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ABSTRACT

By a matrix representation the g-based Jordan algebra [1] is
proved to form a g-based Lie algebra under the commutator product.
Then we derive a new dynamical system based on the composition of
the g-based Jordan and Lie algebras, which possesses internal symme-
try group DSOo(n,1), and its projection PDSOo(n,1).  Utilizing this
concept we obtain a linear representation of a constitutive model of
visco-elastoplasticity with large deformation.  The irreducible repre-
sentation in the vector space admits of the projective dilation proper
orthochronous Lorentz group PDSOo(5,1) in the visco-elastoplastic
phase and the dilation special Euclidean group DSE(5) in the vis-
coelastic phase.  The input path and the relaxation time decide that
when the symmetry switches between the two groups.  Based on such
symmetry a numerical scheme which satisfies the consistency condi-
tion for every time step is devised, which preserves the internal
symmetry PDSOo(5,1) of the model in the visco-elastoplastic phase so
as to locate the stress point automatically on the yield surface at each
time step without iterations at all.

INTRODUCTION

In the last few decades there has been a great
interest in formulating the nonlinear mechanical system
with noncanonical or generalized bracket formulations.
To each mechanics there associates at least one alge-
braic structure determined by the proper bracket of the
theory.  The new algebra still preserves the Lie algebra
axioms.  Along this way a trilinear Jordan algebra has
been formed to formulate a particular dynamical system
with nonvanishing associator in [1].  The algebraic
foundation of this dynamical system is the non-associa-
tive algebra [2,3].  Some applications include the per-
fect elastoplasticity [4,5], the magnetic spin equation
[6], the suspension particle orientation equation [7],
and so on.  In this paper we first proceed to examine such
type dynamical systems from the view point of Lie

algebra and Lie group.  Then we derive a new dynamical
system based on the composition of the g-based Jordan
and Lie algebras, which will prove to has internal sym-
metry group DSOo(n,1) in the homogeneous coordi-
nates space.

We will soon find that the aforementioned group
theory is useful for the foundation of the constitutive
model of visco-elastoplasticity with large deformation.
For such model the underlying algebra is thus revealed.
An internal symmetry of a constitutive model is a state-
ment that when one makes changes in the states of the
model, a particular expression for certain constitutive
phenomena he formulates does not change.  The changes
or transformations he makes to the constitutive model
which leave the form of the expression unchanged are
naturally linked with the invariance of a conserved
quantity.  A numerical scheme which preserves symme-
try and utilizes the invariance property from one time
stop to the next one or few stops will be more capable of
capturing key features during plastic deformation and
has long-term stability and much improved efficiency
and accuracy.  Therefore the issue of internal symme-
tries in constitutive laws of plasticity is not only impor-
tant in its own right, but will also find great applications
to computational plasticity.

Hong and Liu recently found symmetry groups in
a constitutive model of perfect elastoplasticity [4], in a
constitutive model of bilinear elastoplasticity [8], as
well as in a constitutive model of large deformation
perfect elastoplasticity with the Jaumann stress rate [9].
The latter work is then extended by Liu and Hong [10]
to the constitutive models of large deformation perfect
elastoplasticity with corotational stress rates, where we
have compared the effects of different corotational stress
rates on the model behavior, giving a sufficient criterion
for the non-oscillation response under the simple shear
deformation.  It is found that using internal symmetry
inherent in the constitutive model a consistency scheme
can be developed.  One direct benefit of such scheme is
that the stress point is automatically updated on the
yield surface without iterative calculations for every
time step.  This is what the conventional constitutive
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numerical schemes, which were directly formulated in
the stress space, desired and failed to achieve.  As we
know that the numerical schemes developed up to now
for the integration of the constitutive equations of plas-
ticity are executed in the stress space.  In order to
enforce the consistency condition at every time step the
conventional algorithms require some iterative calcula-
tions to force the stress point at the end of each time step
to converge to the yield surface, which is known as a
main source of numerical errors and of consumption of
computational time.  Here basing on the g-based dy-
namical system theory we will extend the results in [9]
to the constitutive model of visco-elastoplasticity with
large deformation.

A  g-BASED  JORDAN  ALGEBRA

Let Xs • Ys an inner product of Xs and Ys on a vector
space V over R.  Let M  : = R ⊕ V the vector space direct
sum of R and V, and for each X ∈ M we assign

X : = X0 + gXs, (1)

where X0 ∈ R is a scalar part, Xs ∈ V is a vector part, and
g with g2 : = g  •  g = 1 has been named the g-number in
[1].

