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ABSTRACT

The Hamilton-Jacobi equation (HJE) plays an essential role in
both classical mechanics and nonlinear H∞ control theory.  In this
paper, we propose a detailed successive algorithm for finding an
approximate solution of the HJE by solving linear equations.  A scalar
example is given to compare the computational procedures and the
accuracy for the proposed approach with some other methods.  In
addition, the nonlinear H∞ controller design for the inverted pendu-
lum is also included to show the superiority of the nonlinear H∞
controller, as compared with the linear H∞ controller, in the aspect of
the robust performance/stability.

INTRODUCTION

As the linear H∞ control techniques [2, 4] have
been developed for several years, recently the much
more complicated nonlinear H∞ control has drawn at-
tention to many investigators [1, 10, 13, 14] and has
been solved based on the concept of energy dissipation.
Ball, Helton, and Walker (BHW) [1] have successfully
derived the nonlinear H∞ controller formulas involving
two Hamilton-Jacobi inequalities (HJIs) or equations
(HJEs), in which the HJEs coincidentally have the simi-
lar forms as the ones in the classical mechanics due to
they both can be derived from the concept of energy.  In
order to obtain a nonlinear H∞ controller from BHW’s
controller formulas, one needs to solve the HJEs.  Up to
date, there is no computational algorithm for the exact
explicit solution of HJE; however, an approximate solu-
tion can be obtained by using the successive computa-
tional methods [3, 9, 11, 13, 15].  Specifically, Lukes

[11] derived a successive algorithm for finding an ap-
proximate solution of the HJE by the power series
method.  Glad [3] and van der Schaft [13] simplified
Lukes approach for the nonlinear input-affine system.
However,  their  works were presented only in
conceptually, not showing the detailed procedures.  Wise
and Sedwick (WS) [15] presented a successive approxi-
mation approach in which some integral expressions are
built and used to find an approximate solution of the
HJE successively.  For Huang and Lin’s approach [9], a
computational algorithm is provided, but the approach
is too complicated to employ.

In this paper, we present a successive algorithm
based on [3, 13] in a thorough manner to show how to
find an approximate solution of the HJE easily and
efficiently.  The proposed successive algorithm as-
sumes that the solution of the HJE and the state equa-
tions are in the form of power series.  After plugging all
the information to the original HJE, one will find the
linear part from the algebraic Riccati equation (ARE) is
vanished and hence the higher order terms are left to
form a new equation.  There are two approaches to
obtain an approximate solution of the HJE from the
equation.  One is to compare the coefficients of both
sides of the equation, forming a set of linear equations,
and solve them to construct an approximate solution of
the HJE. The other approach uses integration instead of
comparing the said coefficients.  Note that the approxi-
mate solutions obtained from both approaches are
identical.  A higher order approximate solution can be
found successively by using the above approaches if the
higher accuracy is required.  A scalar example will be
given to demonstrate the procedure of finding an ap-
proximate solution of the HJE by the linear equation,
the integration approach, and the WS [15] approach.
Finally, the nonlinear H∞ controller design for the in-
verted pendulum is also included to demonstrate the
design procedures and how to solve the HJE by the
proposed algorithm.  Simulations of the pendulum re-
sponses are also enclosed to show the superiority of the
nonlinear H∞ controllers, as compared with its linear
counterpart.
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PRELIMINARIES

Nonlinear H∞ Control Problem

Consider the following nonlinear input-affine gen-
eralized plant G:

  
G :

x = f(x) + g 1(x)w + g 2(x)u
z = h 1(x) + D 12(x)u
y = h 2(x) + D 21(x)w

(1)

where x ∈  Rn is the state of the system, z ∈  Rp1 is the
controlled output, w ∈  Rm1 is the exogenous input
including all commands and disturbances, u ∈  Rm2

represents the control input, and y ∈  Rp2 is the measured
output [1, 8, 10].  The problem is to find a controller

   
K : ξ = AK(ξ) + BK(ξ)y

u = C K(ξ) (2)

so that the closed-loop system is stable and γ-dissipative
[5, 8] or, equivalently, the L2-gain [13] of the system is
less than or equal to γ, which is a prescribed positive
number.

