreover, the roll reduction performance has im-

proved when using the reference conditioning technique.
Specifically, for ±12°/sec SRL, the reduction ratio is
improved from 28.5% to 36.4% and for ±15°/sec SRL,
the reduction ratio is improved from 32.2% to 49.1%.

Table 1 summarizes the roll reduction results dis-
cussed in the numerical examples using different SRL
values and with or without the reference conditioning
techniques.  The roll reduction ratio is larger when a
higher SRL is employed.  Besides, the advantage of
using the reference conditioning technique is clearly
seen from the table.

CONCLUSIONS

An IMC-based rudder roll stabilization controller
design method is found appealing in terms of wave
disturbance rejection.  Specifically, under the IMC
framework, the sensitivity functions depend linearly on
the design transfer function Q.  This allows us to di-
rectly shape the output sensitivity function.  The design
parameter of the proposed approach has much more
clear physical meaning than the popular LQ optimal
control, where the weighting matrices of the cost
function being minimized play the role of the design
parameters.  It is also more convenient than the
H∞control approach that shapes the weighting matrices
to form a bound on the sensitivity functions.  The
adopted reference conditioning technique allows the
controller to exert its full power without violating the
SAT and SRL boundaries imposed by limited actuator
authority.

Due to the ever changing sea state conditions,
further research on on-line estimation of the dominating
encounter wave frequency is required and the center
frequency of the notch filter should be adjusted accord-
ingly to make the proposed controller adaptive to differ-
ent sea states.  If a confused sea state is encountered;
namely, no dominant frequency exists at all, then the
RRS would be of little use and should be turned off.
This is because a very wide notch in the output sensitiv-
ity function is needed and the depth of the notch would
be very shallow.  Consequently,  the attenuation effect
would be very small.
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Table 1.  Roll reduction results summary

Controller off (roll angle) Controller on (roll angle) Roll reduction ratio

No saturation 12.5 deg 4.5 deg 66%
No reference conditioning SRL = ±12°/sec 12.5 deg 8.94 deg 28.5%
No reference conditioning SRL = ±15°/sec 12.5 deg 8.48 deg 32.2 %
Reference conditioning SRL = ±12°/sec 12.5 deg 7.95deg 36.4%
Reference conditioning SRL = ±15°/sec 12.5 deg 6.36 deg 49.1 %
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