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ABSTRACT

In terms of Lyapunov’s direct method, a stability criterion is
derived to guarantee the stability of the system especially for the
resonant and chaotic systems.  The common P matrix of the criterion
is obtained by using linear matrix inequality (LMI) optimization
algorithms to solve the robust fuzzy control problem.  Based on the
control scheme and this criterion, a fuzzy controller is then designed
via the technique of parallel distributed compensation (PDC) to
stabilize the nonlinear system.  Finally, the proposed controller
design method is demonstrated through numerical simulations on the
chaotic and resonant systems.

INTRODUCTION

Many control methods have been proposed to over-
come the difficulty of dealing with nonlinear systems
with the phenomenon of bifurcation, chaos, limit cycle
and so on [1].  Since the design of control strategy of
nonlinear systems is a difficult process and the plants
are in general nonlinear in practical sense.  Due to the
complexity of designing a general control scheme for a
nonlinear system, we proposed here a simplified model
for the purpose.  In the past few years, fuzzy-rule-based
modeling has become an active research field because
of its unique merits in solving complex nonlinear sys-
tem identification and control problems.  In attempt to
attain more flexibility and more effective capability of
handling and processing uncertainties in complicated
and ill-defined systems, Zadeh [2] proposed a linguistic
approach as the model of human thinking, which intro-
duced the fuzziness into systems theory [3].  Unlike

traditional modeling, fuzzy rule-based modeling is es-
sentially a multimodel approach in which individual
rules are combined to describe the global behavior of
the system [4].

Fuzzy control has attracted a great deal of atten-
tion from both the academic and industrial communities
in the past few years, and there have been many success-
ful applications.  In spite of the success, there are still
many basic issues that remain to be further addressed.
Stability analysis and systematic design are certainly
among the most important issues for fuzzy control
systems.  During the last decade, fuzzy control has been
successfully applied to the control design of nonlinear
systems [5-7].  However, as far as we know, the stabi-
lization problem of fuzzy resonant and chaotic systems
remains unresolved.

Nevertheless, we often encounter the problems of
resonant or chaotic systems in civil engineering field.
The phenomenon of resonance occurs when the fre-
quency of structure is the same as the external force.
The magnitude of dynamic magnification factor Dmax

influences the degree of failure of the structure and we
know the phenomenon will do a big damage to the
structure [8].  Besides to predict the behavior of chaotic
system is hard due to its unpredictability and irregular-
ity [9].  In many cases, the reason why the chaos should
be purposed controlled or avoided is that chaos could
lead systems to undesirable performance-degraded
situations.  Broadly speaking, the objective of this paper
is to derive a stability criterion for fuzzy model-based
controller to guarantee the uniformly ultimately bounded
(UUB) stable of nonlinear systems with chaotic and
resonant characteristics.

This paper is organized as follows.  First, the T-S
fuzzy model is briefly reviewed and the system descrip-
tion is presented.  Then, based on Lyapunov’s approach,
a stability criterion is derived to guarantee the stability
of the system.  Next, a fuzzy controller via the technique
of PDC is proposed to stabilize the fuzzy system.  Finally,
a numerical example with simulations is given to illus-
trate the results, and the conclusions are drawn.
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SYSTEM  DESCRIPTION

Consider a nonlinear system N described as follows:

  x(t)  = f(x(t), u(t)) + φ(t) (1)

where f is a nonlinear vector-valued function, x(t) rep-
resents time, x(t) is the state vector,   x(t)  is derivative of
x(t), u(t) is the input vector and φ(t) denotes the external
disturbance.
Definition 1 [1]: The solution of a dynamic system are
said to be uniformly ultimately bounded (UUB) if there
exist positive constants β and κ , for every δ ∈  (0, κ)
there is a positive constant T = T(δ), such that

||x(t0)|| < δ ⇒  ||x(t)|| ≤ β, ∀ t ≥ t0 + T.

Assumption 1: f(0) = 0 so the origin is an equilibrium
point of the system (1).