For X = X0 + gXs,  Y = Y0 + gYs ∈ M, we define the
addition of X and Y by

X + Y : = (X0 + Y0) + g(Xs + Ys), (2)

and the product by

XY = (X0 + gXs)(Y0 + gYs) : = (X0Y0 + Xs • Ys)

+ g(X0Ys + Y0Xs). (3)

For all X, Y, Z ∈ M and all a ∈ R , the algebra
introduced has the following properties:

[X, Y] = XY − YX = 0, (4)

X(Y + Z) = XY + XZ, (5)

(X + Y)Z = XZ + YZ, (6)

a(X + Y) = aX + aY, (7)

a(XY) = (aX)Y = X(aY), (8)

[X, Y, Z] : = (XY)Z − X(YZ) = g[Xs, Ys, Zs] ≠ 0,   (9)

[X2, Y, X] = 0, (10)

where

[Xs, Ys, Zs] : = Xs • YsZs − Zs • YsXs

∀Xs, Ys, Zs ∈ V (11)

is the associator defined in V (see, e.g. [1]). Eq. (4) is
the commutativity of product, Eq. (5) the left-distribu-
tivity of product, Eq. (6) the right-distributivity of
product, Eq. (7) the distributivity of scalar multiple, Eq.
(8)  the associativity of scalar multiple, Eq. (9) the non-
associativity of triple product, and Eq. (10) the Jordan
identity.  An algebraic system with commutativity (4)
and the Jordan identity (10) is known as a (commutative)
Jordan algebra [2,3].  Usually, we choose V : = R n, n ≥
2, to denote the n-dimensional Euclidean space.  For the
special case with n = 1 the non-associativity in Eq. (9)
disappears and thus the resulting algebra is associative,
of which the numbers a + gb, with a, b ∈ R, have been
named the double numbers by Yaglom [11].

A g-BASED  LIE  ALGEBRA

Let us identify

      X → X: = Xs

X0
, (12)

and consider the following map:

      
M:X → M(X): =

X0In Xs

(Xs)t X0
. (13)

For each X we  not only assign a column matrix repre-
sentation X with order (n + 1) × 1 but also a matrix
representation M(X) with order (n + 1) × (n + 1).  Thus,
the product operation in Eq. (3) can be equivalently
written as

      
M(X)Y =

X0In Xs

(Xs)t X0
Ys

Y 0
= X0Ys + Y 0Xs

X0Y 0 + Xs ⋅ Ys
    (14)

under the correspondences: X ↔ M (X) and Y ↔ Y.  The
symbol ↔ signifies the two-way relation.

Let us investigate the matrix commutator of M(X)
and M(Y) by

[M(X), M(Y): = M(X)M(Y) − M(Y)M(X) =

    
Xs(Ys)t – Ys(Xs)t 0

0 0
.      (15)

Obviously, we have
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M(X) M(Y) ≠ M(Y) M(X),

which is different from the commutative property (4) of
the Jordan algebra.  Furthermore, using Eq. (15), we can
prove that for all X ∈ M  the corresponding M(X) ∈
R (n + 1) × (n + 1) form a Lie algebra, because of

[M(X), M(Y)], bilinear in M(X) and M(Y),      (16)

[M(X), M(Y)] = −[M(Y), M(X)], skew-symmetric,
(17)

[[M(X), M(Y)], M(Z)] + [[M(Z), M(X)], M(Y)]

+ [[M(Y), M(Z)], M(X)] = 0, the Jacobi identity.

(18)
Applying the commutator in Eq. (15) to Z, we

obtain

[M(X), M(Y)]Z = 
    Ys ⋅ ZsXs – Xs ⋅ ZsYs

0
,        (19)

from which and Eq. (9), we thus identify the following
two operations:

[M(X), M(Y)]Z ↔ [Y, Z, X]. (20)

Here, the non-associativity of the Jordan algebra im-
plies the non-commutativity of the Lie algebra, and vice
versa.

A g-BASED  DYNAMICAL  SYSTEM

An associator equation system has been defined in
[1],

  X = [Y, Z, U]. (21)

From Eqs. (12) and (20), the above system can be
re-expressed by

   X = [M(U), M(Y)]Z. (22)

Note that [M(U), M(Y)] is skew-symmetric, and also
that X0 is a constant, say X0 = 1, because the last element
on the right-hand side by Eq. (19) is zero.

We consider another dynamical system and give
its applications in the next section:

  X = SX. (23)

Let X = X0 + gXs and S = S0 + gSs and substitute them into
the above equation, yielding

      X0 + gXs = S 0X0 + Ss ⋅ Xs + g(S 0Xs + X0Ss).        (24)

Equating the scalar and vector parts, respectively, we
get

     X0 = S 0X0 + Ss ⋅ Xs, (25)

    Xs = S 0Xs + X0Ss. (26)

Let

    Q: = Xs

X0
(27)

be the nonhomogeneous coordinates.  Using Eqs. (25)
and (26), we obtain the governing equation for Q,

    Q = Ss – (Ss ⋅ Q)Q. (28)

Using the identification (12) and the map M(S) in
Eq. (13), Eq. (23) can also be written as

   X = M(S)X, (29)

where the control tensor M(S) is read as

     
M(S) =

S 0In Ss

(Ss)t S 0
. (30)

It is symmetric and is a Lie algebra as shown in Eqs.
(16)-(18).  Equation (29) can be combined to the
associator equation (22) but specialized to

   X = [M(y), M(Z)]X, (31)

where

     
[M(Y), M(Z)] =

Ys(Zs)t – Zs(Ys)t 0
0 0

(32)

obtained from Eq. (15) is skew-symmetric.  Thus, we
may introduce a differential equation system based on
the combination of the Jordan and Lie algebras:

