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ABSTRACT 

An investigation of dynamic offshore structure considering 
soil-structure interaction by a coupled approach based on 
boundary element and meshfree methods is presented.  The 
moving Kriging interpolation is used for generating the shape 
functions because of possessing the Kronecker delta property, 
which makes easier in imposing the essential boundary con-
ditions.  The governing elastodynamic equations are trans-
formed into a standard weak formulation.  It is then discretized 
into a meshfree system of time-dependent equations, which 
are solved by the standard implicit Newmark time integration 
scheme.  Numerical examples illustrating the applicability and 
effectiveness of the proposed method are presented and dis-
cussed in details.  A two dimensional plane strain offshore- 
foundation model has been used for the time history analysis 
to compute the stresses and displacements against earthquake 
and wave loading considering the effect of soil-structure in-
teraction.  As a consequence, it is found that the method is very 
efficient and accurate for dynamic analysis compared with 
those of other conventional methods. 

I. INTRODUCTION 

The analysis of structural dynamics problems is of great 
importance in the field of structural mechanics and computa-
tional mechanics.  Generally, the dynamic analysis needs more 
efforts in modeling because of acting of many different con-
ditions of complicated external loadings than the static one.  

To find an exact solution to the class of dynamic problems 
usually is a hard way and in principle it could be reachable 
only with a simple loading condition and geometrical con-
figuration.  Due to many requirements of engineering appli-
cations in reality, such a task of finding a solution analytically 
is generally difficult and often impossible.  Therefore, nu-
merical computational methods emerge as an alternative way 
in finding an approximate solution.  The finite element method 
(FEM), e.g. see [3, 16], formed into that issue and becomes the 
most popular numerical tool for dealing with these problems.  
The necessity of such numerical computational methods is 
nowadays unavoidable. 

In the past two decades, the so-called meshfree or meshless 
methods, e.g. see [1, 5, 21], have emerged alternatively, where 
a set of scattered ‘‘nodes’’ in the domain is used instead of a  
set of ‘‘elements’’ or ‘‘mesh’’ as in the FEM.  No meshing is 
generally required in meshfree methods.  Note that the mesh-
ing here means different from the concept of background cells 
which are usually needed for performing the domain integra-
tions.  There is another concept of ‘‘truly’’ meshfree or meshless 
methods, in which no meshing at all including the background 
cells for the domain integrations is required, e.g. see [1].  In 
particular, the last author has developed the meshless local 
Petrov-Galekin (MLPG) method for analysis of static, dy-
namic and crack problems of nonhomogeneous, orthotropic, 
functionally graded materials as well as Reissner-Mindlin and 
laminated plates.  Recently, an effective method by substan-
tially adding an enrichment function into the traditional finite 
element approximation function; the extended finite element 
method (X-FEM), which aims at modeling of the discontinuity.  
The present work belongs to the meshfree scheme, and a novel 
meshfree method based on a combination of the classical ele-
mentfree Galerkin (EFG) method [5] and the moving Kriging 
(MK) interpolation is further developed for analysis of struc-
tural dynamics problems.  Previously, the present method has 
been developed by the author for static analysis [9] and re-
cently [8] for free vibration analysis of Kirchhoff plates.  The 
MK interpolation-based meshfree method was first introduced 
by Gu [13] and its application to solid and structural me-
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chanics problems is still young and more potential.  Gu [13] 
successfully demonstrated its applicability for solving a  
simple problem of steady-state heat conduction.  Lam et al. 
[18] introduced an alternative approach, a Local Kriging 
(LoKriging) method to two-dimensional solid mechanics 
problems, where a local weak-form of the governing partial 
differential equations was appplied.  Li et al. [20] further 
developed the LoKriging method for structural dynamics 
analysis.  Furthermore, Tongsuk et al. [28, 29] and Sayakoum-
mane et al. [27] recently illustrated the applicability of the 
method to investigations of solid mechanics problems and 
shell structures, respectively.  Imposing essential boundary 
conditions is a key issue in meshfree methods because of the 
lack of the Kronecker delta property and, therefore, the im-
position of prescribed values is not as straightforward as in the 
FEM.  Thus, many special techniques have been proposed to 
avoid such difficulty by various ways e.g. Lagrange multipli-
ers [5], penalty method [21], or coupling with the FEM [5, 27], 
etc.  Due to the possession of the Kronecker delta property,  
the present method is hence capable of getting rid of such 
drawback of enforcing the essential boundary conditions.  Note 
here that a majority of meshfree methods has been developed 
by displacement-based approaches and, in contrast, The author 
have also implemented an equilibrium-based meshfree method 
for elastostatic problems where a stress-based approach is 
taken into consideration, see [7, 10].  With respect to the linear 
structural dynamics analysis in two dimensions, a variety of 
studies has been reported so far.  Gu et al. [14] successfully 
used the meshless local Petrov-Galerkin (MLPG) method for 
free and forced vibration analyses for solids, while in a similar 
manner Hua Li et al. [20] developed the LoKriging, Dai and 
Liu [12] proposed the smoothed finite element method 
(SFEM), Gu and Liu [15] presented a meshfree weak-strong 
form (MWS) approach.  As mentioned above, the proposed 
method has a significant advantage in the treatment of the 
boundary conditions, which is easier than the classical EFG.  
This present work essentially makes use of that good feature to 
structural dynamics analysis.  At the standing point of view 
and to the best knowledge of the authors, such a task has not 
yet been carried out while this work is being reported.  The 
paper is organized as follows.  The moving Kriging shape 
function is introduced in the second section.  The governing 
equations and their discretization of elastodynamic problems 
considering soil-structure interaction will then be presented in 
Section 3.  In Section 4, the coupled MKEFG-BEM is intro-
duced in detail.  In Section 5, several studies have been carried 
out on the seismic responses of offshore structures.  Wolf [31] 
first presented the direct method of soil-structure interaction 
analysis.  Using this method the soil region near the structure 
along with the structure is modeled directly and he idealized 
soil-structure system was analyzed in a single step.  Bode [6] 
presented a pure time domain approach is developed for ana-
lyzing general soil-structure interaction based on transient 
Green’s functions.  A zero mean ergodic Gaussian process of 
finite duration [24] or Kanai-Tajimi power spectrum [4, 33] 

