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ABSTRACT

In this paper the natural boundary reduction for some elliptic
boundary value problems with concave angle domains and its natural
boundary element methods are investigated.  Natural integral equa-
tions and Poisson integral formulae are given.  A finite element
methods of natural integral equations are discussed in details.  The
convergence of approximate solutions and their error estimates are
obtained.  Some numerical experiments are presented to demonstrate
the performance of the method and our estimates.  As an application,
we present the coupling of FEM and natural boundary element.

INTRODUCTION

In this paper we consider a kind of elliptic prob-
lems with concave angle domains in two dimensions,
which is Neumann boundary-value problem.  Let Ω and
Ωc are a bounded sector domain with angle α  and an
exterior concave angle domains, respectively, and 0 < α
≤ 2π.

We consider some linear elliptic second-order
boundary value problems in two dimensions.  The bound-
ary of domain Ω or Ωc is decomposed into three disjoint
parts, Γ , Γ0 and Γα.  Γ , Γ0 and Γα where a Neumann
boundary conditions are given.  The statement of the
problems considered is:

∆u + βu = 0,      in Ω or Ωc (1)

   ∂u
∂n (r, 0) = 0 ,       on Γ0 (2)

   ∂u
∂n (r, α) = 0 ,       on Γα (3)

    ∂u
∂n (R, θ) = gn(R, θ) ,       on Γ (4)

If domain is Ωc, some conditions at infinity.   (5)

Here, u is the unknown function,  ∂u
∂n  is the normal

derivative of u on boundary, gn(R, θ) is given function,
and β is a constant. Equation (1) is Laplace, Helmholtz
or modified Helmholtz equation, according as β is zero,
positive or negative.  In this paper we shall concentrate
on the method of natural boundary element method [1,
2, 3, 4] or DtN method [5, 6].  It is well-known that the
natural integral equation is hypersingular, its kernel
function has non-integrable singularity, the integral is
to be understood in the sense of the theory of distribution.
It can be referred to [10].  The condition at infinity (5)
is as follows.  If β ≤ 0 then the solution u is required to
vanish at infinity; If β > 0 then at infinity the solution u
is required to be imposed a radication condition

   lim
r → + ∞

r (∂u
∂r – βu) = 0 (6)

In the above problems, Yu [1] has only investi-
gated the problems for β = 0.  However, there are some
more significant engineering background for β ≠ 0, such
as waveguide, electromagnetic radiation, geophysics,
meteorology, etc.  In addition, discretization in time for
some time-dependent problems is reduced to the model
(1) [7].  So, it has been of great importance in theory and
practical applications to investigate some numerical
methods of the above problems systematically.

Givoli, Rivkin and Keller [11], Wu and Han [12]
used a method called the DtN finite-element method to
some elliptic boundary value problems in domains with
corners and singularities.  They gave a sequence of
approximations to the exact boundary conditions on an
artificial boundary by using Green’s function.  On the
boundary, the Neumann boundary condition is related
to the Dirchlet boundary condition, or the second-order
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derivative of the solution on the artificial boundary.
Bao and Han [13] gave a high-order local approximate
artificial boundary condition.  Accurate numerical re-
sults were obtained for this approach in [11, 12].  In this
paper, we follow the idea of [2, 5, 10] for solving some
elliptic boundary value problems in domains (bounded
and unbounded) with concave angle, and give their
natural boundary reduction and natural boundary ele-
ment method (or called the DtN finite-element method).

The outline of the paper is as follows.  In Section
2 we derive  natural integral equations on Γ  and Poisson
integral equations in Ω or Ωc.  We consider the Laplace,
Helmholtz and modified Helmholtz equations in Ω or
Ωc.  In Section 3 we discuss the numerical implementa-
tions of natural integral equations by finite element
method.  Section 4 contains some error analyses for  the
finite element scheme.  To demonstrate the performance
of the method, we present in Section 5 some numerical
experiments and examples.  As an application, we also
discuss the coupling of FEM and NBE in infinite sector
domain in Section 6.  We close with concluding remarks
in Section 7.

NATURAL  BOUNDARY  REDUCTION

For problems (1)-(5), the function gn(R, θ) satis-

fies compatibility condition     gn
0

α
(R, θ)dθ = 0 if β = 0.

1. Bounded Sector Domain

Domain Ω, boundaries Γ , Γ0 and Γα are as follows:
Ω : = (r, θ) | 0 < r < R, θ ∈  (0, α)}, Γ : = {(R, θ) | θ ∈  (0,
α)}, Γ0 : = {(r, 0) | 0 ≤ r ≤ R}, Γα : = {(r, α) | 0 ≤ r ≤ R}.

