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ABSTRACT

In this paper, the vibration of continuous bridges subjected to the
passage of high-speed trains is studied. Only the bridges with uniform
spans are considered and the train moving over a bridge is modeled as
a series of moving loads.  According to the resonant formula of simple
beams to moving loads, the effect of multiple resonant peaks for
continuous bridges subjected to high-speed trains can be determined
by analogy method.  Based on the finite element method, the effect of
the number of spans on the impact response of the continuous beams
is presented.  The results show that the more the number of spans of
the continuous beam, the smaller the impact response is for the
displacement.

INTRODUCTION

The vibration behaviors of rail bridges under the
passage of moving vehicles have been studied by many
researchers.  Recently, the author and Yang have pre-
sented a series of papers on the impact response of
bridges to high-speed trains and on the interaction of
vehicle/bridge systems [1-6].  By an analytical approach,
the resonance phenomenon of simply supported railway
bridges subjected to a series of moving loads has been
investigated, while vehicle-bridge interaction (VBI)
elements of various complexities were developed for
simulating the interaction behavior between the bridge
and the vehicles moving over it, aimed particularly at
high-speed railway systems.

A review of the literature indicates that most of the
previous works have been concentrated on the dynamic
response of simply supported bridges.  In comparison,
relatively few studies have been conducted on the dy-
namic response of continuous bridges to moving loads.
As far as the continuous bridges are concerned, the
impact response of highway bridges has been studied by

Yang et al. [2] using the dynamic condensation method,
and the dynamic interaction between the bridge and
moving vehicles for high-speed railways by Yau et al.
[5] using the VBI elements.  Cheung et al. [8] used the
modified beam vibration functions to investigate the
response of multi-span non-uniform bridges under mov-
ing vehicles and trains.

The objective of this article is to study the impact
response of multi-span continuous bridges to high-
speed trains.  By the finite element method, a continu-
ous bridge is modeled as a series of beam elements and
a train as a sequence of moving loads.  The results show
that the increase in the number of spans of the continu-
ous beams will result in the increase of resonant peaks
and reduction of the impact response.

RESONANCE ANALYSIS

As shown in Fig. 1, by modeling a bridge as a
Bernoulli-Euler beam, a simple beam with length L and
uniform cross section is considered.  The train moving
over the beam at speed v is modeled as a sequence of
equidistant moving loads.  The interval between two
adjacent moving loads is d and the weight of each
moving load is p.  By neglecting the damping effect of
beam structures, the equation of motion for the beam
traveled by the moving loads can be written as [1, 6]

   mu + Elu"" = p δΣ
k = 1

N

[x – v(t – t k] × [H(t – t k)

  – H(t – t k – L / v)] (1)

where a prime denotes derivative with respect to the
coordinate x, an over-dot denotes derivative with re-
spect to time t, m = the mass per unit length of the beam,
u(x, t) = vertical displacement, E = elastic modulus, I =
moment of inertia of the beam, δ = Dirac’s delta function,
H(t) = unit step function, N = total number of moving
loads, and tk = (k − 1)d/v = arriving time of the kth load
at the beam.  The closed form solution of the dynamic
response u(x, t) of the beam traveled by the moving
loads with equidistant is expressed as [1, 6]:
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   u(x, t) = ∆st sin πx
L

× [Q 1(v, t)H(t – t N)

  + Q 2(v, t)H(t – t N – 1 – L / v)] (2)

where ∆st = 2pL3/(π4EI) ≈ pL3/(48EI) = the maximum
static deflection of the corresponding simple beam,

   Q 1(v, t) =
sin Ω(t – t N) – S sin ω0(t – t N)

1 – S 2

   
Q 2(v, t) = –

2S cos π
2S

1 – S 2
× sin ω0 t – L

2v

   
+ sin ω0 t –

t N + L / v
2

× sin ω0[(t N – d / v) / 2]
sin (ω0d / 2v)

   S = Ω
ω0

= πv / L
ω0

   ω0 = π
L

2 EI
m (3a-d)

S = the speed parameter, which represents the ratio of
the driving frequency Ω to the fundamental frequency
ω0 of the beam.  From equation (2), it can be seen that
the term Q1(v, t) is associated with H(t − tN), which
represents the dynamic response induced by the Nth
moving load acting on the beam, and the term Q2(v, t) is
associated with H(t − tN − 1 − L/v), which represents the
residual response induced by the N − 1 moving loads
that have passed the beam.