Nonlinear H∞ Controller Formulas

The nonlinear H∞ controller formulas in [1] are
summarized in the following theorem.
Theorem 1  Consider the nonlinear generalized plant
defined in (1). If there exists a controller K of the form
(2) such that the closed-loop system is stable and γ-
dissipative, then we have the following:

(i) There exist X(x) and YI(x) such that the following Hamilton-
Jacobi inequalities:

HJX(x) : = 2XT(x)HA(x) + XT(x)HR(x)X(x)
+ HQ(x) ≤ 0 (3a)

and

   HJYI(x) : = 2Y I
T(x)J A(x) + Y I

T(x)J R(x)Y H(x) + J Q(x) ≤ 0
(3b)

are satisfied for all x in the domain of interest where

  H A(x) = f(x) – g 2(x)E1
– 1(x)D 12

T (x)h 1(x) (4a)

   H R(x) = γ – 2g 1(x)g 1
T(x) – g 2(x)E1

– 1(x)g 2
T(x) (4b)

  H Q(x) = h 1
T(x)h 1(x) – h 1

T(x)D 12(x)E1
– 1(x)D 12

T (x)h 1(x)
(4c)

  J A(x) = f(x) – g 1(x)D 21
T (x)E2

– 1(x)h 2(x) (4d)

   J R(x) = γ – 2g 1(x)g 1
T(x)

   – γ – 2g 1(x)D 21
T (x)E2

– 1(x)D 21(x)g 1
T(x) (4e)

   J Q(x) = h 1
T(x)h 1(x) – γ2h 2

T(x)E2
– 1(x)h 2(x) (4f)

  E1(x) = D 12
T (x)D 12(x) (4g)

  E2(x) = D 21(x)D 21
T (x) (4h)

(ii) YI(x) - X(x) is the gradient of a positive function in the
neighborhood of the equilibrium point.

(iii) A nonlinear γ-dissipative H∞ controller can be con-
structed as:

   AK(ξ) = f(ξ) + γ – 2[g 1(ξ) – BK(ξ)D 21(ξ)]g 1
T(ξ)X(ξ)

   + g 2(ξ)C K(ξ) – BK(ξ)h 2(ξ) (5a)

   C K(ξ) = – E1
– 1(ξ)[g 2

T(ξ)X(ξ) + D 12
T h 1(ξ)] (5b)

where BK(x) satisfies the following equation:

   [Y I(ξ) – X(ξ)]TBK(ξ) = [γ2h 2
T(ξ)

   + Y I
T(ξ)g 1(ξ)D 21

T (ξ))]E2
– 1(ξ 1) (5c)

Linearized Model and ARIs

In order to construct a nonlinear H∞ controller
from (5), one needs to solve the HJI or HJE.  There is no
exact closed-form solution available for the HJE;
however, some successive approximation approaches
[3, 9, 11, 13, 15] can be employed to solve the HJE.  The
solution is in the form of power series in which the first
term is constructed based on the corresponding ARE.
Assume the equilibrium point is at x = 0, the linearized
model of the nonlinear generalized plant  described in
(1) can be obtained as follows:

  
G(s)linear :

x = Ax + B1w + B2u
z = C 1x + D 12u
y = C 2x + D 21w

(6)

To use a successive approximation algorithm for
the solution of the HJIs, the first step is to solve their
ARIs, i.e., to find X > 0 and YI > 0 so that the following
three inequalities are satisfied.