  X = AX, (33)

where

A: = M(S) + [M(Y), M(Z)]=

    
S 0In + Ys(Zs)t – Zs(Ys)t Ss

(Ss)t S 0
. (34)

In terms of the nonhomogeneous coordinates Q
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defined in Eq. (27), from Eqs. (33) and (34) we obtain

Q = [Ys(Zs)t − Zs(Ys)t] Q + Ss − (Ss • Q)Q.    (35)

It is an extension of Eq. (28) to include the spin term [Ys

(Zs) − Zs(Ys)t]Q on the right-hand side.  The spin matrix
Ys(Zs)t − Zs(Ys)t has 2n parameters, but the general spin
matrix with order n × n has n(n − 1)/2 independent
parameters.  Let n(n − 1)/2 = 2n, we obtain n = 5.  It is
easy to see that the above A satisfies

Atg + gA = 2S0g, (36)

where

     
g: =

gss gs0
g0s g00

=
In 0n × 1

01 × n – 1
(37)

is the Minkowski metric (in the space-like convention).
The (n + 1)-dimensional vector space of homogeneous
coordinates X endowed with the Minkowski metric g is
referred to as Minkowski spacetime M n + 1.  Thus, the
single parameter subgroup generated by A has the fol-
lowing transformation action:

    
X(t) = exp

0

t
S 0(η)dη G(t)X(0), (38)

where 
   

0

t
S 0(η)dη  controls the dilation/contraction of

X, and G is an element of the proper orthochronous
Lorentz group SOo(n, 1) satisfying

GtgG = g, (39)

det G = 1, (40)

G0
0 > 0. (41)

Really, Zeeman [12] was able to show that
the causality assumption in the Minkowski spacetime
M n + 1 renders a composition of a translation, a dilation,
and a proper orthochronous Lorentz transformation.
Here we concentrate on the last two effects on material
modeling and denote the composition of dilation and
proper orthochronous Lorentz transformation by DSOo

(n, 1), whose projection denoted by PDSOo(n, 1) is thus
an internal symmetry group of the dynamical system
(35).  It deserves to note that the A in Eq. (33) may be
dependent on t as well as on X.  No matter what case it
is, we call such A the Lie algebra of dso(n, 1) if Eq. (36)
is fulfilled.

THE CONSTITUTIVE MODEL OF
VISCO-ELASTOPLASTICITY

The constitutive law of elastoplasticity of solid
materials proposed by Prandtl [13] and Reuss [14] can
be re-formulated and enlarged to take account of large
deformation (cf. Hong and Liu [9]) and viscosity effect:

D = De + Dp, (42)

    S° = 2GDe – 1
η s, (43)

    s γ p = 2τ yD
p, (44)

    s ≤ 2τ y, (45)

   γ p ≥ 0, (46)

    s γ p = 2τ y γ p, (47)

in which the three material constants, namely the shear
modulus G, the relaxation time η and the shear yield
stress τy, are determined experimentally and all are
assumed to be positive.  The second equation in the
above is really a generalization of the Maxwell type
viscoelasticity constitutive equation [15].  The relax-
ation time characterizes one of the viscoelastic proper-
ties of the material.  The bold-faced symbols D, De, Dp

and s stand for the deviatoric parts of the deformation
rate, elastic deformation rate, plastic deformation rate,
and Cauchy’s stress, respectively, all being symmetric
and traceless tensors, whereas   γ p  is a scalar, called the
equivalent shear plastic strain.  All the  D, De, Dp, s and

  γ p  are functions of time t.
A superimposed dot denotes (material) differen-

tiation with respect to time, that is d/dt, and a sur-
mounted circle “°” on s represents a Lie derivative of s
with respect to W, that is the Jaumann rate

   S° : = s – Ws + sW. (48)

Here W is the spin tensor, defined as the skew-symmet-
ric part of the velocity gradient.  A dot is placed between
two tensors to denote their Euclidean inner product, and
as usual the Euclidean norm of a tensor, s say, is
represented by    s : = s ⋅ s.

1. A Nonlinear Representation

We first analyze the constitutive model (42)-(47).
Substituting Eqs. (43), (44) and (48) into Eq. (42), we
obtain

    s – Ws + sW + 1
ηs + 1

γy
γ ps = 2GD, (49)
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where

   γy : =
τ y

G
(50)

is the shear yield strain.
Define

   
X0: = exp

γ p

γy
, (51)

and then Eq. (49) becomes

    d
dt

(X0s) – X0Ws + X0sW + 1
ηX0s = 2GX0D.           (52)

The inner product of s with Eq. (49) is

    
s ⋅ s +

γ p

γy
+ 1

η s ⋅ s = 2Gs ⋅ D. (53)

Hence

    
s = 2τ y ⇒ τ y γ p +

γyτ y
η = s ⋅ D. (54)

Recalling τy > 0 and η > 0, we have
    

s = 2τ y ⇒ {s ⋅ D >
γyτ y

η ⇔ γ p > 0}, (55)

which asserts that
    

{ s = 2τ y and s ⋅ D >
γyτ y

η } ⇒ γ p > 0. (56)

Conversely, if    γ p > 0, Eq. (47) assures     s = 2τ y ,
which together with Eq. (55) asserts that

    
γ p > 0 ⇒ { s = 2τ y and s ⋅ D >

γyτ y
η }. (57)

Statements (56) and (57) tell us that the yield
condition     s = 2τ y  and the straining condition s • D >
γyτy/η are sufficient and necessary for plasticity    γ p > 0.
In view of Eqs. (45), (46) and (54), the two statements
are logically equivalent to the following criteria:

    

γ p =

1
τ y

s ⋅ D –
γy
η > 0 if s = 2τ y and s ⋅ D >

γyτ y
η ,

0 if s < 2τ y or s ⋅ D ≤
γyτ y

η .

