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ABSTRACT

This paper describes the development of a fuzzy autopilot for
controlling the non-linear yaw dynamics of an autonomous underwa-
ter vehicle (AUV) model.  The autopilot design is based on a new
approach that uses a Gaussian fuzzy inference mechanism.  For the
design study, the AUV model is hosted in the MATLAB/Simulink
environment.  Simulation results are presented which illustrate the
potential of this novel methodology.

INTRODUCTION

Previous autopilot designs [1, 2] have shown the
attractiveness of fusing fuzzy logic with neural network
architectures in the design process.  The resulting con-
trollers are linguistically interpretable in comparison to
the black-box structure of a typical neural network.
Additionally, these designs retain their learning and
adaptation capabilities that allow the topographic fit-
ting of the non-linear function representing the process
input-output behaviour.  Hardy [3] described the pro-
cess of fitting a topographic surface to a given set of
data points as

“given a set of discrete data on a topographic
surface, reduce it to a satisfactory continuous

function representing the topographic surface.”

This empirical modelling is directly analogous to
the process of tuning a fuzzy inference system (FIS) to
reproduce a particular output, given specific inputs.
When tuning the membership functions of a FIS, a set of
representative training data is collected over a number
of pre-chosen variables, and is subsequently presented
to the encoded FIS architecture.  The parameters of the

fuzzy premise (input) and consequent (output) func-
tions within this architecture then adapt in order that the
future presentation of a particular set of input data pairs
produces the required output.  Clearly, this training data
represents known points on the topographic surface that
is to be modelled; the ability of the resulting network to
interpolate between these training data points is then
regarded as a measure of network generalization.

In recent years, the theory of radial basis function
(RBF) approximations to topographic surfaces has been
established and shown to provide an excellent frame-
work for modelling smooth non-linear functions.  When
considered as a network architecture, RBF approxima-
tions employ a linear combination of non-linear basis
functions, each of which is defined within a particular
operating region.  Thus the overall network output is a
linear combination of local network responses.
Consequently, such RBF networks can be referred to as
non-linear gain schedulers when employed in a control
context.

This paper introduces a novel extension to the
adaptive network-based fuzzy inference system (ANFIS)
[4] regime, which employs the fuzzy concepts devel-
oped within ANFIS in conjunction with a RBF model
for the inference system’s consequent functions that
will allow for better mapping and coverage of the output
space to take place.  The aim of such a fusion is to retain
the linguistic interpretability of ANFIS whilst exploit-
ing the functional non-linearity of such RBF local mod-
elling techniques.  The resulting fuzzy RBF network
will be transparent in structure and easy to examine.

THE  ANFIS  APPROACH  TO  FUNCTION
MODELLING

In the past the FISs employed variants of the
Takagi-Sugeno (TS) [5] model, where the ith fuzzy rule
is of the form (for two inputs):

If x1 is Ai and x2 is Bj then fk = f(x1, x2) (1)

for:



Journal of Marine Science and Technology, Vol. 9, No. 2 (2001)66

i =  1, 2, ..., m (the number of input membership
functions on x1),

j = 1, 2, ..., n (the number of input membership
functions on x2), and

k = 1, 2, ..., mn.

The fk’s are typically taken as a linear function of
the input variables for a TS FIS. These rule outputs
perform linear interpolation of the function f(x) describ-
ing the input-output behaviour of the underlying model
and are written as

   f = Σ
k = 1

mn

a kjΣ
j = 1

n

x j + b k (2)

where f is a vector of dependent variables, the xj’s are
the independent variables and n represents the number
of independent variables.  Also the coefficient akj repre-
sents the weight of the node corresponding to the (k, j)
th position in the network architecture and the bk coeffi-
cient represents the bias term of the kth linguistic rule.  In
terms of a FIS, each linear rule can be envisaged as a
moving singleton spike, its position in n-dimensional
space being determined by the values of the input vari-
ables xj.