  RicX : = (A – B2E1
– 1D 12

T C 1)
T
X + X(A – B2E1

– 1D 12
T C 1)

   + X(γ – 2B1B1
T – B2E1

– 1B2
T)X

   + C 1
T(I – D 12E1

– 1D 12
T )C 1 ≤ 0 (7a)
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  RicY I : = (A – B1D 21
T E2

– 1C 2)
T
Y I + Y I(A – B1D 21

T E2
– 1C 2)

   + Y Iγ – 2B1(I – D 21
T E2

– 1D 21)B1
TY I

   + (C 1
TC 1 – γ2C 2

TE2
– 1C 2) ≤ 0 (7b)

Z : = YI − X > 0 (7c)

where

  E1 = E1(0) = D 12
T (0)D 12(0) (7d)

  E2 = E2(0) = D 21(0)D 21
T (0) (7e)

HJE Approximate Solution by WS Method

The successive approximate solution method pro-
posed by Wise and Sedwick (WS) [15] will be briefly
reviewed.  Assume the nonlinearity only occurs in the
system function f(x) defined in (1).  Define

  As = A – B2E1
– 1D 12

T C 1 (8a)

   Rs = γ – 2B1B1
T – B2E1

– 1B2
T

(8b)

  Q s = C 1
T(I – D 12E1

– 1D 12
T )C 1 (8c)

Fc = As + RsX (8d)

HA(x) = Asx + fh(x) (8e)

where X ≥ 0 is the solution of the ARE (7a) and fh(x) =
O(x2).  The HJE (3a) can be rewritten as

  Vx(x)H A(x) + 1
4

Vx(x)Rs(x)Vx
T(x) + xQ sx

T = 0        (9a)

where

   Vx = ∂V
∂x

= 2XT(x) (9b)

and the corresponding ARE (7a) becomes

  As
TX + XAs + XRsX + Q s = 0 (10)

The WS successive approach is summarized as
follows.  Define

   
J(t) =

0

t
e

F cξ
(1
2

Rs)e
F c

Tξ
dξ (11a)

   q(z, p) = – 2
∂Tf h(z)

∂z
Xz –

∂Tf h(z)
∂z

p – 2Xf h(z) (11b)

   
z(t) = e

F ct
z(0) + J(t)p(t) + e

F ct

0

t
e

– F cτ
[f h(z(τ ))

   – J(τ )q(z(τ ), p(τ ))]dτ (11c)

   
p(t) = – e

– F c
Tt

0

t
e

F c
Tτ

q(z(τ ), p(z))dτ (11d)

The successive computing procedure starting by
setting the zero-th approximation as

z(0)(t) = eFctz and p(0)(t) = 0 (12)

then plugging (12) into (11) to obtain the first
approximation.  Repeat to compute (11) by using the
latest z(t) and p(t) until generate the desired degree of
approximation.  The approximate solution of Vx(x) can
be computed by

Vx(x) = 2xTX + p(t)|t = 0 (13)

A  DETAILED  COMPUTATIONAL  ALGORITHM
FOR  SOLVING  THE HJE

In order to obtain a nonlinear H∞ controller from
Theorem 1, one needs to solve the HJEs.  In [3, 13], the
method of solving the HJE was only presented concep-
tually without showing detailed procedures.  In this
section, we will present a modified successive algo-
rithm in a thorough manner to construct an approximate
solution for the HJE which is the main contribution of
the paper.  The HJE (3a) can be rewritten as:

  Vx(x)H A(x) + 1
4

Vx(x)H R(x)Vx
T(x) + H Q(x) = 0       (14)

where Vx(x) is defined in (9b).  Define As, Rs, Qs, Fc, and
HA(x) as the same in (8).  Let , Rh(x) = O(x) and Qh(x) =
O(x3) be the high-order terms that satisfy the following,

  1
4

H R(x) = 1
4

Rs + Rh(x) (15a)

HQ(x) = xTQsx + Qh(x) (15b)

Recall that (•)(k) denotes the k-th order term , (•)[k]

stands for the sum of the accumulated terms up to the k-
th order term, and X is the positive semi-definite stabi-
lizing solution of the ARE (10).  Now, the k-th order
approximate solution of (14) can be written as

   V [k](x) = Σ
m = 2

k
V (m)(x) = xTXx + Σ

m = 3

k
V (m)(x) (15c)

and its derivative will be

   ∂V [k]

