
Volume 20 Issue 1 Article 13 

INTERACTIONS OF WAVES WITH AN ARRAY OF TANDEM PLACED INTERACTIONS OF WAVES WITH AN ARRAY OF TANDEM PLACED 
BOTTOM-MOUNTED CYLINDERS BOTTOM-MOUNTED CYLINDERS 

Baris Barlas 
Department of Naval Architecture & Marine Engineering, Istanbul Technical University, Istanbul, Turkey, 
barlas@itu.edu.tr 

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal 

 Part of the Engineering Commons 

Recommended Citation Recommended Citation 
Barlas, Baris (2012) "INTERACTIONS OF WAVES WITH AN ARRAY OF TANDEM PLACED BOTTOM-MOUNTED 
CYLINDERS," Journal of Marine Science and Technology: Vol. 20: Iss. 1, Article 13. 
DOI: 10.51400/2709-6998.2428 
Available at: https://jmstt.ntou.edu.tw/journal/vol20/iss1/13 

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been 
accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and 
Technology. 

https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/vol20
https://jmstt.ntou.edu.tw/journal/vol20/iss1
https://jmstt.ntou.edu.tw/journal/vol20/iss1/13
https://jmstt.ntou.edu.tw/journal?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol20%2Fiss1%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol20%2Fiss1%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jmstt.ntou.edu.tw/journal/vol20/iss1/13?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol20%2Fiss1%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages


INTERACTIONS OF WAVES WITH AN ARRAY OF TANDEM PLACED BOTTOM-INTERACTIONS OF WAVES WITH AN ARRAY OF TANDEM PLACED BOTTOM-
MOUNTED CYLINDERS MOUNTED CYLINDERS 

Acknowledgements Acknowledgements 
The author would like to thank his colleague Dr. Serdar Beji with his precious discussions. 

This research article is available in Journal of Marine Science and Technology: https://jmstt.ntou.edu.tw/journal/
vol20/iss1/13 

https://jmstt.ntou.edu.tw/journal/vol20/iss1/13
https://jmstt.ntou.edu.tw/journal/vol20/iss1/13


Journal of Marine Science and Technology, Vol. 20, No. 1, pp. 103-110 (2012) 103 

 

INTERACTIONS OF WAVES WITH AN ARRAY  
OF TANDEM PLACED BOTTOM-MOUNTED 

CYLINDERS 
 
 

Baris Barlas 

 
 

Key words: wave diffraction, cylinder array, boundary-fitted coordi- 
nates, wave forces on multiple cylinders. 

ABSTRACT 

Diffraction of water waves with an array of bottom- 
mounted cylinders of circular cross section is studied.  A  
vertically-integrated nonlinear dispersive wave model with 
inclusion of the wave breaking effect in a semi-empirical 
manner, in nonorthogonal curvilinear coordinate system is 
used for simulating linear and nonlinear wave forces on bot-
tom mounted tandem placed circular cylinders.  The wave 
model is in terms of the contravariant velocities.  The mesh 
required is generated based on staggered grids on the free- 
surface.  The matrix equation of the finite difference method is 
solved through an iterative approach at each time step.  For 
outgoing waves Sommerfeld’s first order radiation condition is 
used.  The free-surface elevation and hydrodynamic forces on 
each cylinder are calculated to illustrate the evolution of water 
waves and their interactions with cylinder arrays.  Compari-
sons of linear and nonlinear force coefficients and relevant 
discussion for two and three cylinder arrays are presented in 
closing. 

I. INTRODUCTION 

The study of hydrodynamic interaction among an array of 
bottom-mounted cylinders is an important issue and has re-
ceived significant interest in recent years.  This arrangement 
has a wide range of practical and engineering applications, 
such as oil platforms, TLPs, jetty legs and bridges.  The hy-
drodynamic interaction among neighboring components of 
bottom-mounted cylinders may notably affect the wave field, 
wave loads and wave run-up on the individual structures, 
which differ significantly from what they would experience in 
standing alone case.  As the relative size of structures in-

creases, the scattering of nonlinear waves becomes more im-
portant for the determination of wave run-up and wave forces 
on those structures.  The effect of a given incident wave on an 
individual structure is to produce a scattered wave which in 
turn is scattered by neighboring components.  If the cylinder 
diameter is sufficiently large compared with the wavelength 
and wave amplitude, then the scattering of nonlinear waves 
and the diffraction effects become more important. 