By separation of variables we find the general
solution which satisfies (1) in the domain Ω and the
conditions mentioned in section 1:

   u(r, θ) = Σ
n = 0

+ ∞
An ⋅ Bn(r) cos nπθ

α ,   r < R (7)

The coefficients Bn(r) for all different cases of β
considered are summarized in Table 1.  There Iv(x) is the
modified Bessel function of the first kind of order v, and
Jv(x) is the Bessel function of order v [8, 9], i.e.,

   I v(x) = Σ
j = 0

+ ∞ 1
j! ⋅ Γ(j + 1 + v)

x
2

2j + v
,

   J v(x) = Σ
j = 0

+ ∞
(–1)j 1

j! ⋅ Γ(j + 1 + v)
x
2

2j + v
,

From the following

   u(R, θ) = lim
r → R –

u(r, θ)

   = Σ
n = 0

+ ∞
AnBn(R) cos nπθ

α (8)

Using the orthogonality of the cosines, we obtain
the coefficients An, n = 0, 1, 2, ...,

   An = 1
α εnBn(R)–1 u

0

α
(R, θ) cos nπθ

α dθ , (9)

 Hence

   u(r, θ) = 1
α Σ

n = 0

+ ∞
εnBn(r) ⋅ Bn(R)–1 u

0

α
(R, θ')

   ⋅ cos nπθ
α ⋅ cos nπθ'

α dθ' ,   r < R (10)

Where R is the radius of circular arc Γ .  If we let

Gn(r; R) : = Bn(r) • Rn(R)−1

then (10) can be expressed as follows:

   u(r, θ) = 1
α Σ

n = 0

+ ∞
εnG n(r; R) u

0

α
(R, θ')

   ⋅ cos nπθ
α ⋅ cos nπθ'

α dθ' ,

≡ Pu(R, θ),  r < R (11)

We differentiate (11) with respect to r and take the
limit as r approaches to R−, to obtain

   ∂u
∂r = π

Rα 2 Σ
n = 0

+ ∞
εnZ n u

0

α
(R, θ')

   ⋅ cos nπθ
α ⋅ cos nπθ'

α dθ' (12)

The coefficients Gn(r; R) and Zn in (11) and (12)
are summarized in Table 2.  And εn is: εn = 1, if n = 0.
εn = 2, if n ≠ 0.

Table 1.  The coefficients Bn(r) for all different cases of β

Parameter β < 0 β = 0 β > 0

Bn(r)    I nπ
α

( β r)   r
nπ
α    J nπ

α
( βr)

Table 2. The coefficients Gn(r; R) and Zn for all different cases
of β

β Gn(r; R) Zn

< 0
   I nπ

α
( β r)

I nπ
α

( β R)

   α β R
π ⋅

I nπ
α

' ( β R)

I nπ
α

( β R)

= 0   r
R

nπ
α n

> 0
   J nπ
α

( βr)

J nπ
α

( βR)

   α β R
π ⋅

J nπ
α

' ( βR)

J nπ
α

( βR)
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2. Infinite Sector Domain

Domain Ωc, boundaries Γ , Γ0 and Γα are as follows:
Ωc : = {(r, θ) | r > R, θ ∈  (0, α)}, Γ  : = {(R, θ) | θ ∈  (0,
α)}, Γ0 : = {(r, 0) | r > R}, Γα : = {(r, α) | r > R}.

Similar to the above methods, we get the solution
of the problem (1)-(5) for all cases of β considered

   u(r, θ) = 1
α Σ

n = 0

+ ∞
εnG n(r; R) u

0

α
(R, θ')

   ⋅ cos nπθ
α ⋅ cos nπθ'

α dθ'

≡ Pu(R, θ),  r > R (13)

Furthermore

   ∂u
∂r = – π

Rα 2 Σ
n = 0

+ ∞
εnZ n u

0

α
(R, θ')

   ⋅ cos nπθ
α ⋅ cos nπθ'

α dθ' ,   on Γ (14)

The coefficients Gn(r; R) and Zn  in (13) and (14)
are summarized in Table 3.  There Kv(x) is the modified
Bessel function of the second kind of order v, and   H v

(1)

(x) is the Hankel function of the first kind of order v [8,
9], i.e.,

   K v(x) = π
2

⋅
I– v(x) – Iv(x)

sin vπ ,

   H v
(1)(x) = i

sin vπ ⋅ [J v(x) ⋅ e –ivπ – J – v(x)]

Since we have known that    ∂
∂n = ∂

∂r  for interior

problem, and    ∂
∂n = – ∂

∂r  for exterior problem, on Γ .