∂x
= 2xTX + Σ

m = 3

k ∂V (m)

∂x (16)

Note that the order of    ∂V (m)

∂x  is m − 1.  Using (8e),
(15a), and (15b), we  approximate (14) to the following:

   ∂V [K]

∂x
[Asx + f h(x)] + 1

4
∂V [K]

∂x
[Rs + 4Rh(x)]∂

TV [K]

∂x
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  + xTQ sx + Q h(x)

   = ∂V [K]

∂x
Asx + ∂V [K]

∂x
f h(x) + 1

4
∂V [K]

∂x
Rs

∂TV [K]

∂x

   + ∂V [K]

∂x
Rh(x)∂

TV [K]

∂x
+ xTQ sx + Q h(x) = 0 (17)

From (16), equation (17) can be expressed as

   2xTXAsx + Σ
m = 3

k ∂V (m)

∂x
Asx + ∂V [K]

∂x
f h(x) + xTXRsXx

   + Σ
m = 3

k ∂V (m)

∂x
1
4

Rs
∂V (m)

∂x
+ Σ

m = 3

k ∂V (m)

∂x
RsXx

   + ∂V [K]

∂x
Rh(x)∂

TV [K]

∂x
+ xTQ sx + Q h(x) = 0 (18)

Collecting all the underlined terms in (18) and
from (10) we have

2xTXAsx + xTXRsXx + xTQsx

= xT(ATx + XA + XRsX + Q)x = 0 (19)

From (19) and (8d), the equation (18) can be
rearranged as

   Σ
m = 3

k ∂V (m)

∂x
Fcx + ∂V [K]

∂x
f h + Σ

m = 3

k – 1
∂V (m)

∂x
1
4

Rs Σ
m = 3

k – 1 ∂TV (m)

∂x

   + ∂V [k]

∂x
Rh

∂TV [K]

∂x
+ Q h = 0 (20)

In order to find    ∂V (k)

∂x  successively, one needs to
put the first term of (20) in the left hand side of a new
equation and all other terms in (20) using the solutions
from the previous iteration to form the right hand side of
the new equation, i.e.,

   – Σ
m = 3

k ∂V (m)

∂x
Fcx = ∂V [k –1]

∂x
f h + Σ

m = 3

k – 1
∂V (m)

∂x
1
4

Rs Σ
m = 3

k – 1 ∂TV (m)

∂x

   + ∂V [k –1]

∂x
Rh

∂TV [k – 1]

∂x
+ Q h (21)

Note that in (21) all the terms whose order is less
than k will be vanished due to the cancellation of the
previous successive procedures and all terms whose
order are grater than k are ignored during the k-th order
iteration and hence (21) becomes a pure k-th order
equation and the approximate solutions of the HJE (3a)
can be computed successively based on the following
equation:

   – ∂V (k)

∂x
Fcx = Σ

m = 2

k – 1
∂V (m)

∂x
f h

(k – m + 1)

   + Σ
m = 3

k – 1
∂V (k – m + 2)

∂x
1
4

Rs
∂TV (m)

∂x

   + Σ
n = 1

k – 2

Σ
m = 2

k – n
∂V (k – n – m + 2)

∂x
Rh

(n)∂TV (m)

∂x
+ Q h

(k) : = H m
(k)(x)

(22)

where k ≥ 3 is an integer.  By comparing the coefficients
on both sides of (22), a set of linear equations are
established and employed to solve V(k).  Then, based on
(9b), an approximate solution of the HJE in (3a), X(x),
is constructed as follows,

   X [k – 1](x) = 1
2

∂TV [k]

∂x
= X [k – 2](x) + ∂TV (k)

∂x (23)

Computational Procedure

(i) The first-order approximate solution:

   X [1](x) = 1
2

∂TV (2)

∂x
= Xx (24)

where X is defined in (10).