The computation of the wave diffraction due to an array of 
cylinders can be achieved either in the frequency domain or in 
the time domain.  One of the advantages of the time domain 
method over the frequency domain method is that it can cap-
ture the transient effects. 

Early works on the wave diffraction problem on vertical 
circular cylinders were associated with the estimation of wave 
forces, that can be calculated from the first order potential [9, 
15].  Su and Pan [18] investigated the cnoidal wave forces on 
cylinder arrays.  The scattering of water waves incident upon a 
group of four cylinders situated at the vertices of a square was 
solved by Linton and Evans [11]. 

Works mostly concentrated on the analysis of the wave 
diffraction problem on vertical circular cylinders [1, 8, 9, 11, 
13, 15]. 

For the nonlinear wave interactions with structures in 
shallow water, Wang et al. [24] and Wang and Jiang [22] 
presented a Boussinesq model in curvilinear coordinate sys-
tem.  Wang and Jiang [22] investigated solitary wave interac-
tions with an array of two vertical cylinders.  Carstens and 
Sayer [6] used linear potential theory to investigate the hy-
drodynamic interactions between two vertical cylinders in 
harmonic flow.  Maniar and Newman [12] studied the forces 
on linear arrays of bottom mounted circular cylinders aligned 
along an axis.  Wang and Ren  studied the scattering of cnoidal 
waves by cylinder arrays by using the generalized Boussinesq 
equations [23].  Utsunomiya and Eatock Taylor examined the 
trapped modes around a row of bottom-mounted vertical cir-
cular cylinders in a channel [19].  Williams and Li [25] in-
vestigates the interaction of water waves with arrays of bottom 
mounted circular cylinders under the assumptions of potential 
flow and linear wave theory.  The important aspect of this 
work is the porous sidewall of each cylinder.  Ohl et al. [17] 
investigated the diffraction of regular waves by arrays of  
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Fig. 1. Schematic diagram of the problem for tandem placed cylinder 

array used in the simulations. 
 
 

vertical bottom-mounted circular cylinders using theoretical, 
computational, and experimental methods. 

Yilmaz [26] studied the diffraction of water waves by an 
array of vertical cylinders of circular cross section.  The body 
boundary condition was satisfied for each cylinder considering 
the scattered wave field from other cylinders in an iterative 
way in order to take account for the first order interaction 
among the cylinders.  Walker and Eatock Taylor [20] investi-
gated the diffraction of regular waves by linear arrays of ver-
tical bottom mounted circular cylinders under the assumption 
of linear theory.  Mavrakos and Chatjigeorgiou [14] studied 
the second-order diffraction potential around a bottom-seated 
compound cylinder.  The solution method was based on a 
semi-analytical formulation for the double-frequency diffrac-
tion potentials.  Wang and Wu [21] employed a time domain 
method to analyze interactions of water waves by an array of  
two cylinders, four cylinders, ten cylinders and two arrays of 
eight cylinders. 

The present work investigates the scattering of water waves 
by an array of cylinders.  For this problem a vertically- 
integrated nonlinear dispersive wave model together with a 
semi-empirical wave breaking effect is used to compute the 
wave field and hydrodynamic wave loads.  The wave equa-
tions in nonorthogonal curvilinear coordinates are numeri- 
cally solved using finite difference approximations.  Only half 
of the circular cylinders about the symmetry axis is placed 
inside the physical domain.  A series of numerical simulations 
were carried out for linear sinusoidal and nonlinear cnoidal 
waves on tandem placed circular cylinders, having different 
spacing between cylinders and kr values to examine the effects 
of cylinder configuration on the wave profiles and wave 
forces. 
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Fig. 2. A typical grid arrangement in the physical domain (x, y) and com- 

putational domain (ξ, η) for tandem placed cylinder array. 
 

