
Volume 22 Issue 5 Article 12 

LOAD MODELING STUDY USING MEASUREMENT DATA FOR TAIWAN LOAD MODELING STUDY USING MEASUREMENT DATA FOR TAIWAN 
POWER SYSTEM POWER SYSTEM 

Chung-Liang Chang 
Department of Electrical Engineering, National Taiwan Ocean University, Keelung, Taiwan, R.O.C, c47216@gmail.com 

Pei-Hwa Huang 
Department of Electrical Engineering, National Taiwan Ocean University, Keelung, Taiwan, R.O.C 

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Chang, Chung-Liang and Huang, Pei-Hwa (2014) "LOAD MODELING STUDY USING MEASUREMENT DATA FOR 
TAIWAN POWER SYSTEM," Journal of Marine Science and Technology: Vol. 22: Iss. 5, Article 12. 
DOI: 10.6119/JMST-014-0110-1 
Available at: https://jmstt.ntou.edu.tw/journal/vol22/iss5/12 

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been 
accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and 
Technology. 

https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/vol22
https://jmstt.ntou.edu.tw/journal/vol22/iss5
https://jmstt.ntou.edu.tw/journal/vol22/iss5/12
https://jmstt.ntou.edu.tw/journal?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol22%2Fiss5%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol22%2Fiss5%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jmstt.ntou.edu.tw/journal/vol22/iss5/12?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol22%2Fiss5%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages


LOAD MODELING STUDY USING MEASUREMENT DATA FOR TAIWAN POWER LOAD MODELING STUDY USING MEASUREMENT DATA FOR TAIWAN POWER 
SYSTEM SYSTEM 

Acknowledgements Acknowledgements 
The authors would like to acknowledge Mr. Pei Zhang and Ms. Shanshan Liu for their kind assistance with 
this research. 

This research article is available in Journal of Marine Science and Technology: https://jmstt.ntou.edu.tw/journal/
vol22/iss5/12 

https://jmstt.ntou.edu.tw/journal/vol22/iss5/12
https://jmstt.ntou.edu.tw/journal/vol22/iss5/12


Journal of Marine Science and Technology, Vol. 22, No. 5, pp. 643-649 (2014) 643 
DOI: 10.6119/JMST-014-0110-1 

 

LOAD MODELING STUDY USING MEASUREMENT  
DATA FOR TAIWAN POWER SYSTEM 

 
 

Chung-Liang Chang and Pei-Hwa Huang 

 
 

Key words: power system, load modeling, measurement data, load 
model parameter derivation. 

ABSTRACT 

The modern power system is an integrated complex dy-
namic system.  Due to its scale and complexity, the power 
system operation and control heavily rely on numerical 
simulations based on power system models which includes 
load models. It has been observed that using different load 
models in the power system simulation may produce quite 
different, and even contradictory simulation results.  Although 
the importance of load modeling on system dynamics has been 
well known, load modeling is still a very challenging problem.  
Thus, there remains a strong necessity for the development of 
an accurate dynamic load model for power system dynamic 
analysis because an inaccurate load model may mislead sys-
tem operators and planners to make incorrect decisions.  A 
Load Model Parameter Derivation (LMPD) program devel-
oped by EPRI has been used to investigate the measurement 
based approach of modeling loads. 

This paper presents the study results of deriving the load 
parameters by using measured data of the events from Taiwan 
Power system.  Thirteen disturbance events from over 500 
events in the Taiwan power system have been selected, and 
then the load model parameters are derived via the measure-
ment data of those events.  In this paper, the LMPD method is 
first introduced.  Then the procedures of data processing and 
event selection are briefly discussed.  Study results, which 
provide the static and dynamic parameters of load at each 
substation, and observations are presented and analyzed.  The 
final part is conclusions. 