From equations (3b), it can be seen that the re-
sponse reaches a maximum when the denominator sin
(ωd/2v) equals zero, or S = d/(2nL)|n = 1, 2, 3....  This is
exactly the condit ion for resonance  to occur.
Correspondingly, when n is set to be 1, the resonance is
called the main resonant condition and the resonant
speed is denoted as vres.  By the L’Hospital rule, the
dynamic response factor for resonance Q2(vres, t) in
equation (3b) can be manipulated to yield [1, 6]:

   
Q 2(vres, t) = 2(N – 1) – S res

cos (π / 2S res)

1 – S res
2

   × sin ω t – L
2vres

(4)

where the subscript res means resonance.  The preced-
ing equation indicates that under the condition of
resonance, larger response will be induced on the beam
when there are more loads passing the beam, as implied
by (N − 1).

From above derivation, it is concluded that the
main resonance speed vres of vehicles occurs if the
excitation circular-frequency v/d of the vehicle meets
the fundamental circular-frequency ωo/2π of the beam,
that is,    v res = (ω0d)

(2π)
(ω0d)

(2π).  Further, when the excitation
circular-frequency caused by the running speed of the
train is approaching to one of the circular-frequency ω/
2π of the bridge, the resonance will be also excited, that
is,    v res = (ωd)

(2π)
(ωd)

(2π).  It must be emphasized that the
resonant condition for bridges subjected to the vehicle
moving at high speeds has been verified in many related
papers [9-13].

METHOD OF ANALYSIS

Multi-span continuous bridges with constant span
lengths are one type of structures commonly used in
practice, because they can be constructed in a rather
systematic way.  As shown in Fig. 2, a multi-span
continuous bridge with uniform spans and simple sup-
ports is considered in this study.  By modeling a con-
tinuous bridge as a beam-like structure, and a train with
constant speed v as a sequence of moving loads, the
dynamic response of the beam to moving loads is stud-
ied using the finite element method. In the present
study, the most commonly used beam element with 6
degrees of freedom at each node, as shown in Fig. 3, is
used to represent each segment of the beam, for which
the elastic stiffness matrix [kb] and the mass matrix [m]
are constructed using methods available in textbooks of
structural dynamics.  In particular, the concept of con-
sistent mass, rather than lumped mass, is used to con-
struct the mass matrix [m] for its better accuracy, as
required in the analysis for multi-span continuous beams,
and the mass matrix [m] is expressed as shown in
appendix A.

As shown in Fig. 4, a continuous beam with uni-
form cross sections is divided into a series of beam
elements of equal length.  Based on the eigen-value
analysis, the natural frequencies ω solved for the con-
tinuous beams with different numbers of spans have to

Fig. 1.  Model of simple beams and moving loads.

Fig. 2.  Models of Continuous Bridges and High Speed Trains.
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been plotted in Fig. 5, with respect to the frequency ω0

of the corresponding simple beam that has a length
equal to the span length of the continuous beams.  As
can be seen from Fig. 5, the fundamental frequencies of
the uniformly multi-span continuous beams remain the
same regardless of the variation in the number of spans.
However, the increase in the number of spans does make
the distribution of frequencies much denser.  Such a
phenomenon implies that the excitation energy (through
the wheel contact points) to one span of a continuous
beam with more spans can be transferred more quickly
the neighboring spans.

IMPACT FACTOR AND SPEED PARAMETER

In design practice, the impact factor I is used to
account for the amplification effect of the bridge due to
the passage of moving vehicles through increase of the
design forces and stresses.  The impact factor is defined
as follows [7]:

  I =
Rd(x) – Rs(x)

Rs(x)
(6)

Fig. 3.  Beam Element.

Fig. 4.  Finite Element Model of Continuous Beams.

Fig. 5.  Frequency Distribution of Multi-span Continuous Beams.

where Rd(x) and Rs(x), respectively, denote the maxi-
mum dynamic and static responses of the beam at posi-
tion x due to the action of the moving loads.  It has been
indicated that for simple and continuous beams sub-
jected to the moving action of a single truck, the impact
factor may be linearly related to a dimensionless speed
parameter S, defined as the ratio of the excitation fre-
quency of the moving vehicle, i.e., πv/Lc, with v denot-
ing the vehicle speed and Lc the characteristic length of
the bridge, to the fundamental frequency ω0 of the
bridge, that is,    S = (πv)

(ω0L c)
(πv)

(ω0L c).  Here, the characteristic
length, as shown in Fig. 6, is defined as the length of two
inflection points of the fundamental mode of continuous
bridges [7].  Obviously, one feature with the present
definitions for both the impact factor I and speed param-
eter S is that both of them are dimensionless.