was used to determine horizontal ground acceleration due to 
earthquakes.  Two primary techniques can be used to analyze 
the structure-foundation system and its characteristics, direct 
and substructure methods, both of which are outlined by Wolf 
[32].  Aydinoglu [2] developed mathematical formulations for 
both methods.  Three sub-schemes have been developed for 
the dynamic interactions of soil and pile groups on the seabed: 
the equivalent single pile scheme, the elasticity scheme, and 
the general threedimensional load transfer scheme.  Refer-
ences for these methods can be found in Park et al. [23].  
Loads on the foundation due to earthquakes involve uncer-
tainties when the dynamic characteristics are determined using 
time histories of the data.  Thus, for accurate dynamic struc-
ture response, uncertain parameters such as seismic motions 
and shearwave velocities of soil may be considered using the 
Monte Carlo Simulation (MCS) method, which is an efficient 
way to detect uncertainties.  Several studies of jacket struc-
tures have been reported regarding reliability evaluation of 
uncertain seismic motions, e.g., [17].  Numerical examples for 
free and forced vibration analyses are investigated and dis-
cussed in details.  Finally, some conclusions from this study 
are given in Section 6. 

II. THE MOVING KRIGING SHAPE  
FUNCTION 

Essentially, the moving Kriging (MK) interpolation tech-
nique is similar to the moving least square (MLS) approxi-
mation.  In order to approximate the distribution function u(xi) 
within a sub-domain Ωx ⊆ Ω, this function can be interpolated 
based on all nodal values xi(i ∈2 [1,nc]) within the sub-domain, 
with n being the total number of the nodes in Ωx.  The MK 
interpolation uh(x), ∀x ∈ Ωx is frequently defined as follows  
[9, 13, 28, 29]. 

 ( ) ( ) ( ) ( )h T Tu x p x A r x B u x = +   (1) 

or in a shorter form of 

 ( ) ( ) ( )
n

h
I I

I

u x x u x uφ= = Φ∑  (2) 

where 1 2[ ( )   ( )     ( ) ]T
n u u x u x u x= � and ( )I xφ  is the MK 

shape function and define by 

 ( ) ( ) ( ) ( )
m n

I j jI k kI
j k

x x p x A r x BφΦ = = +∑ ∑  (3) 

The matrixes A and B are determined by 

1 1 1( )T TA P R P P R− − −=  

1( )B R I PA−= −  (4) 
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where, I is an unit matrix and the vector p(x) is the polynomial 
with m basis functions 

 { }1 2( ) ( )  ( )    ( )
T

mp x p x p x p X= �  (5) 

The matrix P has size n × m and represents the collected 
values of the polynomial basis (5) as 