Therefore (12) and (14) can be written as follows:

    ∂u
∂n = π

Rα 2 Σ
n = 0

+ ∞
εnZ n u

0

α
(R, θ')

   ⋅ cos nπθ
α ⋅ cos nπθ'

α dθ'

≡ Ku(R, θ),  on Γ (15)

The coefficients Zn  in (15) are given by Tables 2
and 3, respectively.  That is, the coefficients Zn are
given in Table 2 for the problem in bounded sector
domain, and the coefficients Zn are given in Table 3 for
the problem in infinite sector domain.  Equations (11)
and (13) are often called the Poisson integral formulae,
and equation (15) is called natural integral equation
[10] or Dirichlet-to-Neumann(DtN) map [8, 9].  In
practice, the natural integral equation is truncated after
a finite number of terms, M, namely,

   ∂u
∂n = π

Rα 2 Σ
n = 0

M
εnZ n u

0

α
(R, θ')

   ⋅ cos nπθ
α ⋅ cos nπθ'

α dθ'

≡ KMu(R, θ), (16)

To cope with the numerical analysis, referring to
[10] we recall an equivalent definition of Sobolev space
Hs(Γ) for any real number s:

∀ f ∈  Hs(Γ) ⇔

   f(R, θ) = Σ
n = – ∞

+ ∞
εnf n ⋅ (e i nπ

α θ + e
– i nπ

α θ
)

and 
   Σ

n = – ∞

+ ∞
1 + nπ

α
2

s

⋅ εnf n
2

< + ∞

where Γ  : = {(R, θ) : 0 < θ ≤ 2π, R > 0}, and fn =
   1

2α f
0

α
(R, θ) ⋅ (e i nπ

α θ + e
– i nπ

α θ
) dθ .  Thus we assign the

following norm on Hs(Γ): For any f ∈  Hs(Γ)

   f(R, θ)
s, Γ
2

: = Σ
n = – ∞

+ ∞
1 + nπ

α
2

s

⋅ εnf n
2

Especially, if s = 0 we have

   
f(R, θ)

0, Γ
: = Σ

n = – ∞

+ ∞
εnf n

2
1
2

= f(R, θ)
L 2(Γ)

.

In order to construct the weak form of problem
(15), we define the followings (ds = Rdθ) :

    D(u 0, υ0) : = < Ku 0(R, θ) , υ0 >Γ

    ≡ K
Γ

u 0(R, θ) ⋅ υ0dS

   = π
α 2 Σ

n = 0

+ ∞
εnZ n

0

α

0

α
u 0(R, θ')

   ⋅ υ0(R, θ) cos nπθ
α cos nπθ'

α dθ'dθ ,   (17)

   Fn(υ0) : =
Γ

∂u
∂n ⋅ υ0(R, θ) dS

   ≡ R
0

α
g n(R, θ) ⋅ υ0(R, θ) dθ (18)

Table 3. The coefficients Gn(r; R) and Zn for all different cases
of β

β Gn(r; R) Zn

< 0
   K nπ
α

( β r)

K nπ
α

( β R)

   α β R
π ⋅

K nπ
α

' ( β R)

K nπ
α

( β R)

= 0
  R

r

nπ
α

n

> 0
   H nπ
α

( βr)

H nπ
α

( βR)

   α β R
π ⋅

H nπ
α

' ( βR)

H nπ
α

( βR)
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Then the weak form of (15) is:

(P) Find    u 0 ∈ H
1
2(Γ)  such that

   D(u 0, υ0) = Fn(υ0) , ∀ υ0 ∈ H
1
2(Γ) (19)

Lemma 1.  If    u = Σ
n = – ∞

+ ∞
u n(e i nπ

α θ + e
– i nπ

α θ
) ,    υ = Σ

n = – ∞

+ ∞
u n

   (e i nπ
α θ + e

– i nπ
α θ

) ,  then

   u * υ =
0

α
u(R, θ – θ') ⋅

0

α
(R, θ') dθ'

   = Σ
n = – ∞

+ ∞
(2αu n ⋅ υn) (e i nπ

α θ + e
– i nπ

α θ
)