(ii) The second-order approximate solution:

Assume the number of possible third-order terms
of x is n3.  Let V(3)(x) be the linear combination of these
n3 terms.  For example, if x = [x1  x2  x3]T, then

  V (3)(x) = c 1x 1
3 + c 2x 2

3 + c 3x 3
3 + c 4x 1

2x 2 + c 5x 1
2x 3 + c 6x 1x 2

2

  + c 7x 1x 3
2 + c 8x 1x 2x 3 + c 9x 2

2x 3 + c 10x 2x 3
2      (25)

and n3 = 10.  Equation (22) now becomes

   
–

∂V (3)(x)
∂x

Fcx = 2xTXf h
(2)(x) + 4xTXR h

(1)(x)Xx + Q h
(3)(x)

(26)

Note that both sides of (26) consist of only third-
order terms.  By comparing the coefficients for both
sides of (26), a set of n3 linear equations are established
to give the solution V(3)(x).  Then the second-order
approximate solution from (23) is

   
X [2](x) = Xx + 1

2
∂TV (3)

∂x (27)

(iii) The third-order approximate solution:

As before, assume V(4)(x) has n4 forth-order terms
of x.  Equation (22) now is

   
–

∂V (4)

∂x
Fcx = 2xTXf h

(3) +
∂V (3)

∂x
f h

(2)

   
+

∂V (3)

∂x
1
4

(γ– 2B1B1
T – B2B2

T)
∂TV (3)

∂x

   
+ 4

∂V (3)

∂x
Rh

(1)Xx + 4xTXR h
(2)Xx + Q h

(4)
  (28)
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Note that the only nonlinear terms involved in (28)
are   f h

(2), f h
(3), Rh

(1), Rh
(2)

, and   Q h
(4)

; hence V(4)(x) can be found
as a solution of the n4 linear equations obtained from
comparing the coefficients of (28).  The third-order
approximate solution X[3](x) is

   X [3](x) = X [2](x) + 1
2

∂TV (4)

∂x (29)

The successive computation procedure can con-
tinue to produce higher order approximations if higher
accuracy is required.

Remark 1

(i) From the above detailed procedure of finding an
approximate solution of the HJE, we know that the
number of terms, i.e. nk, involved in V(k)(x) during
the k-th order iteration is essential for applying the
proposed successive algorithm.  Actually the nk can

be simply represented [12] by 
  n + k – 1
n – 1  where n is

the size of the system.
(ii) One question arises on how to make sure that the

approximate solution computed is correct.  Here we
provide a method to check the solution.  Once the
approximate solution X[k − 2](x) (k ≥ 3) is obtained
and plug it in (3a), you will see that the terms k
whose order is less than k is vanished.

(iii) Another method for finding V(k)(x) is to use the
integration method [11, 13].  Due to Fc being a
stable matrix, V(k)(x) can be calculated from (22) by

   V (k)(x) =
0

∞
H m

(k)(e
F ct

x)dt (30)

where   H m
(k)

 is defined in (22).  Note that V(k)(x) should
be identical for both the proposed linear equations
method and the integration method (30).

A SCALAR EXAMPLE

In this section, a scalar example which was origi-
nally presented by WS [15] is given to demonstrate
finding an approximate solution for the HJE by using
the three approaches mentioned in the previous sections,
i.e., the WS method, the proposed linear equations
method, and the integration method.  Consider the fol-
lowing HJE with the form of (14) as

  Vx[ – 7x + f h(x)] – 1
4

Vx
2 + 15x 2 = 0 (31)

whose exact solution can be easily computed as

  
Vx = 2x – 7 +

f h(x)
x + ( – 7 +

f h(x)
x )

2

+ 15   (32a)

  
= 2x + 1

4
f h + 15

83

f h
2

x + 105
85

f h
3

x 2
+ (32b)

Assume fh(x) = ax3 where a is a constant, then
(32b) becomes

  Vx = 2x + 1
4

ax3 + 15
83

a 2x 5 + 105
85

a 3x 7 + (33)

The ARE in (10) for the linearized model is:

X2 + 14X − 15 = 0 (34)

whose positive solution is X = 1.  From (8) and (10), it
is easy to see that Rs = −1, Fc = −8, Rh(x) = 0, and Qh(x)
= 0.