(58)
From Eqs. (49), (58) and (50) follows a two-phase
nonlinear system of differential equations:

    

s – Ws + sW =

1
η –

s ⋅ D
τ yγy

s – 1
ηs + 2GD if s = 2τ y

and s ⋅ D >
γyτ y

η ,

– 1
ηs + 2GD if s < 2τ y

or s ⋅ D ≤
γyτ y

η .

(59)

According to criteria (58) and the complementary
trios (45)-(47) and further to the two-phase system (59),
the model of visco-elastoplasticity has precisely two
phases: the on (or visco-elastoplastic) phase in which

   γ p > 0 and     s = 2τ y  and the off (or viscoelastic) phase
in  which    γ p = 0 and     s ≤ 2τ y .   In  the  visco-
elastoplastic phase the plasticity mechanism is on so
that the model exhibits visco-elastoplastic behavior,
while in the off phase the plasticity mechanism is off so
that the model responds viscoelastically.  Thus, Eq. (58)
is called the on-off switching criteria for the mechanism
of plasticity, and Eq. (59) is a nonlinear differential
representation of the constitutive model.

2. Stress Bound in the Viscoelastic Phase

Here we say something about the bound of the
stress in the viscoelastic phase.  At the first glance, we
may be confused by the two conditions     s < 2τ y  or s •

D ≤ γyτy/η listed in Eq. (59)2 for the viscoelasticity.
May we question that is there any loading process with
sufficiently small D such that s • D ≤ γyτy/η holds for any
given η and admissible initial stress to render the stress
over the bound after a long time elapsed, and thus
contradicts to the inequality (45)?  In order to tackle
this problem, let us take the inner product of s with Eq.
(59)2, yielding

    1
2

d
dt

s 2 + 1
η s 2 = 2Gs ⋅ D. (60)

Under the condition s • D ≤ γyτy/η we obtain

    d
dt

s 2 + 2
η s 2 ≤

4τ y
2

η . (61)

Integrating the avove inequality from ti to t gives

    s(t) 2 ≤ 2τ y
2 + ( s(t i)

2 – 2τ y
2)exp [

– 2
η (t – t i)].       (62)

We thus conclude that for any admissible initial stress
    s(t i) ≤ 2τ y  at an initial time ti, it should be

    s(t) 2 ≤ 2τ y
2, ∀t ≥ t i. (63)

Therefore, we not need to worry that the stress will
exceed the yield bound in the viscoelastic phase.  For
the considered model herein, the rate effect is included
to take account of.  If the value of ||D|| is too small such
that     D ≤ γy / ( 2η)  and thus s • D ≤ γyτy/η for all
admissible stress, then even the initial stress is chosen
to be located on the yield surface, the subsequent stress
responses are always in the fashion of viscoelasticity.
However, for more large D the visco-elastoplastic phase
may be initiated.  In the last subsection we will give a
calculating example of this sort.
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3. A Linear Representation

Due to the vanishing traces of the deviatoric ten-
sors s and D, i.e.,

s33 = −s11 − s22,  D33 = −D11 − D22, (64)

there only have five independent equations in Eq. (52).
To delete this redundancy, let

     

X = Xs

X0
=

X1

X2

X3

X4

X5

X0

: = X0

τ y

a 1s
11 + a 2s

22

a 3s
11 + a 4s

22

s 23

s 13

s 12

τ y

, (65)

where

   a 1: = sin (θ + π
3

), a 2: = sinθ, a 3: = cos (θ + π
3

), a 4: = cosθ,
(66)

with θ being any real number, and let

A0
s = (As

0)t, (67)

where

     

As
0 =

A1
0

A2
0

A3
0

A4
0

A5
0

: = 2
γy

a 1D 11 + a 2D 22

a 3D 11 + a 4D 22

D 23

D 13

D 12

. (68)

Thus, it is obvious that

     A0
sX

s = X0

γyτ y
s ⋅ D. (69)

Furthermore, it follows from Eqs. (51), (58)1 and (69)
that

     X0

X0
= 1

γyτ y
s ⋅ D – 1

η = 1
X0

A0
sX

s – 1
η . (70)

 Therefore, the on-off switching criteria (58) turn
out to be

     

X0 =
A0

sX
s – X0

η > 0 if XtgX = 0 and As
0X

s > X0

η ,

0 if XtgX < 0 or A0
sX

s ≤ X0

η ,

(71)

where

    
g =

gss gs0
g0s g00

=
I5 05 × 1

01 × 5 – 1
. (72)

The condition X tgX = 0 is used to replace the yield
condition ||s||2 =   2τ y

2, because of X0 > 0 and

    
XtgX = (X0)

2 s 2

2τ y
2

– 1 (73)

by Eqs. (65) and (72).  Moreover, the inequality (45) is
now transformed to the inequality XtgX ≤ 0.