 

1 1 2 1 1

1 2 2 2 2

1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

m

m

n n m n

p x p x p x

p x p x p x
P

p x p x p x

 
 
 =
 
 
 

�

�

� � � �

�

 (6) 

and r(x) in (1) is 

 { }1 2( ) ( , )  ( , )    ( , )nr x R x x R x x R x x= �  (7) 

where R(xi, xj) is the correlation function between any pair of 
the n nodes xi and xj, and it is belong to the covariance of  
the field value u(x): R(xi, xj) = cov [u(xi) u(xj)] and R(xi, x) = 
cov [u(xi) u(x)].  The correlation matrix R[R(xi, xj)]nxn is ex-
plicitly given by 

 

1 1 2 1 1

1 2 2 2 2

1 2

( ) ( ) ( )

( ) ( ) ( )
( , )

( ) ( ) ( )

m

m
i j

n n m n

p x p x p x

p x p x p x
R R x x

p x p x p x

 
 
   =   
 
 

�

�

� � � �

�

 (8) 

Many different correlation functions can be used for R but 
the Gaussian function with a correlation parameter θ is often 
and widely used to best fit the model 

 
2

( , ) ijr
i jR x x e

θ−=  (9) 

where i jij x xr −= , and θ > 0 is a correlation parameter.  The 

correlation parameter has a significant effect on the solution.  
In this work, the quadratic basis functions pT(x) = [1  x  y  x2   
y2  xy] are used for all numerical computations.  Furthermore, 
the MK shape function in one-dimension and its first-order 
derivatives used in the dynamic analysis are presented in  
Fig. 1.  One of the most important features in meshfree 
methods is the concept of the influence domain where an 
influence domain radius is defined to determine the number of 
scattered nodes within an interpolated domain of interest.  In 
fact, no exact rules can be derived appropriately to all types of 
nodal distributions.  The accuracy of the method depends on 
the number of nodes inside the support domain of the interest 
point.  Therefore, the size of the support domain should be 
chosen by analysts somehow to ensure the convergence of  
the considered problems.  It might also be found in the same  
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Fig. 1. The MK shape function (top-left), second-order derivatives cor-

responding to xx-directions (top-right), yy (bottom-left) and xy 
(bottom-right) with pT(x) = [1  x  y  x2  y2  xy]. 

 
 

manner as in [1, 21].  Often, the following formula is em-
ployed to compute the size of the support domain. 

 m cd dα=  (10) 

where dc is a characteristic length regarding the nodal spacing 
close to the point of interest, while a stands for a scaling factor 
shows in Fig. 2.  Other features related to the method can be 
found in [9, 13, 28, 29] for more details. 

III. MESHFREE ELASTODYNAMIC 
FORMULATION 

1. Discrete Governing Equations 

Let us consider a deformable body occupying a planar 
linear elastic domain Ω in a two-dimensional configuration 
bounded by Γ subjected to the body force bi acting on the 
domain.  The strong form of the initial-boundary value prob-
lems for small displacement elastodynamics with damping can 
be written in the form 

 ,     i i ij j iu cu b inρ σ+ = + Ω�� �  (11) 

where ρ stands for the mass density, c is the damping coeffi-
cient, iu�� and iu� are accelerations and velocities, and ui speci- 

fies the stress tensor corresponding to the displacement field 
σij, respectively.  The corresponding boundary conditions are 
given as 

 i iu u=  on the essential boundary Γn (12) 

 i ij j it n tσ= =  on the natural boundary Γn (13) 

with iu and it  are the prescribed displacements and tractions,  
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Fig. 2. Nodes whose influence domains cover the one are to be used for 

construction of shape functions. 
 
 

respectively, and the initial conditions are defined by 

 0 0( , ) ( ),  u x t u x x= ∈Ω  (14) 

 0 0( , ) ( ),  u x t v x x= ∈Ω�  (15) 

with u0 and v0 being the initial displacements and velocities at 
the initial time t0, respectively, and nj standing for the unit 
outward normal to the boundary Γ = Γu ∪ Γt.  By using the 
principle of virtual work, the variational formulation of the 
initial-boundary value problems of (11) involving the inertial 
and damping forces can be written as [3, 12, 16] 

[ ]T 0
t

T Td u b u cu d u tdδε σ δ ρ δ
Ω Ω Γ

Ω − − − Ω − Γ =∫ ∫ ∫�� �  (16) 