Local linear input/output relations of nonlinear
systems using fuzzy dynamical models have been de-
veloped primarily from the pioneering work of Takagi
and Sugeno [10].  Accordingly, the system N is approxi-
mated by a T-S fuzzy model of which is described by
fuzzy IF-THEN rules.  The main feature of T-S fuzzy
models is to express each rule by a linear state equation,
and the ith rule of this fuzzy model is of the following
form:

Rule i: IF x1(t) is Mi1 and ... and xg(t) is Mig

THEN   x(t)  = Aix(t) + Biu(t) + φ(t) (2)

where xT(t) = [x1(t), x2(t), ..., xg(t)] ∈  R 1 × g denotes the
state vector,
uT(t) = [u1(t), u2(t), ..., um(t)] ∈  R 1 × m denotes the
control input,

φ(t) = [φ1(t), φ2(t), ..., φj(t)] ∈  R1 × j denotes the
unknown disturbances with a known upper bound φup(t)
≥ ||φ(t)|| . i = 1, 2, ..., r and r is the number of IF-THEN
rules; Ai and Bi are constant matrices with appropriate

dimensions; Mip (p = 1, 2, ..., g) are the fuzzy sets, and
x1(t) ~ xg(t) are the premise variables.  The final state of
this fuzzy dynamic model is inferred as follows:

   
x(t) =

Σ
i = 1

r
w i(t)[Aix(t) + Biu(t) + φ(t)]

Σ
i = 1

r
w i(t)

=   Σ
i = 1

r
 hi(t)(Aix(t) + Biu(t)) +φ(t) (3)

with

   w i(t) = Π
p = 1

g

Mip(xp(t)), h i(t) =
w i(t)

Σ
i = 1

r
w i(t)

(4)

in which Mip(xp(t)) is the grade of membership of xp(t)
in Mip.  In this paper, it is assumed that wi(t) ≥ 0, i = 1,
2, ..., r; and   Σ

i = 1

r
wi(t) > 0 for all t.  Therefore, hi(t) ≥ 0 and

  Σ
i = 1

r
hi(t) = 1 for all t.

In the next section, the concept of PDC scheme is
utilized to design the fuzzy controller.

PARALLEL  DISTRIBUTED  COMPENSATION

The concept of PDC scheme illustrated in Fig. 1 is
that each control rule is distributively designed for the
corresponding rule of a T-S fuzzy model.  The fuzzy
controller shares the same fuzzy sets with the fuzzy
model in the premise parts [6].  Since each rule of the
fuzzy model is described by a linear state equation,
linear control theory can be used to design the conse-
quent parts of a fuzzy controller.  The resulting overall
fuzzy controller, nonlinear in general, is achieved by
fuzzy blending of each individual linear controller.

Hence, the jth fuzzy controller can be described as
follows:

Rule i: IF x1(t) is Mi1 and ... and xg(t) is Mig

THEN u(t) = −Kix(t), (5)

where Ki is a constant controller gain matrix and i = 1,
2, ..., r.  The final output of this model-based fuzzy
controller is

   
u(t) = –

Σ
i = 1

r
w i(t)K ix(t)

Σ
i = 1

r
w i(t)

= – Σ
i = 1

r
h i(t)K ix(t) (6)

Substituting Eq. (6) into Eq. (3) yields the closed-
loop fuzzy system  F  as follows:

   x(t) = Σ
i = 1

r

Σ
l = 1

r

hi(t)hl(t)[(Ai − Bikl)x(t)] + φ(t)       (7)
Fig. 1.  Parallel-distributed-compensation (PDC) design.
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H∞  CONTROL  DESIGN  VIA  FUZZY  CONTROL

The purpose of this paper is two-fold: to stabilize
the closed-loop nonlinear system and to attenuate the
influence of the external disturbance φ(t) on the state
variable x(t) [11, 12]. The influence of φ(t) will worsen
the performance of fuzzy control system.  So, to guaran-
tee the control performance by eliminating the influ-
ence of φ(t) is a significant problem in the control
system.  In this work, not only the stability of fuzzy
control system is advised but also the H∞ control perfor-
mance is satisfied as follows:

   
x

0

t f
(t)TQx(t) dt ≤ η 2 φ

0

t f
(t)Tφ(t) dt (8)

where tf denotes the terminal time of the control, η  is a
prescribed value which denotes the effect of φ(t) on x(t),
and Q is a positive definite weighting matrix.  The
physical meaning of (8) is that the effect of φ(t) on x(t)
must be attenuated below a desired level η  from the
viewpoint of energy.