Figure 1 provides an illustration of a FIS of this
form, where one input variable is mapped onto one
output variable via four fuzzy rules where y is a non-
linear function and t is the operational range.  Each
individual linear rule is effective within a certain region.
However, certain functions can prove difficult to model,
and some mismatch between the model and the underly-
ing function is not unusual, especially at the points
where rules cross-over.  Indeed, this input-output func-
tion could be particularly irregular with sharp gradients.

When approximating a non-linear function, one
method to diminish the modelling error between local
models and the actual function may be to increase the
number of fuzzy rules mapping the function from input
to output domains.  Consequently, the width of each
interval is reduced, as is the error incurred at the interval
cross-over points.  However, this leads to an increase in
the number of parameters and inevitably lengthens the
training period when adjusting these parameters to make
the fuzzy model fit the desired function more closely.

Alternatively, the linear functions employed in a
typical TS FIS output space can be replaced with non-
linear functions that can better approximate the re-
quired input-output behaviour.  Piecewise polynomials
are often chosen for this purpose.  This again implies
that ℜ n has to be divided into suitable regions for which
a particular polynomial applies.  Each polynomial must
then be pieced together to provide continuity over the
approximation, yet even polynomial function approxi-
mations are not always effective at modelling the some-

what sharp variations in many real topographic surfaces.
One particular type of function that has been ex-

tensively studied takes the form

   f j = η kΣ
k = 1

n

ξ k(x) (3)

where ξk(x) is a non-linear function of the independent
variables xk, and the ηk’s are unknown parameters.  This
type of model defines a non-linear relationship between
the dependent variable fj and the independent variables
xk, and defines a linear relationship between fj and the
unknown parameters ηk..  One clear advantage of em-
ploying this type of non-linear model is that the un-
known parameters ηk can still be computed by a linear
technique, as used in the hybrid learning rule of ANFIS.

Jang et al. [6] employed sigmoidal functions of the
form

   ξ k = 1
1 + exp [ – (p kx 1 + q kx 2 + + vk)] (4)

as their ANFIS consequents in contrast to the typically
documented linear functions and where pk and qk are
the weights applied to the input vector and vk is the
coefficient which pertains to the intercept term of the
linear function of the input terms.  This leads to a
revised ANFIS structure that employs non-linear conse-
quents of sigmoidal form and thus non-linear fuzzy rule
outputs whose weights can still be found by linear
algorithm approaches.  The advantage of the chosen
consequent functions is in their similarity to the original
consequents of a typical ANFIS model, producing a
non-linear structure that requires only a simple modifi-
cation of the original ANFIS modelling regime.

Conversely, White and Sofge [7] state how the
non-local nature of the commonly employed sigmoidal
function can lead to neural networks that experience
learning problems.  In essence, each sigmoid does not
relate to a specific region of the input space and thus

Fig. 1. Piecewise interpolation of a non-linear function using linear rule
outputs.
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incremental learning of the network parameters can
yield conflicts between minimizing the network cost
function and retaining the knowledge already stored
within the network structure.  That is, the use of the
sigmoid neuron does not usually represent an overall
network that can exhibit spatially localized learning
properties.  Various approaches have been documented
to attempt to overcome these problems, such as local
batch learning, very slow learning rates and distributed
(uncorrelated) input sequences.  However, these learn-
ing improvements were not documented or employed by
Jang et al. [6].

Clearly in control applications the local model
should represent the actual system within the desired
range of influence, and therefore be a good approxima-
tion to the system locally [8].  Bossley [9] highlights
that B-spline membership functions, which have been
used extensively in neurofuzzy modelling by Brown
and Harris [10], are not suited to locally modelling this
relationship.  A more suitable choice is often trapezoids,
as in the work of Lin and Juang [11] or Gaussian
functions, which are constant for the majority of their
response but represent the system over the desired oper-
ating region.  This requires that these functions be
positioned in the areas of the output space ℜ n which are
most heavily populated by training data points.

Moreover, Poggio and Girosi [12] report the supe-
rior approximation power of neural network architec-
tures containing RBFs over those using layers of sig-
moidal functions.  Indeed they provide a technical note
on the different types of basis functions that can be
employed.