In the meshfree method, the approximation (2) is utilized to 
calculate the displacements uh(x) for a typical point x.  The 
discretizedform of (16) using the meshfree procedure based on 
the approximation (2) can be written as 

 M u Cu Ku f+ + =�� �  (17) 

where u is known as the vector of the general nodal dis-
placements, M, C, K and f stand for the matrixes of mass, 

damping and stiffness and force vector, respectively.  They are 
defined as follows 

 T T
IJ I J IJ I JM d C c dρ

Ω Ω
= Φ Φ Ω = Φ Φ Ω∫ ∫  (18) 

 
t

T T T
IJ I J I I I I IK B DB d f b d t d

Ω Ω Γ
= Ω = Φ Ω + Φ Γ∫ ∫ ∫  (19) 

where c in (18) is the damping coefficient, Φ is the MK shape 
function defined in (3), the elastic matrix D and the displace- 
ment gradient matrix B in (19) are given, respectively, by 

 
( )

( )2

1 0

1 0
 

1 1
0 0

2

E
D plane stress

ν
ν

ν ν

 
 
 =
 − −
 
 

 (20) 

 
,

,

, ,

0

0
I x

I I y

I y I x

B

φ
φ

φ φ

 
 =  
 
 

 (21) 

2. Free Vibration Analysis 

For the free vibration analysis, the damping and the exter-
nal forces are not taken into account in the system.  Then, (17) 
can be reduced to a system of homogeneous equations as [16] 

 0Mu Ku+ =��  (22) 

A general solution of such a homogeneous equation system 
can be written as 

 i tu ue ω=  (23) 

where i is the imaginary unit, t indicates time, u  is the ei-
genvector and ω is natural frequency or eigenfrequency.  
Substitution of (22) into (21) leads to the following eigenvalue 
equation for the natural frequency ω 

 2( ) 0K M uω− =  (24) 

The natural frequencies and their corresponding mode 
shapes of a structure are often referred to as the dynamic 
characteristics of the structure. 

3. Forced Vibration Analysis 

For the forced vibration analysis, the approximation func-
tion (2) is a function of both space and time.  For the dis-
placements, velocities and accelerations at time t + ∆t, the 
dynamic equilibrium equations or equations of motion pre-
sented in (17) are also considered at time t + ∆t as follows 
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 t t t t t t t tMu Cu Ku f+∆ +∆ +∆ +∆+ + =�� �  (25) 

There are many different methods available to solve the 
second order time dependent problems such as Houbolt, Wil-
son, Newmark, Crank-Nicholson, etc. [3, 12].  In this study, the 
Newmark time integration scheme is adopted to solve the 
equations of motion expressed in (25) at time step t + ∆t.  The 
Newmark’s β scheme can be given in the form [3, 16] 

( )1 1 1
1

2t t t t t t tu u u u u
t tβ β β+∆ +∆

 
= − − − − ∆ ∆  

�� � ��  

( )1t t t t t tu u u u tγ γ+∆ +∆ = + − + ∆ � � ��  (26) 

By substituting both (26) into (25) one can obtain the dy-
namic responses at time t + ∆t.  Since the Newmark’s β time 
integration scheme is an implicit method, the initial conditions 
of the state at 0 0 0 0( , , )t t u u u= � �� are thus assumed to be known 

and the new state at 1 0 1 1 1( , , )t t t u u u= + ∆ � ��  is needed to be de-

termined correspondingly.  In addition, the choice of γ  = 0.5 
and β = 0.25, unconditionally guarantees the stability of the 
Newmark’s β scheme with γ  ≥ 0.5 and β  ≥ 0.25 (γ  + 0.5)2. 

4. Mathematical Model of Coupled Offshore  
Structure-Soil System 

In offshore structure-soil interaction problems, the founda-
tion and the structure do not vibrate as separate systems under 
external excitations, rather they act together in a coupled way.  
Therefore, these problems have to be dealt in a coupled way.  
The most common SSI approach used is based on the ‘‘added 
motion’’ formulation.  This formulation is mathematically sim-
ple, theoretically correct, and is easy to automate and is used 
with in a general linear structural analysis program.  In addi-
tion, the formulation is valid for free-field motions caused by 
earthquake waves generated from all sources.  The method 
requires that the free-field motions at the base of the structure 
be calculated before the SSI analysis.  To develop the funda-
mental SSI dynamic equilibrium equations, the soil-structure 
system, as shown in Fig. 3, is considered.  The absolute dis-
placements of the structure are considered to be the sum of  
two parts, viz.  free field displacements and added part of the 
displacements.  Free field displacement is found out by ana-
lyzing the foundation domain with no structure present on it 
against the earthquake forces.  The added part of the displace-
ment is found out by carrying out coupled soil-structure inter-
action model.  The SSI model here is divided into three sets of 
node points, viz. the common nodes at the interface of the 
structure and soil are identified with the subscript ‘‘c’’ (combine); 
the nodes with in the structure are with ‘‘s’’ (structure) and the 
nodes with in the foundation are with ‘‘f’’ (foundation).  From 
the direct stiffness approach in structural analysis, the dynamic 
force equilibrium of the system is given in terms of the absolute 
displacements, U, by the following sub-matrix equation: 
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Fig. 3.  Soil-structure interaction model. 
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 (27) 