If the initial condition is also considered, the in-
equality (8) can be modified as

   
x

0

t f
(t)TQx(t) dt ≤ x(0)TPx(0) + η 2 φ

0

t f
(t)Tφ(t) dt

(9)

where P are some positive definite matrices.
Herein, a stability criterion is given below to guar-

antee the stability and control performance of the closed-
loop fuzzy system (7).  Prior to examination of stability
of  F , an useful concept is given below.
Lemma 1 [13]: For real matrices A and B with appropri-
ate dimensions, we have

ATB + BTA ≤ σATA + σ−1BTB where σ is a positive
constant.

Theorem 1: The closed-loop fuzzy system  F  is stable,
if there exist symmetric positive definite matrix P and a
positive constant γ and the feedback gains Ki shown in
Eq. (6) are chosen to satisfy the following conditions:

[(Ai − BiKi)
TP + P(Ai − BiKi)] + γ−1P2 + Q < 0

for i = 1, 2, ..., r, (10a)

   [H il
TP + PH il] + γ – 1P2 + Q < 0 (10b)

for i ≤ l ≤ r,

with Hil =   (Ai – BiK l) + (Al – BlK i)
2 , P = PT > 0.

The proof is in the appendix.

ALGORITHM

Based on the above analysis, the complete design

procedure can be summarized in the following algorithm.
Problem: For a given nonlinear system N, how do we
design a model-based fuzzy controller to stabilize the
nonlinear system N?

The problem described above can be solved by the
following steps.
Step 1: Select fuzzy plant rules and membership func-

tions for each nonlinear system to establish its
T-S fuzzy model.

Step 2: Design a model-based fuzzy controller via the
concept of PDC scheme.

Step 3: If there exist a positive definite matrix P to
satisfy the stability condition of Theorem 1, the
fuzzy system F can be stabilized by finding a
appropriate model-based fuzzy controller in Step
2.

EXAMPLES

We will design a T-S fuzzy controller for a simple
nonlinear mass-spring-damper mechanical system.
Resonant system is considered when the frequency of
the external force is the same as the system and duffing
equation is considered for a large displacement [1].  The
objective of this section is to design a fuzzy controller
such that the nonlinear systems N described as follows
are stable.

system 1 (resonant system):

   
x 1(t) = 2.5x 2(t)

x 2(t) = – ω2x 1(t) – 0.01x 1
2 – 2ξωx 2(t) + sin (1.581t) + f 1u(t)

(11)

system 2 (chaotic system):

   x1(t) = 2.5x2(t)

x2(t) = – ( 1
2.5

x1(t))
3

– 1
2.5

x1(t) – 0.1x2(t) + 25cos (1.29t) + f 2u(t)

(12)

where ω denotes the frequency of the system, ξ denotes
the damping ratio, u(t) denotes the control force, f1 and
f2 denote the constant coefficient of control forces.

In resonant system [8], the possible response of the
system with no control force are (a)ξ = 0, (b)0 < ξ  < 1,
(c)ξ  > 1 simulated in Fig. 2.  However, due to external
force the state of the resonant system would oscillate for
a long time.  In the same way, there exist many sets of
harmonic solutions in chaotic system.  When a given
initial condition produces a chaos solution, then a arbi-
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trary initial condition will make the state of nonlinear
system chaotic.  In chaos, the system output is ex-
tremely sensitive to initial conditions.  Fig. 3 shows the
responses of the system with no control force corre-
sponding to two almost identical initial conditions,
namely x1(0) = 10, x2(0) = −15 (thin line) and x1(0) =
10.01, x2(0) = −15.01 (thick line).  Fig. 4 shows the
phase-plane trajectory of the same simulation result
with x1(0) = 10, x2(0) = −15.