These and other studies [13, 6, 14] have lead to the
consideration of composite Gaussian functions as the
consequent equations herein for non-linear rule imple-
mentation within an ANFIS type architecture.

THE APPROXIMATION PROBLEM

In order to approximate topographic surfaces and
functions with modelling architectures, Poggio and
Girosi [15] formulate the approximation / interpolation
problem within the framework of regularization theory.
They defined this problem as :

Given a set of data   S = {(xi, fi)}i = 1
N   which is obtained

by sampling an unknown function F in the presence of
noise, the approximation problem is to recover the
function F (or an estimate of it) from the sampled

data set S.

This type of problem is referred to as ‘ill-posed’
since there exists an infinite number of possible solutions.
In order to facilitate the approximation, some a’ priori

assumptions are made about the unknown function.  The
function may be constrained to take a specific form F(η,
x) which is dependent on an unknown parameter vector
η.  Subsequently, the problem is transformed into one of
regression.  However, the resulting solution depends
highly on the appropriateness of this a’ priori assump-
tion or assumed functional form.  Consequently, it is
more usual to make the assumption that the unknown
function F(η ,x) is smooth such that similar inputs pro-
duce similar outputs.

The regularization approach to the ‘ill-posed’ ap-
proximation problem determines the approximating
function f that minimizes a cost function of the form:

   H[f] = Σi = 1

N
(f(x i) – y i)

2 + λξ [f] (5)

where λ  is a positive constant generally known as the
regularization parameter.  In addition, H[f] defines a
cost function between the approximating function f(x)
and the function to be approximated y.  Also an addi-
tional term is included (ξ[f]) to ensure the smoothness
of the approximating solution.  This smoothness func-
tional incorporates a form of the second derivative of
the function f to allow this smoothing to be incorporated.
The cost function is clearly composed of two terms.  The
first term on the right hand side of Eqn. [5] minimizes
the difference between the actual function being ap-
proximated and the approximation itself.  The second
term is included to encourage smoothness within the
approximating function f, while the regularization pa-
rameter λ  controls the weighting between the two
components.  Function smoothness is incorporated by
defining a smoothness functional ξ[f] in such a way that
the lower values of the functional correspond to smoother
functions.  The regularization parameter λ  can also be
viewed as an indicator of the sufficiency of the given
data set as examples that specify the solution f(x).  In
particular, the limiting value λ  → 0, implies that the
problem is unconstrained, with the solution f(x) being
completely determined by the examples.  The other
limiting value λ  → ∞ implies that the a/ priori smooth-
ness constraint is by itself sufficient to specify the
solution function f(x), which also means that the data is
irrelevant to the solution chosen by the smoothness
constraint.  In practice, the regularization parameter λ is
assigned a value between these two extremes, so that
both the sample data and the smoothness constraint
contribute to the solution f(x).  Commonly the regular-
ization parameter λ is chosen according to cross-valida-
tion techniques.

It has been shown in Poggio and Girosi [15] for a
wide class of functional forms ξ  that the minimization
of Eqn. (5) (and thus the solution of the regularization
problem) yields a solution of the form:
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   f(x) = 1
λ Σ

i = 1

N
[y i – f(x i)]ξ(x, x i) (6)

where ξ(x, xi) is a basis function centred at point xi.  Eqn.
(6) states that the solution to the regularization problem
is a weighted sum of N basis functions centred at the
sampled data points.  Let η i = [yi − f(xi)] / λ , then the
solution to the regularization problem lies in an N-
dimensional subspace of the space of smooth functions,
and the set of basis functions {ξ(x, xi)} centred at the
data points constitutes a basis for this space.  If the basis
function ξ  is chosen from a set of rotationally and
translationally invariant functions, then ξ  becomes a
radial symmetric function denoted by ξ  = ξ(||x − xi||).
Using η i instead of [yi − f (xi)] / λ , the regularization
solution is given in the form:

   f(x) = Σ
i = 1

N
[η iξ ( x – x i ) (7)

Note that Eqn. (7) is almost identical to Eqn. (3),
except that the basis functions are centred at data points
xi.  Thus the method of RBFs with basis function centred
at data points can be derived from regularization theory.
Alternatively, regularization theory provides a firm theo-
retical background to the method of RBFs.