Where the mass and stiffness at the contact nodes are the 
sum of the contributions from the structure (s) and foundation 
(f), and are given by 

( ) ( ) ( ) ( ) ( ) ( )      s f s f s f
cc cc cc cc cc cc cc cc ccM M M C C C K K K= + = + = +  (28) 

In order to solve the coupled soil-structure interaction prob-
lem, we would require to solve (27).  Having solved (27) using 
Newmark’s β integration method, one would obtain the abso-
lute displacements, velocities and accelerations of the coupled 
SSI problem.  To avoid solving the SSI problem directly, the 
dynamic response of the foundation without the structure is 
calculated.  The free-field solution is designated by the free- 
field displacements v, velocities v�  and accelerations v�� .  Here, 

gU��  is the ground acceleration vector.  By a simple change of 
variables, it becomes possible to express the absolute dis-
placements U, velocities U�  and accelerations U��  in terms of 
displacements u, relative to the free-field displacements v.  Or, 
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  (29) 
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After replacing the values of, and from (29), (27) is ex-
pressed as 
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where 
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This is a numerically cumbersome approach; hence, an al-
ternative approach is necessary to formulate the solution di-
rectly in terms of the absolute displacements of the structure.  
Since the analysis is now for the foundation part only (free 
field analysis), hence the corresponding values of the dis-
placement, velocity and acceleration for the structural part is 
taken as zero.  This involves the introduction of the following 
change of variables: 

0 0
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In order to calculate the free field displacements v, only 
foundation domain is solved by considering no structure is 
present on it.  The foundation domain is subjected to earth-
quake motion and the free-field displacement for the common 
and other foundation nodes are obtained. 

cc cf c cc cf c cc cf c
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After obtaining the free field response (i.e. v, v�  and v�� ) the 
interaction force R is calculated using (35) in the following 
simplified manner: 
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cc

ss sc ss sc
s

cs c cs cc c

M M C C

R M M v C C v

       
      = − −      

            

�� �  

0 0

       0  

0 0 0 0

ss sc

cs cc c

K K

K K v

   
  −   
     

  (35) 

After obtaining the interaction forces R, the added responses 
of the dam and foundation domain are calculated using (36).  
And then the added responses (i.e. u, u�  and u�� ) are added to 
the free field responses to get the absolute responses of the 
coupled soil and structure domain, following (33): 
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 (36) 

The main assumptions used in this model are that the input 
motions at the level of the base rock are not considered to be 
affected by the presence of the offshore structure and that all 
interface nodes will be subjected to the same free-field accel-
erogram.  In theory any desired spatial variation of the free-field 
components could be considered at the interface, but there is 
seldom sufficient information to specify such variation.  In this 
case, the mass of the foundation is taken into account in the 
analysis such that it will represent the offshore structure-soil 
interaction in a relatively more realistic manner.  The effect of 
hydrodynamic pressure is considered according to added mass 
technique originally proposed by Westergaard [29].  Assuming 
the sea water to be inviscid and incompressible and its motion to 
be of small amplitude, the governing equation for hydrody-
namic pressure is expressed as 

 2 0p∇ =  (37) 
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Fig. 4. Viscous dashpots connected to each degrees of freedom of a 

boundary node. 

 
 
The solution of this equation is proposed by Westergaard 

[29] and is used in the present work to calculate the hydro-
dynamic pressure imposed on the interface of the pile body 
during any earthquake. 