(M1) The WS method
From (11), we can get

  J(t) = 1
32

(e 16t – 1) (35a)

a(x, p) = −8ax3 − 3ax2p (35b)

   
(t) = e – 8tz(0) + 1

32
(e – 16t – 1)p(t) + ae – 8t

0

t
e 8τ[z 3

   + 1
32

(e – 16τ – 1)(8z 3 + 3z 2p)]dτ (35c)

   
p(t) = ae 8t

0

t
e – 8τ[8z 3 + 3z 2p]dτ (35d)

in which the zeroth approximation is assumed as

z(0)(t) = e−8tx and p(0)(t) = 0 (36)

Plugging (36) into (35c,d) results in the first ap-
proximation as

  z (1)(t) = e – 8tx – ax3( – 7
128

e – 8t + 3
64

e – 24t – 1
128

e – 40t)
(37a)

  p (1) = 1
4

ae – 24tx 3 (37b)

Repeat the same procedure by plugging (37) into
(35c,d) again, we have

   p (2)(t = 0) = a[1
4

x 3 + 31
210

ax 5 + 289
215 ⋅ 10

a 2x 7 + ]
(38)

By using (13), Vx(x) can be obtained as:

   Vx(x) = 2x + 1
4

ax 3 + 31
210

a 2x 5 + 289
215 ⋅ 10

a 3x 7 + ]
(39)

(M2) The linear equations method

Next, we consider the method based on the con-
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struction of the linear equations from comparing the
coefficients of both sides of (22).  Starting from k = 3,
it is easy to see that V(3)(x) = 0 because of   f h

(2) = Rh
(1) = Q h

(3)

= 0.  Note that in this example, V(2m + 1)(x) = 0 for all m ∈
N.  For k = 4, we have V(4)(x) = b4x4 where b4 is a constant
to be determined.  Equation (22) can be rewritten as

   – ∂V (4)

∂x
Fcx = 2xXf h

(3)
(40a)

Plugging all given numbers into (40a) results in

  – 4b 4x
3( – 8)x = 2x(1)ax3 = 2ax 4 : = H m

(4)(x) (40b)

Comparing the coefficient of x4 for both sides, we
can construct one linear equation as 32b4 = 2a which
gives b4 =   1

16a  and hence   Vx
(4) = 1

4
ax 3 .  For k = 6, by

assuming V(6)(x) = b6x6, Equation (18) can be rewritten
as

   
– ∂V (6)

∂x
Fcx = ∂V (4)

∂x
f h

(3) + 1
4

(∂V (4)

∂x
)
2

Rs (41a)

  – 6b 6x
5( – 8)x = 15

64
a 2x 6 : = H m

(6)(x) (41b)

which gives b6 =    15
6 × 83

a 2 .  The same procedure can be

repeated to get V(8)(x) = b8x4 with   b 8 = 105
86 .  Then we

have the following approximate solution

  Vx
[8](x) = 2x + 1

4
ax 3 + 15

83
a 2x 5 + 105

85
x 7 (42)

(M3) The integration method

The method is the same as M2 with the exception
that the integration method is applied to find   Vx

(k)(x) .  As
in M2, we have V(2m + 1) = 0 for m ∈  N.  V(4)(x) can be
calculated by (30) and (40b) as

   V (4)(x) = 2a
0

∞
(e – 8tx)4dt = 1

16
ax 4 (43)

V(6)(x) can be calculated by (30) and (41b) as

   V (6)(x) = 15
64

a 2

0

∞
(e – 8tx)6dt = 15

6 × 83
a 2x 6 (44)

Remark 2

(i) The solution from M3 is the same as the one from M2
because V(k)(x) is the unique solution by comparing
the coefficient from (18).  Actually, the solution (42)
from M2 to the exact solution defined in (33) with
the terms higher than seventh-order truncated.  On
the other hand, the solution (39) from M1 is slightly
different from the truncated exact solution.  In Fig.
1, the linear solution, the third-order approximate
solution for both approaches, the seventh-order ap-

proximate solutions (39) by M1 and (42) by M2 are
compared with the exact solution (32b).  From Fig.
1, we can see that higher order solution is closer to
the exact solution.  In this particular example, the
solution from M2 is more accurate than the one from
M1.