Proof  It is not difficult to obtain that the following

   
0

α
(e

– i nπ
α θ

+ e i nπ
α θ) ⋅ (e i mπ

α θ + e
– i mπ

α θ
) dθ

   
=

2α , m = ± n
0 , otherwise

Thus

   u * υ =
0

α
u(R, θ – θ') ⋅ υ(R, θ') dθ'

   = Σ
n = – ∞

+ ∞
u ne i nπ

α θ Σ
n = – ∞

+ ∞
u m

0

α
(e

– i nπ
α θ

   + e i nπ
α θ) (e i mπ

α θ + e
– i mπ

α θ
) dθ

   = Σ
n = – ∞

+ ∞
(2αu nυn) (e i nπ

α θ + e
– i nπ

α θ
)

This completes the proof.
From Lemma 1, we have

    Ku 0(R, θ) = π
Rα Σ

n = – ∞

+ ∞
εnZ nu n ⋅ (e i nπ

α θ + e
– i nπ

α θ
)   (20)

where    u n = 1
2α 0

α
u 0(R, θ) ⋅ (e i nπ

α θ + e
– i nπ

α θ
) dθ .

Theorem 1.  For all non-negative real number s, natural
integral operator K is a continuous linear operator from

   H
s + 1

2(Γ)  to    H
s – 1

2(Γ) .  In other words, there exists a

positive constant M1 such that for any    f ∈ H
s + 1

2(Γ)

    Kf
s – 1

2
, Γ ≤ M1 f

s – 1
2

, Γ , (21)

Proof  By (20) and the definition of norm on Hs(Γ), for

any    f ∈ H
s + 1

2(Γ)  we have,

    
Kf

s – 1
2

, Γ
2 = Σ

n = – ∞

+ ∞
1 + nπ

α
2

s – 1
2 π

Rα εnZ nf n

2

   
= π

Rα
2 Σ
n = – ∞

+ ∞
1 + nπ

α
2

s + 1
2 εnf n

2

   ⋅ Z n
2 ⋅ 1

1 + nπ
α

2

   
≤ C ⋅ π

Rα
2 Σ

n = – ∞

+ ∞
1 + nπ

α
2

s – 1
2 εnf n

2

   ≤ C(α, β) ⋅ f
s + 1

2
, Γ

2

Which completes the proof of Theorem 1.

Theorem 2.  The bilinear form    D(• , • )  is symmetric and

continuous on    H
1
2(Γ) × H

1
2(Γ) , and    H

1
2(Γ)  coercive in

the sense that exist two positive constants M2 and M3

such that for any u, υ ∈     H
1
2(Γ)

   D(u, υ) = D(υ, u) , (22)

   D(u, υ) ≤ M2 ⋅ u 1
2

, Γ ⋅ υ 1
2

, Γ , (23)

   D(u, u) ≥ M3 ⋅ υ 1
2

, Γ
2

, (24)

Proof  We  have for any u, υ ∈     H
1
2(Γ)

    D(u, υ) = < Ku , υ > ≡ K
Γ

u ⋅ υdS

   
=

0

α π
Rα Σ

n = – ∞

+ ∞
εnZ nu n(e i nπ

α θ + e
– i nπ

α θ
)

   ⋅ Σ
n = – ∞

+ ∞
υm(e i nπ

α θ + e
– i nπ

α θ
) Rdθ

   
= π

α
0

α
Σ

n = – ∞

+ ∞
εnZ nu n(e i nπ

α θ + e
– i nπ

α θ
)

   ⋅ Σ
n = – ∞

+ ∞
υm(e i mπ

α θ + e
– i mπ

α θ
) dθ

   = π
α Σ

n = – ∞

+ ∞
(2αεnZ nu nυn)

   = 2π Σ
n = – ∞

+ ∞
εnZ nu nυn

Hence, from this and Theorem 1 we have

   D(u, υ) = 2π Σ
n = – ∞

+ ∞
εnZ nu nυn = D(υ, u)

    D(u, υ) = < Ku, υ >

    ≤ Ku
– 1

2
, Γ ⋅ υ 1

2
, Γ
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   ≤ C ⋅ u
– 1

2
, Γ ⋅ υ 1

2
, Γ

   
D(u, υ) = 2π Σ

n = – ∞

+ ∞
1 + nπ

α
2

– 1
2 εnu n

2

   ⋅ Z n ⋅ 1

1 + nπ
α

2

   
≥ C Σ

n = – ∞

+ ∞
1 + nπ

α
2

– 1
2 εnu n

2

   = C u 1
2

, Γ
2

This completes the proof.
It follows immediately from the above Theorem 2,

Corollary 1.  The variational problem (18) has is well-

posed on    H
1
2(Γ)  when β ≠ 0, and the variational problem

(18) well-posed on    H
1
2(Γ) /P0 when β = 0 (where P0 is the

polynomial of zero degree).
Corollary 1 implies immediately the well-

posedness of the original problem (1)-(5).