5. Absorbing Boundary 

A way to eliminate seismic waves propagating outward 
from the structure is to use Lysmerand Kuhlemeyer [22] 
boundaries.  This method consists of simply connecting dash-
pots to all degrees of freedom of the boundary nodes and fix-
ing them on the other end Fig. 4.  Lysmerand Kuhlemeyer [22] 
boundaries are derived for an elastic wave propagation prob-
lem in one-dimensional semi- infinite bar.  The damping co-
efficient C of the dashpot equals 

 C A cρ=  (38) 

where A is the cross section of the bar, r is the mass density 
and c is the wave velocity that has to be selected according to 
the type of wave that has to be absorbed (shear wave velocity 
cs or compression wave velocity cp).  In two dimensions (38) 
takes the following form, which results in damping coeffi-
cient Cn and Ct in the normal and tangential direction, re-
spectively. 

 1n pC A cρ=  

 2t sC A cρ=  (39) 

The shear wave velocity cs and compression wave velocity 
cp is given by 

s

G
c

ρ
=  
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+ −

 (40) 

Where G is the shear modulus of the medium and is ex-
pressed as 
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E
G

v
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+
 (41) 

The E is the Young’s modulus and v is Poisson’s ratio.  
However, in general, the directions of the incident waves are 
not known in advance.  In these cases, it’s advantageous to use 
a ‘diffused’ version as suggested by White et al. [31].  As-
suming that the wave energy arrives at the boundary with 
equal probability from all directions, effective factors A1  
and A2 are evaluated by minimizing the ratio between the 
reflected energy and the incident energy over the range of 
incident angles.  For an isotropic medium this results in 
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 (42) 

6. Morison’s Equation 

The Morison’s equation is widely used to estimate fluid 
force acting on a submerged object.  If the velocity and the 
acceleration of fluid are given at the representing position of 
the object, it is easy to evaluate wave force including drag and 
inertia terms based on an empirical equation [11].  The equa-
tion includes two coefficients such as CD and CM corre-
sponding to the drag and the inertia force respectively.  Those 
coefficients can be fixed based on the shape of the object.  The 
Morison’s equation is as shown in (43). 
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 (44) 

Fw: fluid wave force, CD: drag force coefficient, CM: inertia 
force coefficient, u: velocity of fluid, A: area of member, V: 
volume of member. 

A survey of measured values for CD and CM made by the 
British Ship Research Association (1976) is depicted in Fig. 5. 
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Fig. 5. Summary of CD and CM for smooth, vertical cylinders (British 
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Fig. 6.  Coupling of an EFG and a BE subdomain. 

 

IV. COUPLING EFGM WITH MESH-BASED 
METHODS 

1. Coupled EFGM-BEM 

To couple the EFGM with BEM, interface element similar 
to those used in the EFGM-FEM coupling have been devel-
oped Liu [21], Fig. 6 illustrates a typical situation involving 
the EFGM and the BEM. 

Since the BE shape functions adopt the same from as the  
FE ones, along the interface ΓI, compatibility and equilib- 
rium condition must be satisfied simultaneously.  The nodal 
displacements and the nodal forces along ΓI, for Ω1 (EFG  
domain) and for Ω2 (BEM domain), must be equal and sum up 

to zero.  The construction procedure of the interface element 
can be shown as 

1 2
I Iu u=  

1 2 0I IF F+ =  (45) 

The modified displacement approximation in ΩI (Interface 
region) and the remaining part of Ω1 have the form 
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where ( , )h
iu x t  is the displacement of a point in Ω1, and 

( , )EFG
iu x t  is the EFG displacement given by 
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I

u x u tφ
=
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ϕI are the MK shape defined by (3), and collocation the  
uBE(x, t) at each boundary node at all n time-steps leads to the 
system of equations  

 [ ]
1

1 1 1 1

1

n
n n n m m n m m

m

U s T u T u U s
−

− + − +

=

= + −∑  (48) 

m is the number of time basis functions and n is the number  
of field nodes included in the support domain of the point x, in 
which Ui and Ti are influence matrices whose coefficients are 
the integral terms evaluated over each boundary point and 
over the time i∆t; the vectors um and sm contain the nodal 
values of the displacements and tractions, respectively. 