I. INTRODUCTION 

The load model is one of the most important elements in 
power system simulation and it has been observed that dif-

ferent load models may produce different, and even contra-
dictory simulation results [3, 9].  Although the importance of 
load modeling on system dynamics has been well known, load 
modeling is still a very challenging problem [5-8, 10, 12].  The 
difficulties lie in the following facts: 

 
• There is a tremendously large number of loads connected to 

the power system at any given moment. 
• There is a tremendous diversity of the types of loads con-

nected to the power system at any given moment. 
• It is an insurmountable task to pursue “accurate” informa-

tion on the composition and mix of loads continuously. 
• Loads have temporal variations from hour to hour, day  

to day, and season to season and thus there cannot be an 
“all-purpose” load model. 
 
When it comes to modeling load, we need to model both 

static and dynamic properties of loads.  Generally, there are 
two ways to represent the static load: ZIP model and expo-
nential model.  ZIP model comprises three different parts: 
constant impedance (Z), constant current (I), and constant 
power (P).  On the other hand, dynamic loads consume 60% to 
70% of the total energy supplied by a power system.  There are 
two common approaches to represent the dynamic load: in-
duction motor and differential equation.  Industrial power 
engineers prefer to use ZIP model to represent the static load 
and induction motor to represent the dynamic load respec-
tively. For this combination allows physical representation of 
load characteristics. 

However, the ZIP + Induction Motor model, a typical load 
model structure, cannot capture some of actual complicated 
dynamic load behaviors because of the inherent inaccuracy.  
Thus, it is required to improve the structure of the dynamic 
load model and develop the corresponding optimization algo-
rithm to estimate the load model parameters in order to pro-
duce more precise system study results, and to avoid mis-
leading system operators and planners to make incorrect de-
cisions. 

Normally there are two ways to specify the parameters of 
the composite load models.  One is to use the default and 
typical parameters [3, 9].  Since the load model is the aggre-
gation of various load components, the selection of these 
typical parameters is not convincing.  The other way is to  
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Fig. 1.  Measurement based load modeling approach. 

 
 

identify the parameters from field measurements, which is 
widely used in measurement based load modeling practices  
[1, 2, 4, 8, 11, 12].  The main purpose of this effort is to come 
up with a systematic methodology for developing load models 
from system measurements. 

Based on the suggestions from the power industry, this 
work aims to enhance ZIP + Induction Motor load model to 
include LTC, feeder equivalent and load capacitance etc.  This 
enhancement in load model structure allows for more precise 
representation for load characteristics.  A Load Model Pa-
rameter Derivation (LMPD) program has also been developed 
to derive the load model parameters by using the measurement 
data [13]. 

Up until now a prototype method of load modeling has been 
developed and validated by the data collected from TVA, 
CenterPoint and Oncor.  In line with an effort of validating this 
LMPD algorithm for various systems, we applied LMPD 
algorithm to model the loads of the Taiwan Power system by 
using its collected measurement data [3, 9] and the study re-
sults are presented in this paper.  The LMPD approach process 
is shown in Fig. 1. 

This paper is organized as follows: I. Introduction; II. 
LMPD Method; III. Data Processing and Event Selecting; IV. 
Study Results; V. Conclusion. 

II. LMPD METHOD 

1. Load Model Structure 

The load model structure is illustrated in Fig. 2.  This model 
has the following characteristics: 

Input Data
time stamp

Vmag
Pm
Qm

Vang

Derived Data
Vmag_load
Pm_load
Qm_load

Rfeeder : Derived
Xfeeder : Derived

Feeder Equivalent
Rfdr, Xfdr

Transmission bus
230, 115, 69 kV

LTC

Optimized Param:
xls, xlr, rr, rs, xm, H 

Derived Param:
Tm (= Te)

Load Bus

M Induction Motor

ZIP

B2
Load Capacitance

  Optimized Param:
ap, bp, cp (Z, I, P coefficients of real

power)
aq, bq, cq (Z, I, P coefficients of reactive

power)
Derived Param:

Xcapacitor  
Fig. 2.  Single machine structure with distribution feeder.  