Consequently, Eqs. (52) and (71) are combined
together as follows:

  X = AX, (74)

where
     

A =

As
s As

0

A0
s

– 1
η

if XtgX = 0 and A0
sX

s > X0

η ,

As
s As

0

01 × 5 0
if XtgX = 0 or A0

sX
s ≤ X0

η ,

(75)

in which
    

As
s: =

– 1
η 0 2a 2W 23 2a 1W 13 2(a 1 – a 2)W 12

0
– 1
η 2a 4W 23 2a 3W 13 2(a 3 – a 4)W 12

– 2a 2W 23 – 2a 4W 23
– 1
η – W 12 – W 13

– 2a 1W 13 – 2a 3W 13 W 12
– 1
η – W 23

2(a 2 – a 1)W 12 2(a 4 – a 3)W 12 W 13 W 23
– 1
η

(76)

After deleting the diagonal terms, As
s is skew-symmetric.

From Eqs. (72) and (74)-(76) it follows that

    1
2

d
dt

[(Xs)tgssX
s] = (Xs)t[As

sX
s + As

0X
0]

     =
– 1
η (Xs)tXs + X0A0

sX
s.

Thus, the on-off switching criteria (71) can be further
refined to

     

X0 =
A0

sX
s – X0

η > 0 if XtgX = 0 and d
dt

[ (Xs)tgssX
s] > 0,

0 if XtgX < 0 or d
dt

[ (Xs)tgssX
s] ≤ 0.

(77)

Hence in the augmented stress space what corresponds
to the yield condition     s = 2τ y  is the cone condition
XtgX = 0 and what corresponds to the straining condi-
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tion s • D > γyτy/η is the growing “spatial” coordinate
condition d[(Xs)tgssX

s]/dt > 0.
Note that Eq. (74) is a linear, irreducible, (5 + 1)-

dimensional representation of the constitutive model
(42)-(47), in which X and A are the augmented stress
vector and the control tensor, respectively.  The control
tensor A organizes the input information of the deviatoric
deformation rate tensor D (normalized with respect to
the shear yield strain γy/2), the spin tensor W, as well as
the relaxation time parameter η.  If Eq. (74) is viewed as
a matrix representation, the (5+1) × 1 matrix X contains
the contravariant components of the augmented stress
vector X, and the (5 + 1) × (5 + 1) matrix A contains the
mixed components of the control tensor A.

4. The Cone and the Discs

Here we study the properties of the augmented
stress space of X induced by the constitutive model
(42)-(47).  The model formulated in the deviatoric
stress space of s may be converted into a model in the
augmented stress space of X; the first five equations of
Eq. (74) and Eqs. (47), (45) and (46) thus become
successively

     I5 05 × 1

01 × 5 XtgX
X =

As
s As

05 × 1 0
X, (78)

XtgX ≤ 0, (79)

   X0 ≥ 0. (80)

The vector space of augmented stresses X endowed with
the Minkowski metric tensor g in Eq. (72) is referred to
as Minkowski spacetime and designated as M 5 + 1.

Thus, a deviatoric stress point s on the yield
hypersphere ||s|| =    2τ y  in Euclidean space E5 according
to Eq. (73) corresponds to an augmented stress point X
on the right circular cone {X | XtgX = 0} emanating from
X = 0 of Minkowski spacetime M 5 + 1, henceforth re-
ferred to as the cone, while an s within the yield
hypersphere corresponds to an X in the interior {X |
XtgX < 0} of the cone.  The exterior {X | XtgX > 0} of
the cone is uninhabitable since ||s|| =    2τ y  is forbidden
according to Eq. (45).  When X0 is frozen in the vis-
coelastic phase as indicated by Eq. (77)2, the augmented
stress X stays in the closed 5-disc D5 (i.e. closed 5-ball
B5) on the hyperplane X0 = constant in the space of (X1,
X2, X3, X4, X5, X0); the hyperplane is identified to be
Euclidean 5-space E 5, which is endowed with the Eu-
clidean metric I5.  In summary, the augmented stress X
either evolves on the cone when in the visco-elastoplastic
phase, or stays in the discs of simultaneity, which are

stacked up one by one in the interior of the cone and are
glued to the cone, when in the viscoelastic phase.  This
inspires us to remould the spacetime by removing the
interior of the cone and gluing (identifying) a continu-
ously infinite number of stacking Euclidean closed 5-
discs to the cone.  This surgery results in a composite
space endowed with the Minkowski metric (72) on the
cone and the Euclidean metric I5 on the closed discs.