II. DESCRIPTION OF THE PROBLEM 

The present work considers the wave diffraction problem 
by an array of bottom-mounted piles of circular cross section 
cylinders.  Fig. 1 describes the side and plan views of the 
problem with coordinate system used.  The x and y are meas-
ured horizontally and z measured vertically upwards from the 
still water level.  The incident waves are traveling from the left 
at x = 0 along the y-axis.  The first cylinder is placed at 0.55L, 
to the right of the mid-domain, to delay the contaminating 
effects of the reflected waves traveling back to the incoming 
boundary.  S is the space between cylinders.  At the end of the 
domain (x = L) an appropriate radiation condition is utilized.  

The numerical solution is carried out using a boundary- 
fitted nonorthogonal curvilinear coordinate system.  Fig. 2 
shows a typical grid arrangement for the physical domain in 
the (x, y) coordinates and its counterpart in the computational 
domain in the (ξ,η) coordinates.  Due to the symmetry of the 
problem only half of the domain is discretized as given in 
Barlas and Beji [2]. 

III. FORMULATION OF THE PROBLEM 

1. Wave Model 

The wave model used in this work is the one-component 
form of the fully-dispersive vertically-integrated nonlinear 
model of Nadaoka et al. [16] as expressed in nonorthogonal 
curvilinear coordinates by Beji and Barlas [3] with newly 
insertion of a semi-empirical wave breaking effect.  The mo-
mentum equations in the ξ- and η- directions can be obtained 
by combining the x- and y- momentum equations: 

ξx(x-momentum) + ξy(y-momentum) = 

 ηx(x-momentum) + ηy(y-momentum) = 0 (1) 

In the curvilinear coordinate system the continuity, ξ-mo- 
mentum and η-momentum equations can be written as, 
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where r = Cg/Cp, g is the gravitational acceleration, ζ is the  
free surface elevation.  Cp, and Cg, denote respectively the 
phase and group velocities, computed according to the linear 
theory for a prescribed dominant frequency ω and a given 
local depth h.  The term αB is the emprical breaking term.  µ is 
the eddy viscosity, which is taken 10-4.  J is the Jacobian of the 
transformation.  ξx,ξy,ηx,ηy are the metrics of the grid system.  
Subscripts indicate partial differentiation with respect to the 
indicated variable in the curvilinear coordinates.  U* and V* 
are defined as, 

 * x yu v
U uy vx

Jη η
ξ ξ+

= − =  (10) 

 * x yu v
V uy vx

Jξ ξ
η η+

= − − =  (11) 

2. Breaking of Waves 

The one-component form of the fully-dispersive verti-
cally-integrated nonlinear model of Nadaoka et al. [16], like 
most of the other wave models in the literature, cannot model 
the wave overturning and breaking.  A wave overturns and 
then breaks at the wave crest when the skewness, a measure of 
crest-trough shape, exceeds a critical value and the orbital 
speed of the water particles at the wave crest becomes higher 
than the wave celerity.  An asymmetric wave profile starts to 
occur, then once the wave overturns and breaks, it continues to 
break until it reaches at some smaller stable level at which it 
reforms itself [7]. 

The proposed modified wave model predicts dissipation of 
energy due to breaking in an emprical manner as a numerical 
dissipation which is related to the mean velocity gradient that 
becomes large when the skewness becomes large.  Thus an 
energy dissipation model can be built into the equation by the 
addition of a wave breaking damping term αB, to simulate the 
wave breaking effect.  The magnitude of the coefficient α is 
infinitesimally small when breaking does not occur, but grows 
to a significant value when skewness becomes large and 
breaking starts.  Then the top of the wave crest was peeled off 
by using the damping term.  The wave model prevents the 
skewness from exceeding a critical value.  The evaluation of 
the skewness at each grid point can be computed from eleva-
tion at chosen neighboring grid locations.  Wave heights, 
hence, the skewness near cylinders grow to be very large. 