2. Treatments at the Interface 

From the EFGM nodal forces are obtained, while surface 
tractions are used in the BEM.  In order to reach consistency 
between the EFG and the BE formulations, the traction vector 
s obtained from the BE system of equations (48) has to be 
transformed to a force vector FBE by means of a transformation 
matrix Mt, such that 

 BE tF M s= ⋅  (49) 

The transformation matrix Mt can be evaluated by the BE 
shape functions Ni.  Along the boundary of an interface ele-
ment Γe the ij-th element of the matrix Mt is caculated by 

 ( , )
e

t i jM i j N N d
Γ

= Γ∫  (50) 

Using (49), a global nodal force vector can be formulated, 
which relates the BE nodal forces to the displacements at the 
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current time-step n and a sum of the influence of all previous 
time-steps (m = 1, 2, 3, …, n-1): 
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The vector H in (51) contains the nodal force contribution 
from all previous time-steps.  Therefore, it is known at the 
time-step m.  For two-dimensional problems, in soil-structure 
interaction elastic waves play a significant role.  The Lame- 
Navier equation 

 , ,( ) ( ) 0i ij j ii j ju u b uλ µ µ ρ+ + + − =��  (52) 

ρ is the mass density of the solid body, bj are components of 
the body force per unit volume, the Lame constant λ and µ  
are defined as 

 
2(1 ) (1 )(1 2 )

E E
G

νµ λ
ν ν ν

= = =
+ + −

 (53) 

where G and E are the shear and Young’s modulus, respec-
tively.  Ν is the Poisson’s ratio.  The constant parameters rep-
resent the dilatational and shear wave velocity, respectively. 
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With the definition, the Lame-Navier equation can be 
written as 

 2 2 2
, ,( ) ( ) 0p s i ij s j ii j jc c u c u b uρ− + + − =��  (55) 

This is the well known wave equation in elastodynamics.  
While in general the EFGM is able to model the nonlinear 
behavior of a structural system, the BEM is usually restricted 
to the investigation of linear elastic systems.  Thus, in the 
coupling process, which shall be used to consider linear as 
well as nonlinear problems, equilibrium has to be ensured 
during the integration of the linear BEM equation. 

3. Coupling Procedure 

In each time-step equilibrium needs to be satisfied before 
continuing with the time marching scheme.  Flow chart shows 
in Fig. 7.  For the coupled system of equations, this means that 
the residual force at the k-th step of the Ψ(uk), give by 

Calculate initial values from 
initial interface element.
Determine constant KBE.
Determine constant KEFG. 

ε≤=Ψ(uk) F − Rk

Determine F and Rk. 

Update KBE.
Update the interface element.  

Output results

Input data

Form system stiffness matrix.
K = KEFG ∪ KBE

Update displacements.
uk+1 = uk + K -1(F − Rk) 

No 

Yes 

Next iteration k + 1 

Next time-step

 
Fig. 7.  Flow chart of the EFGM-BEM for a nonlinear dynamic analysis. 

 

 ( )  k ku F RΨ = −  (56) 

should vanish or at least be very small.  The vectors F and Rk 
comprise the EFG as well as the BE part which can be deter-
mined by (57), (58), respectively. 

 1 1 1
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4 4n n n n n
eff k k k kF F R M u u u
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 (58) 

The global stiffness matrix of the coupled system can be 
derived by  

 EFG BEK K K
u

∂Ψ= = ∪
∂

 (59) 

where KEFG takes the form of Keff defined in (60) when an 
nonlinear analysis is carried out.  As the stiffness matrix of the 
BE part KBE is not dependent on the time, only the stiffness 
matrix of the EFG part KEFG, and the consequently constructed 
interface elements, have to be updated at each time-step.  The 
update of the displacement in the coupled system can be ex-
pressed by 

 2

4
effK K M

t
= +

∆
 (60) 

The iteration will not cease until the different between F 
and Rk predefined small value (error limit). 
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Table 1.  Comparison of the natural frequencies for different node distributions for the cantilever beam. 

55 Nodes 189 Nodes 
Mode (Hz) FEM [20] (4850DOF) 

LoKriging [20] Present  error (%) LoKriging [20] Present  error (%) 

1 27.72 28.16 27.952 0.8369 27.76 27.781 0.2200 

2 140.86 142.94 143.943 2.1886 140.46 142.525 1.1820 

3 179.71 178.90 179.874 0.0912 178.81 179.781 0.0395 

4 323.89 329.08 334.562 3.2949 323.83 331.385 2.3140 

5 523.43 529.77 537.394 2.6677 523.96 538.608 2.8997 

6 536.57 535.58 548.201 2.1676 534.12 542.063 1.0237 

7 730.04 733.34 776.301 6.3367 731.11 763.999 4.6516 

8 881.28 882.40 884.231 0.3348 877.89 888.505 0.8198 

9 899.69 902.75 929.177 3.2774 899.46 921.521 2.4265 

10 1000.22 1001.55 1046.214 4.5983 999.39 1028.855 2.8628 
 
 

y 

x D = 12 m 

L = 48 m 

P 

 
Fig. 8. The geometry of the cantilever beam. for free vibration analysis 

and static analysis subjected to a parabolic traction at the free 
end P = -1000 N. 