An approximating solution to the regularization
solution can be formed by considering the basis func-
tions to have moving centres.  The regularization ap-
proach specifies the requirement for each training data
example pair to be represented by a specific basis
function.  Obviously, this becomes computationally
inefficient when the number of samples is large. Instead
of using one function centre for each data point, a
smaller number of function centres {η i, i = 1, 2, ..., m, m
≤ N) could be used to replace xi in Eqn. (7).  It has been
shown [15] theoretically that this approach constructs
an approximation to the regularization solution.
However, the number and location of the centres will
strongly effect the outcome of the approximation.  This
leads to an approximating function of the form:

   f = Σ
α = 1

m

µαξ(x, xα) (8)

where α  is the number of linearly independent functions
(which are now fewer than the number of training data
pairs), and the parameters xα are called the centres of the
basis functions denoted by ξ .

Each radial function is combined with a multipli-
cative weight ηα which determines the algebraic sign
and gradient of the basis functions’ slope, as shown in
Fig 2 for a two input (dimensional) problem.  Thus when
the complete set of coefficients are substituted into the
consequent functions and these functions are summed
together, the overall output surface should fit the dis-

crete data points exactly, providing logical interpola-
tion for intermediary points. Such a surface is depicted
in Fig 3.

Additionally, the shape of the overall surface at
any particular point is a function of the summation of all
the individual surfaces at significant points.  This means
that sub-surfaces (as depicted above in Fig 2) with
particularly sharp gradients, which are not in close
proximity to the point of interest can still have a direct
influence on regions containing slower sloped sub-
surfaces.  In Fig 2, w represents the gradient of the
particular basis function in question.  This behaviour is
an important feature of this method because it suggests
the ability of the resulting approximation to provide
smooth transition over the output space.

RADIAL  BASIS  FUNCTION  APPROACHES  TO
CONTROL  SYSTEM  DESIGN

The current literature provides examples of RBF
approaches to control system designs; of the existing
literature, few are dedicated to fusing the approxima-

Fig. 2.  A two dimensional representation of a Gaussian radial basis function.

Fig. 3. Gaussian basis function modelling of a smooth surface (After Heiss
and Kampl (1996).
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tion power of RBF networks with fuzzy logic.  Indeed
those few do not address the problem of rulebase inter-
pretability and all employ neural network architectures
consisting of three layers.  As one of the main strengths
of fuzzy logic is the availability of a clear rulebase for
validation, the present work is driven towards produc-
ing a linguistically interpretable tuning structure fusing
fuzzy logic with the locality properties of Gaussian
basis functions.

McDowell et al. [16] implemented a RBF network
as a multi-input multi-output (MIMO) bank-to-turn au-
topilot for a surface-to-air missile. This application was
based upon Gaussian basis functions, which were trained
to adapt and compensate for roll induced cross-coupling.
An excellent evaluation of the resulting neural autopilot
was provided in 3-dimensions (6 degrees of freedom)
using a command to line of sight algorithm.  Results
obtained are employed in conjunction with a gain-
scheduling autopilot design, in the presence of time-
varying aerodynamic derivatives and control surface
saturation constraints.  The performance of the overall
autopilot system is commended, however no verifica-
tion tests appear to have been performed on the neural
structure.  Due to the lack of linguistic transparency of
the resulting neural autopilot it is difficult to employ an
expert to verify the resulting control rules.

Horikawa et al. [17] highlight this requirement,
stating that five layered network architectures are pref-
erable in order that the transparency of the control rules
be preserved during learning.  However, their conse-
quent functions do not possess the attractive properties
of the multi-dimensional radially symmetric functions
used by McDowell et al. [16].