IMPACT RESPONSE ANALYSIS

To investigate the impact response of continuous
beams to moving loads at high speeds, four types of
beams with different spans, i.e., 1, 3, 5, and 7-span, are
considered, which are made of pre-stressed concrete
with flexural rigidity EI = 8.92 × 103 KN-m2, mass per
unit length m = 37.6t, and length L = 50m. A damping
ratio of 2.5% is assumed for these continuous beams.
The corresponding dynamic properties of these beams
are listed in Table 1.  It is found that the increase in the

Table 1.  Frequency Distribution of Uniform Continuous Beams

Frequencies: ω(rad/s)

1-span 19.2 76.9
3-span 19.2 24.6 36.0 76.9
5-span 19.2 21.3 26.7 33.6 40.3 76.9
7-span 19.2 20.3 23.3 27.6 37.6 41.8 76.9
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number of spans does make the distribution of frequen-
cies much denser.  Because the continuous beams con-
sidered here are of uniform span lengths, the character-
istic length Lc of the beam is equal to the span length L.
In addition, the Shinkansen (SKS) train-loading model,
as shown in Table 2, used by T. Y. Lin Taiwan [14] is
adopted in the present study, which has an average car
length d of 25 m.

Multiple Resonant Peaks of Continuous Beams

For uniformly multiple-span continuous bridges,
the impact response of the middle span is generally
larger than that of the other two side spans [5].  In the
present study, only the impact responses of the middle
span and the departure span of continuous beams will be
considered.  The impact factor I solved for the midpoint
of the middle span and the departure span of the con-
tinuous beams have been plotted against the speed
parameter S (referred as I-S plot) in Figs. 7-9.  As can be
seen, there exist multiple resonant peaks for the impact
response of the departure span and the middle span of
the continuous beam.  This is mainly due to coincidence
of some of the excitation frequencies implied by the
moving wheel loads at different speeds with the funda-
mental or higher frequencies of the continuous beam.
According to the analytical formulas as shown in Eqs.
(2), (3), and (4), the resonant response for a simple beam
subjected to a series of wheel loads will occur at Sres =

Fig. 6.  Characteristic Length of Multi-span Continuous Beams.

Fig. 7.  Impact Response of 3-span Continuous Beams.

Fig. 8.  Impact Response of 5-span Continuous Beams.

Table 2.  Train-Loadings of SKS-Model

Power-Cars            Trailer-Cars

0.0  2.50
17.50  20.00

25.00 27.50 42.50 45.00 50.00 52.50 67.50 70.00
75.00 77.50 92.50 95.00 100.0 102.5 117.5 120.0

Distance of 125.0 127.5 142.5 145.0 150.0 152.5 167.5 170.0
Wheel Loads 175.0 177.5 192.5 195.0 200.0 202.5 217.5 220.0

(m) 225.0 227.5 242.5 245.0 250.0 252.5 267.5 270.0
275.0 277.5 292.5 295.0 300.0 302.5 317.5 320.0
325.0 327.5 342.5 345.0 350.0 352.5 367.5 370.0

375.0  377.5
392.5  395.0

Weight (kN) 150                  138
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d/2L, where d = the wheel load interval.  For the present
case, the first resonance speed parameter for all of these
continuous bridges is Sres,1 = 25/(2 × 50) = 0.25, or
equivalently v = 275 km/h.  The second resonance speed
parameter for 3-span continuous beams is Sres,2 =
Sres,1ω2/ω1 = 0.25 × 1.28 = 0.32, or equivalently v = 352
km/h, and the third resonance speed parameter is Sres,3 =
Sres, 1ω3/ω1 = 0.25 × 1.88 = 0.47, or equivalently v = 517
km/h.  It is noted that the second resonant peak at Sres, 2
= 0.32 does not occur for the mid-span of the 3-span
continuous beams, as shown in Fig. 7, the reason is that
the inflection point of the second vibration mode is
located at the midpoint of this span.  Therefore, there is
no contribution of the second mode of the 3-span con-
tinuous beams to the impact response of the mid-span of
the beams.  Evidently, all of the resonance speeds for
continuous beams with different spans can be identified
from the analytical formulas as shown in Table 3.