5. PDSOo(5, 1) Symmetry in the Visco-elastoplastic Phase

The solution of Eq. (74) can be expressed in the
following formula for the transition from the augmented
stress X(t1) at time t1 to the augmented stress X(t) at
time t:

X(t) = exp[(t1 − t)/η][G(t)G−1(t1)]X(t1), (81)

in which G(t) is a transformation tensor satisfying

   G(t) = A'(t)G(t), (82)

G(0) = I6, (83)

where

   A' = A + 1
η I6 (84)

is the deviatoric part of A.
In what follows we concentrate on the visco-

elastoplastic phase to bring out internal symmetry in-
herent in the model.  Denote by Ion an open, maximal,
continuous time interval during which the mechanism
of plasticity is on exclusively.  From Eqs. (75)1, (76)
and (72) it is easy to verify that the control tensor A in
the visco-elastoplastic phase is a special case of Eq. (34)
with n = 5 and S0 = −1/η, satisfying

    Atg + gA =
– 2
η g. (85)

Hence, the corresponding transformation is a subgroup
of DSOo(5,1).

From Eq. (77)1,    X0 > 0 strictly when the mecha-
nism of plasticity is on; hence,

X0(t) > X0(t1),  ∀t > t1,  t, t1 ∈ Ion, (86)

which means that there exists future-pointing time-
orientation from the augmented stress X(t1) to X(t).
Moreover, such time-orientation is a causal one, be-
cause the augmented stress transition formula (81) and
inequality (86) establish a causality relation between
the two augmented stresses X(t1) and X(t) in the sense
that the preceding augmented stress X(t1) influences the



Journal of Marine Science and Technology, Vol. 9, No. 1 (2001)8

following augmented stress X(t) according to formula
(81).  Accordingly, the augmented stress X(t1) chrono-
logically and causally precedes the augmented stress
X(t).

We solve Eq. (39) for the inverse

G−1 = gGtg (87)

and partition G as

    
G =

Gs
s Gs

0

G0
s G 0

0

, (88)

where Gs
s, G

s
0 and G0

s are of order 5 × 5, 5 × 1 and 1 ×
5, respectively.  Thus, Eq. (81) is partitioned into the
following matrix equation:

     Xs(t)

X0(t)
= exp [(t 1 – t) / η]

    
Gs

s(t) (Gs
s)t(t 1) – Gs

0(t)(Gs
0)t(t 1) Gs

0(t)G 0
0(t 1) – Gs

s(t)G0
s(t 1)

G0
s(t)(Gs

s)t(t 1) – G 0
0(t)(Gs

0)t(t 1) G 0
0(t)G 0

0(t 1) – G0
s(t)G0

s(t 1)

    Xs(t 1)

X0(t 1)
, (89)

which is valid for the visco-elastoplastic phase.
How can one determine the deviatoric stress tensor

s(t) once he has the augmented stress vector X(t)?  From
Eq. (65) it follows that

     s 11

s 22

s 23

s 13

s 12

=
a 4 – a 2

– a 3 a 1

03 × 2

02 × 3

3
2

I3

2τy

3X0
Xs. (90)

This is indeed a projective realization of the response.
By this and the visco-elastoplastic phase transition for-
mula (89) one can map s(t1) to the current response s(t).

6. DSE(5) Symmetry in the Viscoelastic Phase

Contrary to Eq. (89) of the visco-elastoplastic
phase, the transition formula for the viscoelastic phase
is very simple.  To find it, recall that Eqs. (81)-(83) are
still applicable but with

    
G(t) =

R(t) T(t)
01 × 5 1

, (91)

where R and T are respectively of order 5 × 5 and 5 × 1
and governed by

   R = A'ssR,

   T = A'ssT +A's0,

where

    A'ss = As
s + 1

η I5 (92)

is the deviatoric part of As
s, which is given in Eq. (76),

and As
0 is given in Eq. (68).  Thus it is easy to show that

R ∈ SO(5), T ∈ T(5), and G ∈ SE(5); therefore, the
constitutive law in the viscoelastic phase has an internal
symmetry characterized by the group DSE(5), which is
the semi-direct product of the translation group T(5)
with the dilation and the proper rotation group DSO(5).

The inverse of Eq. (91) is given by

    
G– 1 = Rt – RtT

01 × 5 1
. (93)

Thus according to Eq. (81) we obtain

   Xs(t)

X0(t)
=

    
exp [(t 1 – t) /η]R(t)Rt(t 1) – exp [(t 1 – t) / η]R(t)Rt(t 1)T(t 1) + T(t)

01 × 5 1

   Xs(t 1)

X0(t 1)
(94)

which is valid for the viscoelastic phase.  In a similar
way the stress response in the viscoelastic phase can be
realized by invoking Eq. (90) and the viscoelastic phase
transition formula (94).

In summary the stress response is the projective
realization (90) of the visco-elastoplastic phase transi-
tion formula (89) or the viscoelastic phase transition
formula (94); switching between the two depends upon
the control tensor A and obeys the on-off switching
criteria (71).  The switching from a DSOo(5, 1) group in
the visco-elastoplastic phase to a DSE(5) group in the
viscoelastic phase indicates that internal symmetry
switches from one kind to another, and vice versa.  As
a result the constitutive model in the deviatoric stress
space of s has symmetry switching between group DSE
(5) acting on the closed 5-ball of admissible states and
the projective dilation and the proper orthochronous
Lorentz group PDSOo(5,1) acting on the yield
hypersphere.