 
• For static load representation, the conventional ZIP load 

structure is selected.  Although there is no distinct advan-
tage in using a ZIP structure over an exponential, it is in-
tuitive to consider static loads to be one of constant im-
pedance or constant current or constant power. 

• The model uses an induction motor model to represent 
dynamic load characteristics.  The induction motor repre-
sentation is preferred over the differential equation because 
an induction motor model allows physical representation of 
electrical and mechanical dynamic characteristics. 

• The model represents feeder impedance explicitly. 
• The model includes the capacitor bank at the load bus.  This 

capacitor represents the total amount of shunt compensa-
tion on the feeder (in the form of substation capacitors as 
well as pole top capacitors on feeder).  Of course, accurate 
information should exist on the exact amount of shunt 
compensation in a substation, or on a feeder, and this can be 
modeled explicitly instead of being estimated in the model. 
 
The philosophy behind the load model structure is based on 

the assumption that the user has some information about the 
feeder to be modeled.  In particular, the user is expected to 
have some ideas as follows: 

 
• Feeder length; 
• Approximate voltage drop across the feeder; 
• Load composition (approximate mix of residential, com-

mercial and industrial customers) at the time of the event;  
• Status of capacitor banks at the time of the event. 

 
Here the “feeder” refers to either a single feeder or the ag-

gregate of multiple feeders, that is indeed under monitoring.  
The more information a user has about the feeder when the 
event occurs, the better the chances of finding a more accurate 
set of model parameters from the estimation process can be.  
While an effort has been made to get practical values of load 
model parameters for most of the cases, the use of a set of 
unreasonable input data may result in unrealistic parameters 
for the load model. 
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 rr Rotor Resistance bq I coefficient of Reactive Power 

 xm Magnetizing Reactance cq P coefficient of Reactive Power 

 H Inertia Constant

 pf Machine Power Factor   
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Real power
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LMPD Algorithm
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Feeder X/R

Machine power factor
Static load power factor
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Fig. 3.  Measurement based load modeling approach. 

 
 
As shown in Fig. 2, “Optimized” parameters are those which 

are adjusted during the nonlinear optimization process.  For 
these parameters, the user has to provide an initial guess or 
estimate.  “Derived” parameters are those which are not op-
timized but calculated either based on user input or during the 
optimization process.  “Input Data” is typically the voltage and 
current at the secondary side of the substation transformer 
where monitors are frequently located.  The “Derived Data” 
node is the bus where the actual load response is modeled.  
The complete set of input and output parameters required for 
the single machine structure is shown in Fig. 3. 

The optimization process is very sensitive to the initial 
guess and the bounds on the parameters to be optimized.  To 
obtain reasonable estimates for all of the load model parame-
ters, it is highly desirable to use a reasonable initial set of 
estimated parameters from which the optimization algorithm 
starts and is also essential while equipped with a reasonable set 
of bounds for each parameter.  Therefore, a thorough literature 
review has been conducted to come up with different sets of 
machine and static parameters that have been used in the ef-
forts of previous load modeling.  These parameters can be 
used as initial guesses.  Default values of lower and upper 
bounds are also based on practical considerations.  However, 
these can be changed by the user if needed. 

2. Load Model Parameter Estimation 

The overall procedure of the load model parameter estima-
tion process is shown in Fig. 4.  A least-square based nonlinear 
iterative optimization process has been adopted for this study.  
The basic procedure includes the following items: 

 
• Read input data – Read measurement data (instantaneous 

quantities). 
• Perform data conversion and synthesis – Perform data  

Measurement Data

Initialize model parameters

Select approriate parameter bounds

Distribution feeder estimation

Nonlinear Optimization Process

Tabular Display of 
Load 

Parameters and 
Convergences

Graphical display of
measurement input data
and dynamic response of

derive model

Satisfied with 
Results

No

Yes

Output

Data Processing

Events Selecting

Derive load
structure and associated parameters 

End

Start

Linear 
or 

Nonlinear

Linear

Nonlinear

 
Fig. 4.  Flowchart of LMPD algorithm. 
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 processing to obtain per-unit positive sequence quantities 
of voltage, real power and reactive power at each time step; 