Effect of Number of Spans

The impact factor I solved for the midpoint of mid-
span for each continuous beam has been plotted against
the speed parameter S in Fig. 10.  As can be seen, the

Table 3.  Resonant Speeds of Continuous Beams

Speed: vres(km/h)
[Sres ≤ 0.5]

1-span 275 [0.25]
3-span 275 352 517

[0.25] [0.32] [0.47]
5-span 275 305 382 481

[0.25] [0.28] [0.35] [0.44]
7-span 275 291 334 395

[0.25] [0.26] [0.30] [0.48]

Fig. 9.  Impact Response of 7-span Continuous Beams.

impact response of the 7-span continuous beams is
smaller than that of the other continuous beams.  This is
partly due to the fact that increase in the number of
spans for the continuous beams allows the vibration
energy excited by the moving loads to be transmitted
more easily to the neighboring spans.  The other reason
is that for continuous beams with more spans, the re-
straining effect of the supports on the displacement
appears to be higher.  From Fig. 9, it can be observed as
well that for continuous beams of the same characteris-
tic length Lc, the speed parameter S (and therefore the
vehicle speed v) for the first resonance to occur is the
same, regardless of the number of spans.  Furthermore,
the main resonant peaks of the impact response of
continuous beams will become denser as well as the
increase of the number of spans of the beams.

Effect of Car/Span Length Ratio

For the present purposes, 5-span continuous beams
of different span lengths made of pre-stressed concrete
are considered.  By letting each of the beams traveled by
the moving loads, the impact factor I for the midpoint
displacement of the arrival-span, mid-span, and depar-
ture-span of the beams has been plotted against the
speed parameter S and the car/span length ratio d/L as
shown in Figs. 11-13.  It is observed that the impact
factor at mid-span is larger than the other two cases.
Meanwhile, when the ratio d/L approaches the value of
2/3, the impact response becomes smaller than other
length ratios, largely due to the fact that the cancellation
condition for the impact response of the beams is met.
Such an observation is consistent with that observed for
simple beams subjected to high-speed trains in previous
studies [1, 6].

Fig. 10. Comparison of Impact Response of Mid-Span for Continuous
Beams.
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CONCLUDING REMARKS

By modeling a train as a sequence of moving loads
and the bridges as a series of beams of constant spans,
the frequency distribution and impact response of the

beams are investigated.  Based on the example studied,
the following remarks can be made: 1) The frequency
distribution of the continuous beams is related to the
number of spans, that is, the more the number of spans
for the beams, the denser the frequency distribution is.
2) By increasing the number of spans of the continuous
beams, the main resonant peaks of continuous beams
will increase and the impact response of the displace-
ment of the beams is reduced. 3) When the car/span
length ratio d/L is near the cancellation condition, i.e.,
2/3, the impact response of the beams becomes minimal.

ACKNOWLEDGEMENTS

The research reported herein was sponsored in
part by the National Science Council under Grant No.
NSC89-2211-E-032-025.  Parts of this paper have been
presented at the Thirteenth KKNN Symposium on Civil
Engineering, NTU, Taipei, Dec. 7-8, 2000.

REFERENCES

  1. Yang, Y. B., Yau, J. D., and Hsu, L. C. (1997), “Vibra-
tion of simple beams due to trains moving at high speeds,
” Engineering Structures, 19(11), 936-944.

  2. Yang, Y. B., and Yau, J. D. (1997), “Vehicle-bridge
interaction element for dynamic analysis,” Journal of
Structural Engineering, ASCE, 123(11), 1512-1518.
(Errata: 124(4), p. 479).

Fig. 11.  Impact Response of the Arrival-Span.

Fig. 12.  Impact Response of the Mid-Span.

Fig. 13.  Impact Response of the Departure-Span.



Journal of Marine Science and Technology, Vol. 9, No. 1 (2001)20

  3. Yang, Y. B., Chang, C. H., and Yau, J. D. (1999), “An
element for analysing vehicle-bridge systems consider-
ing vehicle’s pitching effect,” International Journal for
Numerical Methods in Engineering, 46(7), 1031-1047.