7. A Consistency Scheme

For numerical calculation we first discretize Eq.
(81) as follows:
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Xn + 1 = exp[−∆t/η][G(tn + 1)G−1(tn)]Xn, (95)

where Xn denotes the value of X at the discrete time stop
tn and ∆t is the time increment, that is, ∆t = tn + 1 − tn.  The
simplest scheme for the approximation of G(tn + 1)G−1

(tn) is the so-called Cayley transform

    Cay(τAn
' ) : = (I6 – τAn

' )
– 1

(I6 + τAn
' )

    = [I6 + 2τ(I6 – τAn
' )

– 1
An

' ], (96)

where τ: = ∆t/2, and A' satisfying

(A')tg + gA' = 0 (97)

is a Lie algebra of the proper orthochronous Lorentz
group SOo(5, 1).

It is easy to check that the above transform     Cay(τAn
' )

preserves the properties (39)-(41) of the proper
orthochronous Lorentz group, i.e.,     Cay(τAn

' ) ∈ SOo(5,
1).  Therefore, the following transition formula

    Xn + 1 = exp [ – ∆t / η]Cay(τAn
' ) Xn (98)

may be called a group preserving scheme.  Obviously,
it implies that

    Xn + 1
t gXn + 1 = exp [ – 2∆t / η]Xn

t gXn. (99)

By Eq. (73) it follows that

    Xn
t gXn = 0 ⇒ Xn + 1

t gXn + 1 = 0 (100)

in the visco-elastoplastic phase, which says nothing but
for every time increment the point sn + 1 is located on the
yield hypersphere, i.e.,     sn + 1 = 2τ y , if     sn = 2τ y .  In
other words, the consistency condition is fulfilled ex-
actly for every time stop in the visco-elastoplastic phase.
This is what the conventional schemes of computational
plasticity desired and failed to achieve directly in the
stress space.  Therefore, the new numerical scheme may
be specifically called a consistency scheme.

Through some calculations the inverse of I6 − τA'
is found to be

     
(I6 – τA')– 1 =

B + cτ 2BAs
0A

0
sB cτBAs

0

cτA0
sB c

,

(101)

where

     B : = (I5 – τA'ss)
– 1, c : = 1

1 – τ 2A0
sBAs

0

. (102)

Substituting Eqs. (101), (84) and (75)1 into Eq. (98) we

obtain the discretized transition matrix in the visco-
elastoplastic phase,

    

Cay(τA') =

I5 + 2cτ 3BAs
0A

0
sBA'ss 2cτ 3BAs

0A
0
sBAs

0

+ 2τBA'ss + 2cτ 2BAs
0A

0
s + 2τBAs

0

2cτ 2A0
sBA'ss + 2cτA0

s 1 + 2cτ 2A0
sBAs

0

.

(103)

Substituting the above Cay(τA') with t = tn into Eq. (98)
we obtain the mapping formula in the visco-elastoplastic
phase.

The mapping in the viscoelastic phase is obtained
by Eqs. (98) and (75)2 as in the following:

     

Xn + 1 =
exp[

– ∆t
η ][I5 + 2τBA'ss] 2τ exp [

– ∆t
η ]BAs

0

01 × 5 1
Xn,

(104)

from which it is obvious that   Xn + 1
0 = Xn

0  in the viscoelas-
tic phase.  Once Xn is calculated at each time stop
formula (90) gives the value of the response sn at each
time stop.

8. Responses

In order to gain the insight of the visco-elastoplastic
behavior of material we apply the above numerical
scheme to calculate the responses under certain inputs
and initial conditions.  Let us first consider the simplest
case where both D and W are constant matrices.  The
material constants used in the calculations were G = 50,
000 MPa and τy = 500 MPa.  We applied three cycles,
each cycle consisting of constant D and W for one
second and then negative constant D and W for another
one second, with

  
D =

0.002 0.009 0.005
0.009 – 0.001 0.004
0.005 0.004 – 0.001

, W =
0 0.001 0.002

– 0.001 0 – 0.005
– 0.002 0.005 0

.