FINITE  ELEMENT  DISCRETIZATION

Now we consider the approximation of the prob-
lem (P).  To the end, we discrete the circular arc Γ  into
a finite number of element domains and let Sh be the

finite element subspace of space    H
1
2(Γ)  corresponding

to the subdivision and spanned by some type of shape

functions, that is Sh ⊂     H
1
2(Γ) , then the discrete problem

of variational problem (19):

(Ph) Find    u 0
h ∈ S h

 such that

   D(u 0
h, υ0

h) = Fn(u 0
h) , ∀ υ0

h ∈ S h
(25)

1. Linear Element

We now partition the boundary Γ  into N parts, the
points of division are θi, i = 1, 2, ..., N − 1, i.e., 0 ≡ θ0 <
θ1 < θ2 ... < θi < θi + 1 < ... < θN − 1 < θN ≡ α , and set hi :
= θi − θi − 1, i = 1, 2, ..., N.  Let {Li(θ)} be the system of
linear interpolation functions on boundary Γ .  It is easy

to know that    L iΣ
i = 0

N

(θ) = 1  and    S h = {L i(θ)}i = 0
N ⊂ H

1
2(Γ) .

Then

   u 0
h(R, θ) = U iΣ

i = 0

N

⋅ L i(θ) (26)

Substituting (26) into (25), we easily obtain the
system of linear algebraic equations of variational prob-
lem (25) as follows:

Q • U = b (27)

  q 00 q 01 q 02 q 0, N – 1 q 0, N

q 10 q 11 q 12 q 1, N – 1 q 1, N

q 20 q 21 q 22 q 2, N – 1 q 2, N

q N , 0 q N , 1 q N , 2 q N , N – 1 q N , N

U 0

U 1

U 2

U N

=

b 0

b 1

b 2

b N

  (28)

where Q : = (qij)(N + 1) × (N + 1), qij : =  D ( Li(θ), Lj(θ)), U
: = (U0, U1, ..., UN)T, b : = (b0, b1, ..., bN)T, bi : =

    Fn(L i(θ)) ≡ R
0

α
g n(R, θ)L i(θ) dθ .  Using (15), it is not

difficult to get that qij are expressed as follows

   q ij = q ji = π
α 2 Σ

n = 0

+ ∞
εnZ n ⋅ q i(n) ⋅ q j(n) , (29)

i, j = 0, 1, 2, ..., N

   q k(n) = L k
0

α
(θ) cos nπθ

α dθ ,   k = 0, 1, ..., N. (30)

where

   

q 0(n) =
1
2

h 1 , n = 0 ,

2α 2

n 2π2h 1

sin2 nπθ1

2α ,
  n = 1, 2, ...    (31)

   

q N(n) =

1
2

h N , n = 0 ,

– 2α 2

n 2π2h N

sin
nπ(θN + θN – 1)

2α ,

⋅ sin
nπ(θN – θN – 1)

2α ,

n = 1, 2, ... (32)

   

q k(n) =

1
2

(h k + h k + 1) , n = 0 ,

– α 2

n 2π2
{ 1

h k
cos

nπθk – 1
α

– 1
h k

+ 1
h k + 1

cos
nπθk

α

+ 1
h k + 1

cos
nπθk + 1

α , n = 1, 2, ...

      (33)

k = 1, 2, ..., N − 1.

Especially, we partition  boundary Γ  into uniform
subdivision, that is h = hi =  

α
N , θi = i • h ≡ i •  

α
N , we now

have
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q 0(n) =

α
2N

, n = 0 ,

2αN
n 2π2

sin2 nπ
2N

, n = 1, 2, ...
(34)

   
q N(n) =

α
2N

, n = 0 ,

(– 1)n + 2 2αN
n 2π2

sin2 nπ
2N

, n = 1, 2, ...
(35)

   

q k(n) =

α
N

, n = 0 ,

– 4Nα
n 2π2

sin2 nπ
2N

⋅ cos k
N

⋅ nπ , n = 1, 2, ...