(ii) Both M1 and M3 involve integration computations
which may require impractical computing time when
the matrix size of Fc is large.  Method M2 requires
only solving linear equations which is less com-
pleted than integration.

NONLINEAR  H∞  CONTROLLER  DESIGN  FOR
INVERTED  PENDULUM

The nonlinear model of the Inverted pendulum [5]
is represented as:

   r
r
θ
θ

: =

x 1
x 2
x 3
x 4

=

x 2

0
x 4

24.1314x 3

+
0
0
0

– 4.0219x 3
3

  
+

0
1
0

– 2.4606

u +
0
0
0

1.2303x3
2

u (45a)

: = f(x) + g2(x)u : = Ax + fh(x) + B2u + g2h(x)u

where r is the cart displacement and θ is the pendulum
angle.  The measured outputs are r and θ,  so the output
equations can be represented by

   y = r
θ =

x 1
x 3

= 1 0 0 0
0 0 1 0

x: = C 2x (45b)

The objective is to design a (nonlinear H∞) con-

Fig. 1.  Comparison of different approaches with the exact solution.
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troller to drive the cart motor so that the cart can move
back and forth maintaining the stick at a strictly vertical
position (keeping θ = 0).  From the nonlinear H∞ control
problem formulation [6], we assume that a disturbance
d is injected into the system via the state equation and
the measurement is contaminated by the noise n.  The
weighted state vector, z1, represents the disturbance
response of interest to be minimized.  The weighted
control input, z2, is employed to add control input
constraint into the problem formulation.  Wn, Wx, Wu,
and Wn are appropriate constant weighting matrices.
Let w = [d  n]T and z = [z1  z2]T, then the nonlinear
generalized plant for the inverted pendulum control
problem formulation is constructed as follows,

  x = f(x) + g 1(x)w + g 2(x)u

= f(x) + [Wd  0]w + g2(x)u :

= Ax + fh(x) + B1w + B2u + g2h(x)u (46a)

  z =
z 1
z 2

= h 1(x) + D 12(x)u =
Wx

0
x + 0

Wu
u      (46b)

y = h2(x) + D21(x)w = C2x + [0  Wn]w (46c)

The weighting matrices Wx, Wd, Wn, and Wu are
chosen as:

  

Wx =

1 0 0 0
0 10– 6 0 0
0 0 1 0
0 0 0 10– 6

,  Wd = I4, Wn = I2,

and Wu = 1 (47)

The first step is to consider the linearized model of
(46).  The optimal H∞ norm of the linear closed-loop
system is computed [2] as γopt = 52.42.  Choosing γ = 55
> γopt, one can find the solution for the ARE in (10) as

  

X =
1.8258 1.6660 5.3303 1.0859
1.6660 2.4959 8.6347 1.7594
5.3303 8.6347 69.6382 14.1508
1.0859 1.7594 14.1508 2.8797

(48)

The first-order approximate solution of the HJE
from (24) is

X[1](x) = Xx (49)

where X is given in (48).  Due to   f h
(2)(x) = Rh

(1)(x) = Q h
(3)(x)

= 0 and from (26), we see that V(3)(x) = 0.  The second-
order approximate solution is the same as the first-order
one, i.e.,

X[2](x) = X[1](x) = Xx (50)

The construction of the third-order approximate
solution is explained as follows.  First, we compare the
coefficients of the terms on both sides of (28) and set up
35 linear equations (n4 = 35, see Remark 1 (i)), which in
turn will be solved for V(4)(x).  Then we have the third-
order approximate solution X[3](x) according to (29),