3. Boundary Conditions 

Three different boundary conditions are used: incoming 
boundary condition, wall and outgoing boundary conditions.  
At the incoming boundary the incident displacement ζ is 
specified as either linear sinusoidal or nonlinear cnoidal wave 
forms.  For sinusoidal waves the corresponding contravariant 
linear velocity is obtained from the linearized continuity equa- 
tion as 

 *
2( )p

Cg
U

J C

ζ=  (12) 

where C being the phase velocity of the incident wave and the 
phase velocity Cp is taken equal to C for linear simulations.  
For cnoidal waves the nonlinear velocity is obtained from the 
full form (nonlinear) of the continuity equation as 

 *
2

( )p

C
U

C
J

g

ζ

ζ
=

+
 (13) 

where C denoting the cnoidal wave celerity.  The wave model 
is in terms of the contravariant velocities therefore the wall 
condition is satisfied accurately and easily; it may be specified 
by taking the contravariant velocity component normal to the 
wall equal to zero.  At the outgoing boundary the well known  
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Fig. 3.  Staggered grid orientation for the variables on the free-surface. 

 
 

Sommerfeld’s radiation condition is employed.  For right go- 
ing waves, Sommerfeld’s equation in curvilinear coordinates 
in the positive ξ- direction can be given by 

* 2 2 * *

* *
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(14) 

4. Force Computation 

The wave-induced hydrodynamic force acting on each 
member of cylinder array is calculated by integrating the 
pressure distribution on the cylindrical surface.  The force in 
terms of the contravariant velocities is computed using 
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as given in Barlas and Beji [2]. 

IV. NUMERICAL METHOD 

The numerical procedure used here is the finite difference 
method, based on the method established by Beji and Barlas 
[3].  The staggered grid scheme given in Fig. 3 is utilized on 
the free surface.  Staggered grid arrangement has important 
advantages for depth integrated wave computations.  The  
time derivatives are centered at the mid-time level τ + ∆τ/2, τ 
being the current time and ∆τ the time step.  All the space de- 
rivatives are of second order.  The wave propagation direction 
is taken along the positive ξ- axis; therefore, ξ- momentum 

equation is solved first for U* then η- momentum equation is 
solved later for V* implicitly.  The free-surface elevation is 
then calculated explicitly from the continuity equation.  In the 
computational domain the space distance between the grids 
are taken unity, i.e. ∆ξ = ∆η = 1.  Since the computations 
involve certain approximations, an iterative procedure is 
needed.  The wave Courant number in the x-axis direction  
Cr = C∆τ/∆x should be close to 1 for better results.  The it-
eration criterion is 10-5: i.e. the relative error between two 
iteratively computed values of the variables at each grid point 
must be less than the specified criterion.  The computations is 
made on a Pentium 4 PC with 3.4GHz Intel CPU, windows 
Vista system and Fortran Power Station 4.0 complier. 

V. NUMERICAL RESULTS AND DISCUSSION 

For linear waves a sinusoidal wave form is specified as the 
incident wave.  The water depth is h = 1 m, the wavelength  
λ is 2π and accordingly period is T = 2.3 s for all linear 
simulations.  For nonlinear waves, in shallow water, the solu-
tion of the Korteweg and de Vries equation is the cnoidal 
waves [10].  For simulating the nonlinear wave propagation 
and wave interactions with tandem placed vertical cylinder 
array, the cnoidal waves are used as incident waves.  Using a 
series of the Jacobi elliptic functions with the selection of two 
parameters, wave steepness ε and elliptical modulus m, the 
physical wave quantities are calculated.  For nonlinear case the 
cylinder radius is computed from r = (kr)(λ/2π).  The water 
depth is h = 0.25 m.  The wavelength λ is computed from  

4 ( ) / 3 .hK m mλ ε=  The nondimensional parameter kr, 
which shows the degree of diffraction, is varied between  
0.5 and 2.5 for both linear and nonlinear simulations. 

An important feature of the interaction of waves about  
circular cylinders is the ocurance of vortex shedding at the 
well known Keulegan-Carpenter numbers above 3 [5].  The 
Keulegan-Carpenter number can be given as, 

 
UT

KC
D D

ελ= =  (16) 

where U is the partical velocity, T is the wave period, D is the 
diameter of cylinder, ε is the wave steepness, and λ is the  
wave length.  In the computations the maximum value of KC 
number is about 3, therefore no vortex shedding is expected. 