(36)

k = 1, 2, ..., N − 1

2. Quadratic Element

We now partition  boundary Γ  into 2N parts, the
points of division are θi, i = 1, 2, ..., 2N − 1, i.e., 0 ≡ θ0

< θ1 < θ2 ... < θi < θi + 1 < ... < θ2N − 1 < θ2N ≡ α , and set
hi : = θi − θi − 1, i = 1, 2, ..., 2N.  Let {ϕ i(θ)} be the system
of quadratic interpolation functions on boundary Γ , it is

easy to know that    ϕ iΣ
i = 0

2N

(θ) = 1 and    S h = {ϕ i(θ)}i = 0
2N ⊂

   H
1
2(Γ) .  Similar to the case of linear boundary element,

we easily obtain the system of linear algebraic equation
of problem (25), which is similar to the case of
linear boundary element, Equation (27).  However, Q =
(qij)(2N + 1) × (2N + 1), and qij are given by the followings:

   q ij = q ji = π
α 2 Σ

n = 0

+ ∞
εnZ n ⋅ q i(n) ⋅ q j(n) ,

i, j = 0, 1, 2, ..., 2N − 1, 2N (37)

   q k(n) = ϕ k
0

α
(θ) cos

nπθ
α

dθ ,

k = 0, 1, 2, ..., 2N − 1, 2N (38)

where    

q 2k – 1(n) =

(h 2k + h 2k – 1)
3

6h 2kh 2k – 1
, n = 0 ,

α
nπ

2 1
h 2kh 2k – 1

(h 2k

+ h 2k – 1) cos
nπθ2k

α

+ cos
nπθ2k – 2

α

– 2α
nπ sin

nπθ2k
α

– sin
nπθ2k – 2

α ,

n = 1, 2, ....

k = 1, 2, ..., N (39)

   
q 2k(n) =

1 – δ0
k

h 2k(h 2k + h 2k – 1)
Ik1(n)

   
+

1 – δN
k

h 2k + 1(h 2k + 1 + h 2k + 2)
Ik2(n) ,

k = 0, 1, 2, ..., N (40)

   

I k1(n) =

(h 2k + h 2k – 1)
2 (2h 2k – h 2k – 1)

6
, n = 0 ,

α
nπ {h 2k(h 2k + h 2k – 1) sin

nπθ2k
α

+ α
nπ (2h 2k + h 2k – 1) cos

nπθ2k
α

+ h 2k – 1 cos
nπθ2k – 2

α – 2α
nπ

⋅ sin
nπθ2k

α – sin
nπθ2k – 2

α } ,

n = 1, 2, ....

(41)

   

I k2(n) =

(h 2k + 1 + h 2k + 2)
2 (2h 2k + 1 – h 2k + 2)
6

, n = 0 ,

α
nπ {– h 2k + 1(h 2k + 1 + h 2k + 2) sin

nπθ2k
α

+ α
nπ (2h 2k + 1 + h 2k + 2) cos

nπθ2k
α

+ h 2k + 2 cos
nπθ2k + 2

α – 2α
nπ

⋅ sin
nπθ2k + 2

α – sin
nπθ2k

α } ,

n = 1, 2, ....

(42)

CONVERGENCE  AND  PRIORI  ERROR
ESTIMATES

Let u0 be the solution of natural integral equation
(15), and  u 0

h  be the corresponding solution of natural
boundary element, which is the solution of problem
(Ph).  The parameter h  is stated as in section 3.

   • D
: = D(• , • ) .  Let Γ  be the circular arc of boundary

of domain Ω or Ωc.  In this section we will present the
convergence and error estimates on boundary Γ  for the
numerical solution of the natural integral equation.

For the natural boundary element of elliptic bound-
ary-value problems, under a united frame in Reference
[10] has acquired some theorems with respect to the
convergence and error estimates on boundary Γ  for the
numerical solution of natural integral equation.  Since
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the inferences of these theorems do not depend on the
concrete expression of natural integral operator K, so
we can directly write out the following theorems.
Theorem 3. (convergence) The numerical solution  u 0

h

obtained by natural boundary element converges to the
exact solution u0 in terms of energy norm    • D

,  that is

   lim
h → 0

u 0 – u 0
h

D
= 0 (43)