Nevertheless, how do we design fuzzy controllers
to stabilize two cases of above systems N with ω = 1, ξ
= 0, f1 = f2 = 4.5?
Solution: We can solve this problem according to the
following steps.

Step 1: Establish a T-S fuzzy model for each
nonlinear system.  To minimize the design effort and
complexity, we try to use as few rules as possible.

Hence, the systems (11-12) are approximated with the
following fuzzy models:
T-S fuzzy model of system 1 and system 2:
Rule 1: IF x1(t) is M11

THEN   x(t)  = A1x(t) + B1u(t),

Rule 2: IF x1(t) is M21

THEN   x(t)  = A2x(t) + B2u(t).

System 1:

xT(t) = [x1(t)  x2(t)],   A1 = 0 2.5
– 1 0

,

  A2 = 0 2.5
– 1.01 0

,     B1 = 0
4.5

,     B2 = 0
4.5

(13)

and the membership functions for Rule 1 and Rule 2 are

   
M11(x 1(t)) = 1

2πx 1(t) + 1 when – 2π ≤ x 1(t) ≤ 0

M11(x 1(t)) = – 1
2πx 1(t) + 1 when 0 < x 1(t) ≤ 2π

M11(x 1(t)) = 0 otherwise,

M21(x1(t)) = 1 − M11(x1(t)).

System 2:

xT(t) = [x1(t)  x2(t)],   A1 = 0 2.5
– 0.4 – 0.1

,

  A2 = 0 2.5
– 0.41 – 0.1

,     B1 = 0
4.5

,     B2 = 0
4.5      (14)

and membership functions for Rule 1 and Rule 2 are the

Fig. 2. Response (a)ξ = 0, (b)0 < ξ < 1, (c)ξ > 1 of the resonant system with
no control force system 1.

Fig. 3.  Chaotic behavior of a nonlinear system with no control force.

Fig. 4.  Phase-plane trajectory of the chaotic system.
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same as the system 1.
Step 2: In order to stabilize the fuzzy system F,

two model-based fuzzy controllers designed via the
concept of PDC scheme are displaying as follows.
Fuzzy controllers of system 1 and system 2:

Rule 1: IF x1(t) is M11 THEN u(t) = −K1x(t),

Rule 2: IF x1(t) is M21 THEN u(t) = −K2x(t), (15)

Step 3: For the purpose of fulfilling the stability
conditions of Theorem 1, the matrices Q are chosen to
be positive definite.  Hence, based on Eqs. (13-15), we
can obtain the following positive definite matrices P
and Ki via LMI optimization algorithms with γ = 0.22 in
system 1 and γ = 0.31 in system 2:

system 1:   P1 = 5.6115 2.5
2.5 1.5405

,

system 2:    P2 = 5.820 2.313
2.313 1.363

, (16)

system 1: K1 = [33.378   19.889] and
K2 = [17.776   11.000],

system 2: K1 = [27.822   16.533] and
K2 = [11.820   7.644], (17)

The inequality (10) is satisfied. Therefore, based
on conditions of Theorem 1, the T-S fuzzy controllers
(15) can stabilize two cases of fuzzy systems F.  To
assess the effectiveness of the fuzzy controllers, we
apply the same T-S fuzzy controllers to nonlinear sys-
tems N described in Eqs. (11-12).  Simulation results of
each system are illustrated in Figs. 5-6 and control
forces are showed in Figs. 7-8.  In Figs. 5-6, nonlinear
resonant and chaotic systems would be stabilized via the
robust criterion in this paper.

Fig. 5.  The state response of system 1.

Fig. 6.  The state response of system 2.

Fig. 7.  The control force of system 1.