1. Two Cylinder Array 

The two cylinder array configuration is the simplest multi-
ple cylinder case.  The two cylinders arranged in tandem par-
allel to the wave direction.  The x-direction grid size ∆x ranges 
from λ/30 to λ/75 and the y-direction grid size ∆y ranges from 
λ/20 to λ/50.  The incident wave amplitude is a0 = 1, the 
number of grid points in x- and y-directions are 615 and 60, 
respectively.  The time step ∆τ = 0.1(= T/40) s.  Fig. 4 shows 
the three dimensional perspective view and Fig. 5 shows the 
contour plots of a fully developed sinusoidal wave field in  
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Fig. 4. Perspective view of a fully developed wave field at t = 75 T in 

presence of two circular cylinders for kr = 2.0, S/r = 4, λ= 2π. 
 
 

 

 
Fig. 5. Contours of a fully developed sinusoidal wave field at t = 75 T in 

presence of two circular cylinders for kr = 2.0, S/r = 4, λ = 2π. 
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Fig. 6. The computed nondimensional linear wave force on tandem 

placed circular cylinders for a duration of 25 periods between t = 
5 T and t = 30 T for kr = 2.0, S/r = 4, λ = 2π. 

 
 

presence of the two tandem placed cylinder array for kr = 2, 
S/r = 4, after 75 wave periods elapsed from the start. 

Fig. 6 depicts the time variation of the computed nondi-
mensional linear wave force on the frontal and rear cylinders 
for a duration of 25 periods between t = 5 T and t = 30 T for  
kr = 2, S/r = 4, λ = 2π.  The solid line represents wave forces 
on the frontal cylinder and the dotted line represents the wave 
forces on the rear cylinder.  Because of the shielding effect of 
the frontal cylinder the force on the rear cylinder is less than 
that on the frontal cylinder. 

The maximum linear wave force Fmax on two tandem cyl-
inders for different separation distance S/r, which is the dis-
tance between two cylinders, are presented in Fig. 7.  Nine 
cases of the separation distance between the edges of the  
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Fig. 7. The computed nondimensional maximum linear wave force ver-

sus separation distance S/r for two tandem cylinder array for kr = 
2, λ = 2π. 
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Fig. 8. The computed nondimensional maximum linear wave force ver-

sus kr for two tandem cylinder array for S/r = 4, T = 2.3, λ = 2π. 
 
 

 
Fig. 9. Perspective view of a fully developed cnoidal wave field at t = 108 

T in presence of two circular cylinders for ε = 0.3, m = 0.90, kr = 
1.0, S/r = 3, λ = 12. 

 
 

cylinders, ranging from S = 2r to 10r are investigated.  The 
radius of each cylinder is unity, the wave length λ = 2π.  The 
maximum force on the frontal cylinder shows an undulating 
variation for different S/r values.  The frontal cylinder ex-
periences a significant wave force when S/r = 3.  The com-
puted nondimensional maximum linear wave force versus kr 
for two tandem cylinder array for S/r = 4, T = 2.3, λ = 2π is 
plotted in Fig. 8. 

Fig. 9 gives the perspective view of a fully developed 
cnoidal wave field at t = 108 T in presence of two circular  
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Fig. 10. The computed nondimensional cnoidal wave force on tandem 

placed circular cylinders for a duration of 7 periods between t = 
18 T and t = 25 T for ε = 0.3, m = 0.90, kr = 1, S/r = 3, λ = 12. 
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Fig. 11. The computed nondimensional maximum nonlinear wave force 

versus separation distance S/r for two tandem cylinder array for 
ε = 0.3, m = 0.90, kr = 1, λ = 12. 

 
 

cylinders for ε = 0.3, m = 0.90, kr = 1.0, S/r = 3, λ = 12.  Fig. 10 
depicts the time variation of the cnoidal wave force on the 
frontal and rear cylinders for ε = 0.3, m = 0.9.  The solid line 
represents wave forces on the frontal cylinder and the dotted 
line represents the wave forces on the rear cylinder.  The force 
on the rear cylinder is again less than that on the frontal cyl-
inder, due to the shielding effect. 