Theorem 4. (priori error estimates) If u0 ∈  Hr + 1(Γ),
then the solution of natural integral equation has the
following priori error estimates:

   u 0 – u 0
h

D
≤ Ch

r + 1
2 u 0 r + 1 , Γ ,  (energy norm)(44)

   u 0 – u 0
h

L 2(Γ)
≤ Ch r + 1 u 0 r + 1 , Γ , (L2 - norm)   (45)

   u 0 – u 0
h

L ∞(Γ)
≤ Ch

r + 1
2 u 0 r + 1 , Γ ,

(continuous norm) (46)

where r (r is a positive integer number) is the degree of
piecewise interpolation polynomial, C a positive con-
stant independent of u0, h, α  and R. (45) and (46) hold

only for u0 satisfying    [
0

α
u 0(R, θ) – u 0

h(R, θ)] dθ = 0 ,
while β = 0.

NUMERICAL  EXPERIMENTS

In this section we only find the approximation
   u 0

h(R, θ)  of u0(R, θ) by using the natural boundary
element method stated as the above.  In fact, once the
approximation    u 0

h(R, θ)  of u0(R, θ) is obtained, the
approximation uh(r, θ) of the exact solution u(r, θ) in Ω
or Ωc can be acquired directly by Poisson integral
formule.  We here omit the part of computation.  Since
the elements of stiffness matrix Q are given by some

infinite series, we substitute    Σ
n = 1

M
 into    Σ

n = 1

+ ∞
 in infinite

series in practice computing the elements of stiffness
matrix Q (generally we take M ≤ 100).  The system of
linear algebraic equations obtained by finite element
discretization can be solved by Gauss-Seidel iteration
method, and the number of iteration is denoted by M1.

Denote the maxmal  error of L2-norm on boundary by
Emax.  To sure the problem (1)-(5) has an unique solution,
some conditions must be added for β = 0.    U [N

2
]  is taken

to be zero while linear boundary element is used, and UN

to be zero while quadratic boundary element is used.
Example 1.  Solving the problem in exterior domain Ωc,
where R = 1,   α = 5π

4
,  and function gn(R, θ) is as follows

    

gn(R, θ) =

K 4
5

' (R) ⋅ cos 4θ
5

, β = – 1 ;

cos 4θ
5

, β = 0 ;

H 4
5

(1)'
(R) ⋅ cos 4θ

5
, β = 1 .

This problem has the exact solution:

   

u(r, θ) =

– K 4
5
(r) ⋅ cos 4θ

5
, β = – 1 ;

5
4

r – 4
5 cos 4θ

5
, β = 0 ;

– H 4
5

(1)(r) ⋅ cos 4θ
5

, β = 1 .

where r > R and 0 < θ < α .  Numerical results are shown
by Tables 1 and 2, respectively.
Example 2.  Solving the problems in interior domain Ω,
where R = 1,   α = 5π

4
,  and function gn(R, θ) is as follows

    

gn(R, θ) =

I 4
5

' (R) ⋅ cos 4θ
5

, β = – 1 ;

cos 4θ
5

, β = 0 ;

J 4
5

' (R) ⋅ cos 4θ
5

, β = 1 .

Now the exact solution of the problem is

   

u(r, θ) =

I 4
5
(r) ⋅ cos 4θ

5
, β = – 1 ;

5
4

r
4
5 cos 4θ

5
, β = 0 ;

J 4
5
(r) ⋅ cos 4θ

5
, β = 1 .

where r < R and 0 < θ < α .  Numerical results are shown
by Tables 3 and 4, respectively.

Table 1. Linear boundaey element (piecewise linear element),
R = 1,   αα = 5ππ

4

Emax

N M M1 β = -1 β = 0 β = 1

8 20 20 1.55E-2 2.11E-2 1.68E-2
16 40 60 3.96E-3 5.56E-3 4.32E-3
32 80 100 1.03E-3 1.43E-3 1.12E-3

Table 2. Quadratic boundary element (piecewise quadratic
element), R = 1,   αα = 5ππ

4

Emax

N M M1 β = -1 β = 0 β = 1

8 20 20 1.24E-2 2.53E-2 1.41E-2
16 40 60 1.64E-3 2.41E-3 1.84E-3
32 80 100 2.10E-4 3.07E-4 2.34E-4
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 SOME  APPLICATIONS

Let Ωc be an unbounded domain whose boundary
is composed of two sides Γ0 and Γα of a concave angle
0 < α  < 2π and a simple curve Γ , i.e. Γ  is defined by any
single-valued continuous function of θ, θ ∈  (0, α), Γ  =
{(r, θ) | r = r(θ), θ ∈  (0, α)} and r = r(θ) is a single valued
function.  Considering the following value problem:

    ∆u + βu = 0 in Ωc

∂u
∂n (r, 0) = 0, on Γ 0

∂u
∂n (r, α) = 0 , on Γα

∂u
∂n (r, θ) = gn(r, θ) , on Γα

conditionsat infinity

(47)

In Ωc we draw a circlur arc ΓR = {(R, θ) | 0 ≤ θ ≤ α},
it divides Ωc into Ω1 and Ω2.  Ω2 is an infinite sector.  It
is not difficult to get that (47) is equivalent to

   
Find u ∈ H 1(Ω1) such that for any υ ∈ H 1(Ω1)

D 1(u, υ) + D 2(u, υ) = < g n, υ > Γ
  (48)

where    D 1(u, υ) = (
Ω1

∇ u ⋅ ∇ υ – βuυ) dx, D 2(u, υ) = υ
Γ R

    ⋅ (Ku) dS ≡ R υ
0

α
⋅ (Ku) dθ,     < g n, υ > Γ = g n

Γ
⋅ υdS .

    Ku(R, θ) = π
Rα 2

εnΣ
n = 0

+ ∞
Z n υ

0

α
(R, θ')

   ⋅ cos nπθ
α ⋅ cos nπθ'

α dθ' (49)

Now we use the finite element method in Ω1.  Set
V = (U0, U1, ..., UN)T is set of values at nodes on ΓR, U
= (UN + 1, UN + 2, ..., UN + M)T is set of values at nodes on
Γ  and at interior nodes.     {L i(x, y)}i = 0

M + N ⊂ H 1(Ω1)  are
corresponding basis function, fox example, piecewise
linear, then restiction of ΓR are approximately piece

wise linear on ΓR.  Let    u ≈ Σ
i = 0

N + M
U i ⋅ L i(x, y) , we obtain

   Σ
j = 0

N + M
D 1(L i, L j) U j + Σ

j = 0

N
D 2(L i, L j) U j

= <gn, Li>Γ,  i = 0, 1, ..., M + N (50)

namely

   

K +
Q 0
0 0M × M

V
U

=

b 0

b 1

b M + N

(51)

where K = (D1(Li, Lj))(M + N + 1) × (M + N + 1), Q = (   D 2 (Li, Lj))
(N + 1) × (N + 1), bi = < gn, Li> Γ.  K can be obtained by FEM,
Q is given by above expreeions in Section 3.

CONCLUDING  REMARKS

We have derived a sequence of  natural integral
equations for solving elliptic problems with concave
angle domains, including problems in interior domain
and exterior domain in plane.  A finite element formu-
lation is presented in computing natural integral
equations.  Error estimates for finite element approxi-
mation are given, which depend on the parameter h.
From our numerical results, we can make several con-
cluding remarks:
1. It takes much time to obtain the numerical integration

by using  classical boundary element method, espe-
cially to deal with singular integral.  However, for
natural boundary element method we have seen that
the explicit expressions of these elements of bound-
ary element stiffness matrix are given (see Eqs. (29)-
(33) or (37)-(42) ).   And they have some distinctive
properties.  It is easy to be implementated on calcula-
tion and storage comparing with classical boundary
element methods.

2. To solve  natural integral equation is very simple and
easy in programming.  At the same time,  natural
integral equation can be used as the artificial bound-
ary condition in practice, and one can get better
accuracy for solving problems in unbounded domains
by standard finite element methods.  Thus we recom-
mend engineers to use the method.

3. Some domain decomposition methods based on  natu-
ral boundary reduction have been used to solve some
elliptic problems with unbounded domains or

Table 3. Linear boundaey element (piecewise linear element),
R = 1,   αα = 5ππ

4

Emax

N M M1 β = -1 β = 0 β = 1

8 20 20 1.69E-2 2.34E-2 1.75E-2
16 40 60 4.34E-3 5.93E-3 4.47E-3
32 80 100 1.13E-3 1.54E-3 1.15E-3

Table 4. Quadratic boundary element (piecewise quadratic
element), R = 1,   αα = 5ππ

4

Emax

N M M1 β = -1 β = 0 β = 1

8 20 20 1.32E-2 2.12E-2 1.69E-2
16 40 60 1.68E-3 2.69E-3 2.14E-3
32 80 100 2.13E-4 3.39E-4 2.71E-4
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singularities.  We shall report on progress in some of
these directions in a future publication.
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