Choi and Hwang [18] present the application of a
MIMO fuzzy RBF network for control of an autono-
mous submersible.  The results of the fuzzy RBF net-
work autopilot simulations appear promising, yet the
network again only employs a three layered architecture
and is thus difficult to verify, or document as a fuzzy
rulebase.

Due to the limited availability of formal design
methods and robustness verification techniques con-
cerning fuzzy controllers, it is considered important by
the present authors to have access to the tuned rule base
as a means of control rule verification and analysis.
Three layered representations of fuzzy RBF networks
do not possess this transparency, and the applications
within the literature typically ignore the important veri-
fication of the resulting structure.

NON-LINEAR  CONSEQUENT  FUNCTIONS  OF
N-DIMENSIONAL  FORM

By employing composite Gaussian functions in

place of the linear equations of the consequent layer of
an ANFIS architecture, each fuzzy rule output becomes
a non-linear function of the network inputs (Eqn. (8)).
Rule outputs are then dependent on the width of the
Gaussian basis function, its centre position in n-dimen-
sional space and the multiplicative weight cα.  The
overall effect of the architecture becomes that of a non-
linear gain-scheduling controller, which is dependent
on locally receptive fields.  The ith fuzzy rule is thus of
the form:

If x1 is Ai and x2 is Bj then fk = ηk exp
   – xk – ck

2

2σ k
2

(9)

for:

i =  1, 2, ..., m (the number of input membership
functions on x1),

j = 1, 2, ..., n (the number of input membership
functions on x2), and

k = 1, 2, ..., mn.

Re-writing Eqn. (9) as the sum of composite
Gaussian basis functions, yields the following system
of n simultaneous linear equations for the unknown
coefficients η j:

   

f 1 = η 1 exp
– x 1 – c 1

2

2(σ1)
2

+ + η nexp
– x 1 – cn

2

2(σ1)
2

,

f 2 = η 1 exp
– x 2 – c 1

2

2(σ1)
2

+ + η nexp
– x 2 – cn

2

2(σn)2
,

f n = η 1 exp
– xn – c 1

2

2(σ1)
2

+ + η nexp
– xn – cn

2

2(σn)2
,

(10)

which when written in matrix notation yields once more

f = Aη (11)

where A is a matrix of Gaussian basis functions.  Typi-
cally there will be fewer basis functions than available
training samples, and consequently an initial estimate
for the centre positions of each Gaussian is required.  In
this instance, the matrix A is not square and a sequential
least squares estimate to the parameter vector η  is often
sought.

1. The Modified Fuzzy Inference Mechanism

As a result of employing this new form of conse-
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Winfrith.  The model having been validated against
standard DERA non-linear hydrodynamic code using
tank test data and an experimentally derived set of
hydrodynamic coefficients from the Southampton
Oceanography Centre’s AUTOSUB vehicle.  In addition,
the MATLAB / Simulink model structure also takes into
account the dynamic behaviour of the actuators by
describing them as first order lags with appropriate
limiters.  Further details concerning the model can be
found in [2].

RESULTS  AND  DISCUSSION

Based upon the proposed method of composite
Gaussian fuzzy inference a 9 rule fuzzy autopilot was
developed (2 inputs and one functional output).  The
architecture of this autopilot is shown in the schematic
of Fig 6 in which each function within layer 4 is a
composite Gaussian of dimension 2 (as illustrated for
the first consequent function).  The output domain of
this new autopilot is represented graphically in Fig 3
and it is thus apparent that the two-dimensional conse-
quent functions are hill shaped in nature.  By varying the
parameter set of the proposed consequent functions, any
smooth function can be approximated, assuming that
the centres are positioned correctly [14].

1. Applying the Hybrid Learning Rule

The linear dependence of the proposed consequent
functions on their multiplicative weight coefficients
elicits direct application of the hybrid learning rule for
backpropagation tuning of the premise parameters and
least squares tuning of the consequent weight coeffi-

Fig. 4.  The proposed composite Gaussian fuzzy inference diagram.

Fig. 5.  The complete control authority of the AUV.