The maximum wave force on two tandem cylinders for 
different separation distance S/r is presented in Fig. 11.  Again, 
nine cases of the separation distance between the edges of the 
cylinders, ranging from S = 2r to 10r are investigated.  The 
radius of each cylinder is unity, the wave length λ = 12, the ε = 
0.3.  The maximum force on the frontal cylinder shows a pe-
riodic variation for different S/r values.  The force on the rear 
cylinder shows less variation than that on the frontal cylinder 
for different S/r values.  The frontal cylinder is subject to a 
significant wave force when S/r = 4, the ratio of the maximum 
force between frontal and rear cylinders takes on a significant 
value for 3 < S/r < 6.  The computed nondimensional maxi-
mum nonlinear cnoidal wave force versus kr for two tandem 
cylinder array for S/r = 3, ε = 0.3, m = 0.90, kr = 1, λ = 12 is 
shown in Fig. 12. 

2. Three Cylinder Array 

As a final case, three cylinders are placed in tandem parallel  
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Fig. 12. The computed nondimensional maximum nonlinear cnoidal 

wave force versus kr for two tandem cylinder array for S/r = 4,  
ε = 0.3, m = 0.90, kr = 1, λ = 12. 

 
 

 
Fig. 13. Three dimensional perspective view of the elevation in presence 

of the three tandem cylinder array at t = 105 s (kr = 1, ε = 0.3, m = 
0.9, λ = 6.14 S/r = 3). 

 
 

to the wave direction.  The x-direction grid size ∆x ranges from 
λ/30 to λ/75 and the y-direction grid size ∆y ranges from λ/20 
to λ/50.  The incident wave amplitude is a0 = 0.34, the number 
of grid points in x- and y-directions are 1224 and 40, respec-
tively.  The time step ∆τ = 0.1(= T/40) s. 

Fig. 13 shows a closer three dimensional perspective view 
of a fully developed wave field in presence of the three tandem 
placed cylinder array for kr = 1, after 35 wave periods elapsed.  
The time variation of the wave force on the frontal, middle and 
rear cylinders for ε = 0.3 is shown in Fig. 14.  Again, due to the 
shielding effect of the frontal cylinder, the force on the rear 
and middle cylinders is less than that on the frontal one.  Time 
history of the wave force on the three cylinders, Fig. 14, seems 
all complicated due to both shielding and reflection effects.  
Fmax for the middle cylinder undulates appreciably within the 
S/r ranges investigated.  The force on three tandem cylinders 
for different separation distance S/r are presented in Fig. 15. 

The radius of each cylinder is unity, the wave length λ = 2π, 
the ε = 0.3.  The maximum forces on the frontal and rear 
cylinders show less variation compared to the maximum force  
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Fig. 14. The computed nondimensional wave force on the frontal, middle 

and rear cylinders for a duration of 16 wave periods.  kr = 1, ε = 
0.1, m = 0.9, λ = 12 m, T = 4.73 s, S/r = 5. 

 
 

on the middle cylinder.  The frontal cylinder experiences a 
significant wave force for S/r = 5, the middle cylinder for S/r = 
3, 5 and 8, finally the rear cylinder for S/r = 5, 9, and 10. 

VI. CONCLUSION 

The two-dimensional diffraction of linear and cnoidal 
waves by a group of tandem placed vertical cylinders and the 
forces acting on each cylinder are investigated numerically, 
using a vertically-integrated nonlinear dispersive wave model 
with insertion of a semi-empirical wave breaking effect, in 
nonorthogonal curvilinear coordinate system.  The use of con- 
travariant velocities provides important numerical advantages.  
Computations show that the interference between adjacent 
cylinders has a significant effect on the wave field and forces 
on each individual cylinder.  In accord with the previous works, 
larger wave forces are obtained for nonlinear cases compared 
to the linear cases.  The wave forces acting on the middle and 
rear cylinders reduced by the shielding effect.  For engineering 
applications, a series of numerical experiments can be per- 
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Fig. 15. The computed nondimensional maximum nonlinear wave force 

versus separation distance S/r for three tandem cylinder array 
for ε = 0.3, m = 0.90, kr = 1, λ = 12. 

 
 

formed for various wave periods and S/r values so that 
minimum wave forces for a given arrangement of cylinders 
can be determined.  Also, the diameters of the cylinders may 
be chosen differently to see the effects on wave forces.  For the 
future research, the proposed method can be easily employed 
to an array of elliptic and arbitrary cross-section cylinders.  By 
adding the current term in the equations, wave-current inter-
action problems can also be investigated. 
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