Fig. 8.  The control force of system 2.
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CONCLUSIONS

In order to ensure the stability of nonlinear systems,
a stability criterion is derived from Lyapunov’s direct
method.  According to this criterion and the control
scheme, a model-based fuzzy controller is to stabilize
the nonlinear system.  So, the proposed fuzzy linear
control can be applied to any robust control design of
nonlinear system.  Finally, an example is given to
illustrate the concepts discussed in the paper.

APPENDIX:  PROOF  OF  THEOREM 1

Let the Lyapunov function for the nonlinear sys-
tem   N  be defined as

V = xT(t)Px(t). (A1)

We then evaluate the time derivative of V on the
trajectories of Eq. (7) to get

  V = [xT(t)Px(t) + xT(t)Px(t)]

= {    Σ
i = 1

r

Σ
l = 1

r
hi(t)hl(t)[(Ai − BiKl)x(t)] + φ(t)}TPx(t)

+ xT(t)P{    Σ
i = 1

r

Σ
l = 1

r
hi(t)hl(t)[(Ai − BiKl)x(t)] + φ(t)}

=    Σ
i = 1

r

Σ
l = 1

r
hi(t)hl(t)x

T(t)[(Ai − BiKl)
TP

+ P(Ai − BiKl)]x(t) + [φT(t)Px(t) + xT(t)Pφ(t)]

≤    Σ
i = 1

r

Σ
l = 1

r
hi(t)hl(t)x

T(t)[(Ai − BiKl)
TP

+ P(Ai − BiKl)]x(t) + γ[φT(t)φ(t)] + γ−1[xT(t)P2x(t)]

(from Lemma 1) = D1 + D2 + γφT(t)φ(t),    (A2)

where

D1 ≡    Σ
i = 1

r

Σ
l = 1

r
hi(t)hl(t)x

T(t)[(Ai − BiKl)
TP

+ P(Ai − BiKl)x(t)

=    Σ
i = l = 1

r
h i

2
(t)xT(t)[(Ai − BiKl)

TP

+ P(Ai − BiKl)]x(t)

+ 2   Σ
i < 1

r
hi(t)hl(t)x

T(t)[   H il
T

P + PHil]x(t),
(A3)

D2 ≡ γ−1[xT(t)P2x(t)]

=    Σ
i = 1

r

Σ
l = 1

r
hi(t)hl(t)γ−1[xT(t)P2x(t)]

=    Σ
i = l = 1

r
h i

2
(t)xT(t)[γ−1P2]x(t)]

+ 2   Σ
i < 1

r
hi(t)hl(t)x

T(t)[γ−1P2]x(t)] (A4)

Substituting Eqs. (A3-A4) into Eq. (A2) yields

   V ≤ Σ
i = l = 1

r
h i

2
(t)xT(t){[(Ai − BiKl)

TP + P(Ai − BiKl)]

+ γ−1P2}x(t)) + 2   Σ
i < 1

r
hi(t)hl(t)x

T(t){[  H il
T

P + PHil]

+ γ−1P2}x(t) + γφT(t)φ(t). (A5)

Based on Eqs. (10a-10b) and (A5),

   V ≤ Σ
i = l = 1

r
h i

2
(t)xT(t){−Q}x(t)

+ 2   Σ
i < 1

r
hi(t)hl(t)x

T(t){−Q}x(t) + γφT(t)φ(t)

= −xT(t)Qx(t) + γφT(t)φ(t) (A6)

According to Definition 1, the demonstrates that the
trajectories of the closed-loop system (7) are UUB.
Integrating (A6) from t = 0 to t = tf yields

V(tf) − V(0) ≤ − 
  

0

t f
x(t)TQx(t)dt

+ γ
  

0

t f
φ(t)Tφ(t)dt. (A7)

From (A1), we get

  
0

t f
x(t)TQx(t)dt ≤ xT(0)Px(0) + γ

  
0

t f
φ(t)Tφ(t)dt

That is Eq. (9) and the H∞ control performance is
achieved with a prescribed γ = η2.
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