Fig. 6. The proposed Gaussian FIS for two inputs and one functional
output.

quent function, the fuzzy inference procedure changes.
Figure 4 illustrates the proposed composite Gaussian
fuzzy inference mechanism where µ is the degree of
membership, and C1 and C2 are the consequential outputs.
To elicit diagrammatic representation of the new output
space, FISs considering two inputs and one output (with
only two rules) are considered.

MODELLING  THE  AUTONOMOUS
 UNDERWATER  VEHICLE  DYNAMICS

Figure 5 shows the complete control authority of
the autonomous underwater vehicle (AUV) model which
is used as the test bed for the proposed autopilot designs.
It should be noted that for this study the upper and lower
canard rudders, situated at the bow of the AUV, are used
to control the yaw dynamics are limited to + / - 25.2
degrees.  Dimensionally, the model represents an under-
water vehicle which is 7 m long and approximately 1 m
in diameter and has a displacement of 3600 kg.

The equations of motion describing the dynamic
behaviour of the vehicle in six degrees of freedom are
implemented using a non-linear MATLAB / Simulink
simulation model supplied by the Defence Evaluation
and Research Agency (DERA), Sea Systems Sector,
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cients ηk.  (Full details of the hybrid learning algorithm
are given in [2].  However, this assumes that the non-
linear parameters (ck and σk) of the Gaussian conse-
quent functions remain fixed.

Upon completion of 300.5 epochs of tuning, the
fuzzy sets of the hybrid rule tuned Gaussian autopilot
were taken as depicted in Fig 7.  Clearly some adapta-
tion of the autopilots input parameter set has taken
place.

The rule base of the hybrid rule tuned Gaussian
autopilot was taken as Eqn. (12), where the coefficients
ηk have been tuned using the least-squares algorithm
and ψε is the yaw error input to the architecture, ψ is the
rate of change in error rate input and δ is the canard
demand applied to the AUV model:

If ψε is N and ψ is N then δ = 1.499

• exp 
  – (ψε – 1)2 – (ψ – 1)2

2(0.4)2

If ψε is N and ψ  is Z then δ = 0.368

• exp 
  – (ψε – 0.75)2 – (ψ – 0.75)2

2(0.4)2

If ψε is N and ψ  is P then δ = 2.091

• exp 
  – (ψε – 0.5)2 – (ψ – 0.5)2

2(0.4)2

If ψε is Z and ψ  is N then δ = 0.390

• exp 
  – (ψε – 0.25)2 – (ψ – 0.25)2

2(0.4)2

If ψε is Z and ψ  is Z then δ = 0.897

• exp 
  – (ψε – 0)2 – (ψ – 0)2

2(0.4)2 (12)

If ψε is Z and ψ  is P then δ = 1.350

• exp 
  – (ψε + 0.25)2 – (ψ + 0.25)2

2(0.4)2

If ψε is P and ψ  is N then δ = 1.012

• exp 
  – (ψε + 0.5)2 – (ψ + 0.5)2

2(0.4)2

If ψε is P and ψ  is Z then δ = 0.576

• exp 
  – (ψε + 0.75)2 – (ψ + 0.75)2

2(0.4)2

If ψε is P and ψ  is P then δ = -0.601

• exp 
  – (ψε + 1)2 – (ψ + 1)2

2(0.4)2

The course-changing response of the AUV, when
employing this autopilot in the forward path is depicted
in Fig 8; the corresponding low canard rudder response
is given in Fig 9.

The initial positions of the non-linear consequent
function centres (ck)  remained fixed throughout the
tuning process; the widths of the consequents (σk) re-
main fixed also.  As detailed in section 3, the rule base
considers a depleted number of basis functions com-
pared to typical RBF control structures, and therefore
the correct positioning of the function centres is of
paramount importance in achieving suitable approxi-
mations to the underlying models behaviour.  Therefore

Fig. 7. The input fuzzy sets before (solid line) and after (dash-dot line) 300
epochs of tuning with the hybrid learning algorithm for the Gaussian
FIS.