X[3](x) = Xx + X(3)(x) (51a)

where
  

X (3)(x) : =

X1
(3)

X2
(3)

X3
(3)

X4
(3)

(51b)

  X1
(3)(x) = 0.07290x 1x 3

2 + 0.1240x 1x 3
2 + 2.3450x 3

3

  + 0.6130x 3
2x 4 (51c)

  X2
(3)(x) = 0.1240x 1x 3

2 + 0.2055x 2x 3
2 + 3.9339x 3

3

  + 1.0069x 3
2x 4 (51d)

  X3
(3)(x) = 0.2480x1x 2x 3 + 0.2055x2

2x 3 + 7.0348x 1x 3
2

  + 11.8017x 2 + 98.6658x3
3 + 1.2260x1x 3x 4

  + 2.0137x 2x 3x 4 + 37.5422x3
2x 4 + 3.9021x 3x 4

2

  + 0.07290x1
2x 3 + 0.09527x4

2 (51e)

  X4
(3)(x) = 0.6130x 1x 3

2 + 1.0069x 2x 3
2 + 12.5141x 3

3

  + 3.9021x 3
2x 4 + 0.2858x 3x 4

2 + 0.04679x2x 3x 4

(51f)

For simplicity, the coefficients with absolute value
less than 0.04 were chopped.  A nonlinear H∞ controller
can be obtained by plugging the third-order approxi-
mate solution (51) of the HJE to the controller formulas
(5).

Simulations

The computer simulations for the closed-loop sys-
tem will be performed.  Let the initial conditions be [0
0  θ0  0]T and the exogenous input be

w = Aw[1  1  1  1  1  1]T (52)

where Aw is a constant representing the disturbance
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amplitude.  First, the simulation is performed under the
condition of no disturbance. The pendulum responses
with Aw = 0 and small initial angle θ0 = 0.2 are plotted
in Fig. 2.  It shows that the pendulum angle θ converges
to 0 after 3 seconds and the cart displacement r only
deviates a little bit before it quickly returns to its
equilibrium. Simulations for the linear H∞ controller
show that the performance of the linear controller is
almost the same as that of the nonlinear controller at this
point.

Next we increase the initial pendulum angular
displacement to θ0 = 0.5 and let the disturbance ampli-
tude be Aw = 0.15.  The θ responses for both the
nonlinear H∞ and linear H∞ controllers are plotted in Fig.
3.  It is obvious that the nonlinear H∞ controller has
better performance in keeping the stick straight.  If Aw

is increased even larger to 0.2, then the θ response for
the linear H∞ controller diverges while the response for
the nonlinear H∞ controller is able to converge to zero
after only 4 seconds.

CONCLUSIONS

In this paper, a detailed successive algorithm and
computational procedure for finding an approximate
solution of the HJE by solving the linear equations were
presented.  A scalar example was given to compare three
approaches: the WS approach, the proposed linear equa-
tions method, and the integration method and it was
found that the proposed successive algorithm - linear
equations method (M2) is the best approach among the
three methods.  The proposed algorithm was also em-
ployed to find an approximate solution for the HJE
leading to construct a nonlinear H∞ controller for the
inverted pendulum.  Simulations of the closed-loop
pendulum responses for both nonlinear and linear con-
trollers were performed and it was found that the nonlin-
ear H∞ controller has better performance and robustness
than the linear controller, which reveals the importance
of the proposed algorithm of solving the Hamilton-
Jacobi equation.
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NOMENCLATURE

ARE algebraic Riccati equation
ARI algebraic Riccati inequality
BHW Ball, Helton, and Walker
HJE Hamilton-Jacobi equation
HJI Hamilton-Jacobi inequality
O(xm) the higher order terms including xm

Rn n-dimensional Euclidean space
WS Wise and Sedwick
(•)(k) the k-th order term
(•)[k] the sum of all terms up to the k-th order term
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