  4. Yau, J. D., Yang, Y. B., and Kuo, S. R. (1999), “Impact
response of high speed rail bridges and riding comfort of
rail cars,” Engineering Structures, 21(9), 836-844.

  5. Yau, J. D., and Yang, Y. B..(2000). “Impact response
analysis of continuous bridges subjected to high speed
trains,” Proceedings of the Thirteenth KKNN Sympo-
sium on Civil Engineering, Dec. 7-8, NTU, Taipei,
Taiwan, 17-22.

  6. Yau, J. D., and Yang, Y. B., Theory of Vehicle-Bridge
Interaction for High Speed Railway, D&E Drawing and
Editing Services, Taipei, Taiwan, R.O.C., Feb. 2000 (in
Chinese).

  7. Yang, Y. B., Liao, S. S., and Lin, B. H. (1995), “Impact
formulas for vehicles moving over simple and continu-
ous beams,” Journal of Structural Engineering, ASCE,
121(11), 1644-1650.

  8. Cheung, Y. K., Au, F. T. K., Zheng, D. Z. and Cheng, Y.
S. (1999), “Vibration of multi-span non-uniform bridges
under moving vehicles and trains by using modified
beam vibration functions,” Journal of Sound and
Vibration, 228(3), 611-628.

  9. Fryba, L., and Naprstek, J. (1998), “Appearance of
resonance vibration on railway bridges,” Advances in
Civil and Structural Engineering Computing, Topping,
B. H. V. Ed., Civil-Comp Press, Edingburg, Scotland,
377-382.

10. Klasztorny, M. (1999), “Vertical vibrations of a multi-
span beam bridge under a train moving at high speeds,”
Proceedings of the 4th European Conference on Struc-
tural Dynamics - EURODYN’99, Fryba & Naprstek
Eds., Balkema, Rotterdam, 651-656.

11. Museros, P., Vivero, G., and Alarcon, E. (1999),
“Moving loads on railway bridges: The Spanish Code
Apprach,” Proceedings of the 4th European Conference
on Structural Dynamics-EURODYN’99, Fryba &
Naprstek Eds. Balkema, Rotterdam, 675-680.

12. Liberatore, D. (1999), “Dynamic interaction between
periodic train and bridge at resonance,” Proceedings of
the 4th European Conference on Structural Dynamics -
EURODYN’99, Fryba & Naprstek Eds. Balkema,
Rotterdam, 693-698.

13. Le, R., Ripke, B., and Zacher, M. (1999), “Ballast mats
on high speed bridges,” Proceedings of the 4th European
Conference on Structural Dynamics-EURODYN’99,

Fryba & Naprstek Eds. Balkema, Rotterdam, 699-703.
14. T. Y. Lin Taiwan (1993), “Vibration of elevated bridge

structures caused by train loadings of the west Taiwan
high speed rail project-supplementary final report,” Pro-
visional Engineering Office of High Speed Rail, Minis-
try of Transportation and Communications, Taiwan,
Republic of China.

APPENDIX A:

Mass matrix [m] of beam element
  

[m] = mL
420

140
0 156
0 0 156

0 0 0
140I p

A
sym.

0 0 – 22L 0 4L 2

0 22L 0 0 0 4L 2

70 0 0 0 0 0 140
0 54 0 0 0 13L 0 156
0 0 54 0 – 13L 0 0 0 156

0 0 0
70I p

A
0 0 0 0 0

140I p
A

0 0 13L 0 3L 2 0 0 0 22L 0 4L 2

0 – 13L 0 0 0 – 3L 2 0 – 22L 0 0 0 4L 2

where A = the area of cross section, and Ip is polar
moment of inertia.

高鐵連續橋於列車通過之共振現象

姚　忠　達

淡江大學建築技術系

摘　要

本文旨在探討高鐵連續橋受到高速列車通過之

振動反應行為，文中將以具有等跨的均勻連續橋作為

探討對象。藉由以梁構件對橋樑的模擬，及將列車載

重則視為一序列的移動力量，我們便可透過解析及有

限元素法的方式，來計算連續橋受列車作用的共振速

度及衝擊反應。從本研究果顯示，當連續梁的跨數愈

多時，其頻率分佈將愈為密集，於是橋梁被激發出來

的主共振尖峰數目也將愈多；然而卻也因為橋梁鄰跨

對振動能量的傳遞效應，使得愈多跨數的連續橋，其

衝擊反應卻反而相對地下降。
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