Fig. 8. The yaw response of the AUV when employing the hybrid tuned
Gaussian autopilot for a 40 degree course-changing manoeuvre.
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to further improve the course-changing effectiveness of
this autopilot it is important that the centres of the
consequents be positioned correctly.

2. Extension to the Hybrid Learning Rule

To elicit full adaptation of the consequent func-
tions it is necessary to employ a non-linear tuning
algorithm.  The backpropagation training element of the
hybrid learning rule is clearly a convenient way to
facilitate this.  By extending the hybrid rule to adapt the
non-linear parameters of the Gaussian consequent func-
tions in the backward pass of each epoch, the whole non-
linear parameter set can be locally tuned.

Applying this approach to the pre-tuned Gaussian
autopilot, produced the premise fuzzy sets of Fig 10.
The amount by which these sets have adapted to ap-
proximate the underlying model’s behaviour is clearly
less than in the case of the autopilot tuned using the

original hybrid learning algorithm.  This may be due to
the fitting of the non-linear consequent functions pa-
rameters to the underlying model, which would allevi-
ate the requirement for the non-linear parameter set of
the input space to vary as significantly.

The rule base of the Gaussian autopilot after
completion of 300.5 epochs of tuning via the extended
hybrid learning rule was taken as follows (Eqn. (13)):

If ψε is N and ψ  is N then δ = 4.894

• exp 
  – (ψε – 0.987)2 – (ψ – 0.998)2

2(0.394)2

If ψε is N and ψ  is Z then δ = 1.471

• exp 
  – (ψε – 0.735)2 – (ψ – 0.746)2

2(0.401)2

If ψε is N and ψ  is P then δ = -0.788

• exp 
  – (ψε – 0.489)2 – (ψ – 0.504)2

2(0.395)2

If ψε is Z and ψ  is N then δ = -0.263

• exp 
  – (ψε – 0.251)2 – (ψ – 0.241)2

2(0.401)2

If ψε is Z and ψ  is Z then δ = 0.569

• exp 
  – (ψε + 0.004)2 – (ψ + 0.003)2

2(0.394)2 (13)

If ψε is Z and ψ  is P then δ = 0.395

• exp 
  – (ψε + 0.261)2 – (ψ + 0.239)2

2(0.395)2

If ψε is P and ψ  is N then δ = 0.397

• exp 
  – (ψε + 0.485)2 – (ψ + 0.496)2

2(0.397)2

If ψε is P and ψ  is Z then δ = 0.399

• exp 
  – (ψε + 0.773)2 – (ψ + 0.770)2

2(0.399)2

If ψε is P and ψ  is P then δ =0.403

• exp 
  – (ψε + 0.994)2 – (ψ + 1.003)2

2(0.403)2

Where again ψε, ψ  and δ are as defined earlier in

Fig. 9. The lower canard rudder response for the manoeuvre shown in Fig.
8.

Fig. 10. The input fuzzy sets before (solid line) and after (dash-dot line)
tuning with the extended hybrid learning algorithm.
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the text.  The application of this new algorithm produces
a course-changing autopilot that incurs a fast accurate
response when employed within the AUV model (Fig 11
and Fig 12).

For further comparisons, the rise times for the
autopilots designed using the hybrid Gaussian and the
extended hybrid Gaussian approaches are 14.31 s and
7.37s respectively.  It can be seen the extended version
provides an improvement in the rise time of 48%.
However, as can be seen from the results, the penalty
paid for  the faster rise time is the introduction of 1.76%
maximum overshoot in the yaw response.

CONCLUDING  REMARKS

This paper has demonstrated that a novel type of
fuzzy inference, namely Gaussian fuzzy inference, can
be employed to develop AUV autopilot designs.  The
use of composite Gaussian RBF networks can provide a
non-linear modelling technique which can be tuned
with a linear algorithm such as least-squares.  However,
the work documented within the paper has highlighted
the potential improvements to be gained by using a more
sophisticated algorithm which made full use of the extra
non-linearity introduced within the fuzzy mode.
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