• Conduct parameter initialization. 
• Provide initial estimates of dynamic and static parameters. 
• Assign appropriate lower and upper bounds of dynamic and 

static parameters. 
• Estimate distribution feeder impedances by using user- 

defined performance criteria – Undertake a simple iterative 
process to evaluate distribution feeder impedance based on 
the following user-defined performance data: 
– Voltage drop along the feeder,  
– X/R ratio of the feeder. 

• Initiate convergence parameter values (optimization toler-
ance). 

• Start optimization algorithm: 
– Derive the initial values of the 3 states variables (rotor 

q-axis flux, rotor d-axis flux, rotor speed); 
– Perform numerical integration by using a fixed time step 

(Runge Kutta 4 is adopted for this purpose); 
– Calculate P and Q by using initial values; 
– Compute objective function (function=[P Q]); 
– Solve nonlinear least squares problems using the 

Levenberg-Marquardt method; 
– Check for parameter convergences; 
– If it meets the convergence demands, the nonlinear op-

timization process is finished and the program goes to 
data output.  If not, then the initial parameter estimates 
are updated with the converged parameters and the 
process is repeated. 

• Tabulate the output of calculated load model composition 
and associated parameters. 
 
The procedure described above have been successfully 

implemented using MATLAB® and its Optimization Toolbox.  
This development tool, described here as LPMD program, was 
initially developed by EPRI [13]. 

III. DATA PROCESSING AND EVENT 
SELECTING 

1. Data Processing 

The data processing steps are shown in Fig. 5.  The process 
has been automated by using a script written in MATLAB® 
environment.  The important steps in data processing are 
stated below. 

The input data required for the LMPD algorithm includes 
pre-event, during event, and post-event data.  Typically, the 
following durations are used: 2-5 cycles of pre-event data 
(enough to initialize the load model to represent pre- 
disturbance conditions); entire duration of event data; 2-5 
cycles of post-event data. 

2. Event Selecting 

The LMPD algorithm requires a balanced 3-phase event for 
parameter estimation.  Balanced 3-phase events are the least 
common of all events in a power system.  Even if a balanced 
3-phase response is captured, the event may not be applicable 
because the location and performance of the conventional 
monitoring devices may be inappropriate or limited.  Unfor-
tunately, less than 1% of the total captured events are found to 
be useful in deriving parameters for load models.  Some of the 
criteria used for selecting suitable events are as follows: 

 
• The interests are not to collect fault data but in the response 

of loads to voltage sags occurring because of a balanced 
3-phase fault (voltage depression) in the system.  For the 
purposes of this study, an event was considered to be useful 
if voltage or current unbalance among three phases is less 
than 10%. 

• The event should not be a momentary interruption.  That is, 
voltage should not drop down to zero. 

• The voltage dip should last at least 4 cycles or longer.  
Typically, shorter duration sags will not cause as much 
perturbation as longer sags. 

• The voltage should drop down to at least 80% of the 
nominal during the sag (i.e. a depression of 20% from the 
pre-disturbance voltage).  Motor dynamics will be pro-
nounced for deeper voltage sags.  Therefore, deeper sags 
will allow for calculation of more realistic characteristics  
of dynamic loads.  Static loads will also be characterized 
better for deeper sags.  However, the event is not useful if 
some or the entire load drops off as a result of the deep 
voltage depression.  A drop in load (for example motor 
contactors, power electronic loads and discharge lighting 
typically will drop out at a certain voltage) is a step change 
in the input data which cannot be used in the LMPD algo-
rithm.  For this reason, slow voltage recovery events lasting 
several seconds are not useful in deriving parameters. 

• Pre-disturbance data (a few cycles) should be available.  
Pre-disturbance data is essential to establish steady state 
values of machine state variables and other load model 
parameters as well. 