Figure 1 shows the responses for different η’s with
η = 0.5, 1, 5, where the initial stresses were taken to be
s11 = 50 MPa, s22 = 20 MPa, s23 = −100 MPa, s13 = −40
MPa, and s12 = 30 MPa.  For the case η = 0.5, the input
D is not large enough to render s • D > γyτy/η, such that
the responses are of viscoelasticity.  It can be seen that
the hysteretic loops for viscoelasticity have sharp tips at
two endpoints of the stress-strain curve, and that after
the first cycle the hysteresis loops are stabilized and
have almost the identical shape.  For the other two cases
η = 1 and η = 5 there occur several times the phase
transi t ions between viscoelast ici ty and visco-
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Fig. 1. The cyclic response curves (s11, e11), (s22, e22), (s23, e23), (s13, e13), and (s12, e12) under constant deformation rate and spin for different η’s with η =
0.5, 1, 5.
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Fig. 2. The cyclic response curves of s11 and s12 under constant spin and circular strain path with e11 = 0.005 cos ωt and e12 = 0.005 sin ωt for different η’s
with η = 0.5, 1, 5.
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elastoplasticity.  Therefore, in the stabilized hysteretic
loops the original sharp tips for η = 0.5 are now flat-
tened due to the incipience of visco-elastoplasticity.
Figure 2 shows the responses under the input D11 =
−0.005ω sin ωt 1/sec, D12 = 0.005ω cos ωt 1/sec, where
ω = 2π, and the other components of D are zeros.  W is
the same as above.  The initial stresses were taken to be
located on the yield surface with s11 = 300 MPa, s22 = 0
MPa, s23 = 0 MPa, s13 = 0 MPa, and s12 = 400 MPa.
However, for the cases η = 0.5 and 1 the responses are
of viscoelasticity after the time 0.668 sec and 1.704 sec,
respectively, as shown in the figures of the last row.  The
stress path (s11, s12) plotted in the figures at the third row
shows that in the viscoelastic phase the case η =
0.5 has smaller oscillating amplitude than τy, but the
case η = 1 nearly has the same oscillating amplitude τy

as the case η = 5 has.  The resulting hysteresis loops are
ellipses in the planes (s11, e11) and (s12, e12).  It reveals
that the larger the relaxation time η is, the thinner the
hysteresis loop will be.  For the cases η = 5 the responses
are of visco-elastoplasticity after the initial time.
It shows that the consistency scheme supplied a
completely faithful result of the consistency condition
(s11)2 + (s12)2 =  τ y

2 .  It can be seen that the hysteresis loops
for viscoelasticity are stabilized more faster than the
ones for the visco-elastoplasticity.  In the above figures
each component of the strain is calculated by the inte-
gration of each component of D.

CONCLUDING  REMARKS

We derived the algebraic foundation of dynamical
system (35). It is the composition of the g-based Jordan
and Lie algebras.  The group symmetry of this sort
dynamical system was proved to be the projection of the
dilation proper orthochronous Lorentz transformation
PDSO0(n,1).

Specialized to dimension n = 5, we investigated
internal symmetry inherent in the constitutive model of
visco-elastoplasticity with large deformation.  Even
though the constitutive equations as shown in Eq. (59)
are nonlinear in the deviatoric stress space of s, they can
be converted to a linear system   X = AX in the (5+1)-
dimensional augmented stress space of X.  In the aug-
mented stress space not only the nonlinearity of the
model is unfolded, but also an internal spacetime struc-
ture of the Minkowskian type is brought out.  The
control tensor A for the visco-elastoplastic phase was
proved to be an element of the real Lie algebra of the
dilation proper orthochronous Lorentz group DSOo(5,
1), and the fundamental solution of the system   X = AX
with the visco-elastoplastic phase A was shown to be an
element of the dilation proper orthochronous Lorentz
group.  To account for both the visco-elastoplastic and

viscoelastic phases we constructed a composite space
endowed with a Minkowskian metric on the cone but
with a Euclidean metric on each of the discs inside the
cone.  As a result we found that the visco-elastoplastic
model with large deformation possesses two kinds of
symmetry: DSE(5) in the viscoelastic phase and PDSOo

(5,1) in the visco-elastoplastic phase, and has symmetry
switching between the two depending on the control
input and the relaxation time.

Based on the symmetry study, a numerical scheme
which preserves the group properties for every time
increment was developed.  This group preserving scheme
may be specifically called a consistency scheme, since
it is capable, among other benefits derivable from the
group properties, of updating the stress point to be
automatically located on the yield surface at the end of
each time increment in the visco-elastoplastic phase
without any iterative calculations, that is, the consis-
tency condition is fulfilled automatically and exactly.
Since the consistency scheme is easy to implement
numerically and has high computational efficiency and
accuracy, it is highly recommended for engineering
applications.
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g數約旦代數與李代數在黏彈塑性組
成律的應用

劉　進　賢

國立臺灣海洋大學機械與輪機工程學系

摘　要

透過矩陣表示，本文證明文獻[1]的g數約旦代
數，在交換子乘積運算下構成g數李代數。據此我們
提出一個組合g數約旦代數與李代數的微分動態系
統，並證明該系統具有內部對稱群DSOo(n, 1)，其射
影群記為PDSOo(5, 1)。運用這個觀念我們推導大變
形黏彈塑性組成律的線性表示。根據不可約表示證明

黏彈塑相時其向量空間作用群為射影收縮正常保時勞

倫茲群，記為PDSOo(5, 1)；反之，黏彈相時其作用
群為收縮特殊歐氏群，記為DSE(5)。兩種對稱群之
間的切換和輸入路徑及鬆弛時間有關。根據對稱群性

質本文發展出在每一時間步都保證滿足一致性條件的

數值計算方法，此法保持本模式在黏彈塑相時的內部

對稱性PDSOo(5, 1)，因此使得應力點在每一時間步
都自動落在降伏面上，不需要額外的迭代計算。
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