3. Taiwan Power System Data Collection 

Taiwan Power provided various events recorded on 9 dif-
ferent sites.  Based on the selection criteria, 13 events were 
selected.  The events are selected from five sites - A (69kV), B 
(161kV), C (69kV), D (69kV) and E (161kV).  Sites A and B 
have four and six events that occurred in different time, re-
spectively.  These events are tabulated as Table 1. 
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Table 1.  Taiwan power system event list. 

Site 
Voltage Base 

(kV) 
Duration 

(sec) 
Date Time 

A 69 13 12/7/2006 19:20 
B 161 13 12/21/2006 8:40 
C 69 13 12/7/2006 19:20 
D 69 13 12/7/2006 19:21 
E 161 13 12/7/2006 19:21 

IV. STUDY RESULTS 

Thirteen balanced disturbance events out of over 500 events 
are selected to derive load model parameters using the meas-
urement data collected at the substations of Taiwan Power 
system.  The study results and key observations are summa-
rized in this section. 

1. Overall Optimization Approach 

The flowchart of the LMPD algorithm is shown in Fig. 4.  
The choice of initial estimates and the upper and lower bounds 
of the parameters are the most important factors in obtaining 
good fits and numerically reasonable parameters.  Since each 
substation has its own load characteristics, each substation 
needs a load model structure.  The initial estimates of load 
model parameters are documented.  Upper and lower bounds 
of each parameter are set as the same for all the events, which 
are also documented. 

The sampling rate of the measurement data is 3,840 Hz for 
every event.  Without knowing the voltage drops along the 
feeder, five voltage drops (1%, 2%, 3%, 4% and 5%) are tested 
in order to find an optimal solution.  The X/R ratios are set as 
2.0 for all the events.  According to the inputs from Taiwan 
Power system, the power factor of motor is set as 0.95 and the 
power factor of static load is set as 0.98 for all the events.  The 
constant torque is used to model the mechanical torque char-
acteristics for the motor load. 

2. Modeling Loads 

Based on the information provided by Taiwan Power sys-
tem, different dominating dynamic loads connected at each 
substation can be identified.  Hence, different initial values 
will be used to derive the load model parameters. 

After testing five initial voltage drops along the feeder (1%, 
2%, 3%, 4% and 5%) for each event respectively, we deter-
mine the voltage drop for each event according to the mini-
mum average active power and average reactive power mis-
match.  Then the parameters of dynamic model and static 
model are optimized and the parameters of the feeder are 
calculated.  

The optimized as well as the calculated results are pre-
sented in Table 2 for one event in each substation. 

After the load model parameters are obtained, we simulate 
the dynamic response of the derived load models.  Then, we 
compare the simulated results with the measured data, as 
shown in Fig. 6. 

Table 2. Summary of converged parameters for the meas- 
urement cases. 

Event A B C D E 

Time 
12/07/06 

19:20 
12/21/06 

8:40 
12/07/06 

19:20 
12/07/06 

19:21 
12/07/06 

19:21 

Model used 13 6 13 16 16 

Initial Guess 
for Feeder 

Voltage drop 
5% 1% 2% 1 % 4% 

Machine Parameters: 

Kp 0.80000 0.65957 0.59258 0.74107 0.80000 

Kq 0.86621 0.75822 0.70188 0.82246 0.86621 

rs 0.30000 0.26584 0.29527 0.24590 3.00000 

rr 0.05263 0.02662 0.04459 0.04598 0.04325 

xls 0.01000 0.08402 0.01393 0.02384 0.01000 

xlr 0.01000 0.08372 0.01346 0.03808 0.01000 

H 0.39160 1.71465 0.46267 1.27910 1.49992 

xm 5.0000 3.68772 4.00435 4.32090 5.00000 

Tm 0.29416 0.80419 0.41975 0.48666 0.18520 

Steady State 
Speed 

0.97835 0.93262 0.97074 0.96932 0.99055 

Time Con-
stant 

0.25253 0.37579 0.23903 0.25147 0.30727 

Motor pf 0.95000 0.95000 0.95000 0.95000 0.95000 

Static Load Parameters: 

ap 0.40391 0.26540 0.43269 0.39787 0.35364 

bp 0.30598 0.27498 0.31715 0.30144 0.25708 

cp 0.30775 0.28102 0.29485 0.30143 0.25702 

aq 0.02545 0.87483 0.24637 0.16107 0.94735 

bq 0.00000 0.99019 0.00000 0.00003 1.00000 

cq 0.00000 0.54259 0.00000 0.00081 1.00000 

Static pf 0.98 0.98 0.98 0.98 0.98 

Feeder Parameters: 

Rpu 0.08422 0.00572 0.02261 0.00989 0.12027 

Xpu 0.16844 0.01144 0.04521 0.01979 0.24054 

Xcapacitor -17.06961 -0.95890 -4.28370 -10.91977 -10.40497 

MVAR(pu) -0.05288 -1.01613 -0.21474 -0.09141 -0.09171 

Distribution 
Loss 

0.01674 0.02596 0.01848 0.00613 0.00779 

Utilization 
Voltage 

0.95010 0.98710 0.95910 0.99910 0.97683 

Voltage Drop 0.04990 0.00990 0.01990 0.00990 0.03317 

 
 
The average and maximum mismatches of the real power 

and reactive power between the simulated and measured re-
sponses are listed in Table 3. 

3. Factors Affecting Optimization Results 

It should be noticed that the user input data has significant 
effects on the accuracy of the estimated load model parameters 
optimized based on the given measurement data.  Since the 
LMPD optimization process finds a local minimum for the 
problem, there are certainly multiple solutions for optimizing  
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Fig. 6. Comparison of load response of the derived and measured load 

models. 
 
 

the load model parameters.  Therefore, it is required that sound 
engineering judgment should be applied during the selection 
of initial estimates and bounds for individual parameters.  All 
of the information such as the type of system (weak versus 
strong), the approximate location where the fault occurs, a 
sense of loading on the feeders, seasons and time of each day, 
the amount of shunt capacitors on the distribution feeder (i.e. 
the feeder is either over- or under-compensated) when the 
event occurred should be factored into the selection of initial 
estimates and bounds of individual parameters. 

Table 3. Summary of mismatches between simulated and 
measured responses. 

Event A1 B1 C D E 
Average  

mismatch of P 
0.28  
MW 

12.66 
MW 

0.14  
MW 

0.28  
MW 

0.099 
MW 

Maximum  
mismatch of P 

1.98  
MW 

80.43 
MW 

1.88  
MW 

1.98  
MW 

5.22  
MW 

Average  
mismatch of Q 

3.52 
MVar 

3.9  
MVar 

0.14 
MVar 

3.52 
MVar 

10.18 
MVar 

Maximum  
mismatch of Q 

8.83 
MVar 

77.73 
MVar 

1.45 
MVar 

8.83 
MVar 

13.31 
MVar 

 

V. CONCLUSION 

This paper, based on the application of  the LMPD program 
developed by EPRI, has presented the load modeling study 
using measurement data for Taiwan Power system. 

The objective of this study is to model the loads at five dif-
ferent substations (A-E) using the measurement data from 
Taiwan Power system with the load model structure devel-
oped by EPRI.  The study results provide the static and dy-
namic parameters for the load at each substation.  The dy-
namic responses of the calculated loads are compared with the 
measured responses of the actual local loads at each substation.  
It has been observed that not all simulated load responses 
closely match the actual measurement.  There are two reasons 
causing such mismatch.  One is that the load model structure 
may not be adequate enough to fully represent load charac-
teristics.  The other reason is that the initial value chosen for 
optimized process may not be close enough to the actual value. 

The load model and its derived parameters can be used for 
Taiwan Power system to engage in future studies. 
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