 

 1
1 ( )k k ku u K F R−

+ = + −  (61) 

V. NUMERICAL RESULTS 

In order to demonstrate the efficiency and the applicability 
of the present method to analysis of structural dynamics 
problems, A typical numerical examples are considered for 
free and forced vibrations and their dynamic responses are 
reported correspondingly. 

1. Static and Free Vibration Analysis 

A cantilever beam as shown in Fig. 8 is first considered as a 
benchmark example.  To do so, the non-dimensional parame-
ters in the computation have the length L = 48 m and height  
D = 12 m.  The beam is assumed to have a unit thickness  
so that plane stress condition is valid.  Young’s modulus E = 
3.0 × 107 (kN/m2), Poisson’s ratio ν = 0.3, and mass density  
ρ = 1.0 (kN/m3) [9] are used.  As confirmed by static analysis 
in the previous work [9], two important parameters involving 
the correlation coefficient θ and the scaling factor α related  
to the interpolation function expressed in (9) and (10), re-
spectively; have certain influences on the numerical solutions.  
Thus, they are of importance to the present method and may 
also have effects on the dynamic analysis in the present work.  
This implies that the choice of these two parameters must be  
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Fig. 9. Natural frequency versus the correlation parameter θ for the 

cantilever beam (α = 2.8). 
 
 
in carefulness, and the choice might be different from the static 
analysis.  The correlation parameter is varied in an interval of 
0.004 < θ < 1000 whilst α = 2.8 is fixed.  A regular set of 189 
scattered nodes is taken in this example and its distribution 
will be seen later.  A comparison of the obtained results of the 
present method to that of the LoKriging [20] and the FEM 
(4850 DOFs) [20] is given in Table 1 below.  Fig. 9 shows the 
computed results of the natural frequency of the beam com-
pared to those of available reference solutions.  It is found  
that a good agreement can be reached if 0.004 ≤ θ < 5 is 
chosen, it fails with 0 ≤ θ < 0.004, and other θ values are 
though possible but the error increases and a bad result is 
unavoidable.  Fig. 10 note that the FEM (4850 DOFs) derived 
from [20] is used as a reference solution for the verification 
purpose.  The correlation coefficient θ = 0.2 is kept unchanged 
in the computation.  Definitely, a smaller error is obtained  
with a scaling factor 2.4 ≤ α ≤ 3.0.  For static analysis the 
traction is distributed in a form of parabola at the right end of 
the beam.  Strain energy error e is employed as an indicator of 
accuracy of the MK-EFG numerical results in (62) 
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Fig. 10.  Influence of scaling factor α on the natural frequency (θ = 0.2). 
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Fig. 11(a) shows the exact and numerical solutions of 
MK-EFG for the distribution of stress σxx on the cross section 
of x = L/2 of the cantilever beam.  The plot shows excellent 
agreement between the exact solution and the numerical re-
sults for all the parameters of θ and α used.  A very coarse 
mesh can yield good results.  Errors in stress between the exact 
solution and the numerical results are clearly evident.  This 
fact implies that the stresses that are obtained using the de-
rivatives of the displacement field are very sensitive to the way 
the integration is performed.  Fig. 11(b) and (c) show, respec-
tively, the stress components σyy and σxy.  It is clearly shown 
again that the stresses are very sensitive with the chosen pa-
rameters of θ and α, especially the shear stress σxy. 

Table 1 listing the first ten frequencies shows a comparison 
of natural frequencies among LoKriging [20], FEM (4850 
DOFs) [20] and the present method, in which two scattered 
nodes of coarse and fine node distributions with 55 and 189 
are considered for the cantilever beam associated with the 
chosen parameters of θ = 0.2 and α = 3.0.  An excellent 
agreement with other solutions can be found.  Furthermore, 
the first nine eigenmodes of the cantilever beam are also pro-
vided in Fig. 12. 

To analyze the influences of the density of nodal distribu-
tions and the convergence of the natural frequencies versus the 
nodal densities, five regular nodal distributions with 5 × 5;  
11 × 5; 15 × 9; 21× 9 and 21 × 16 are additionally applied to 
the beam problem and four of them are illustrated in Fig. 13. 

The corresponding results of the non-dimensional fre-
quencies are calculated individually for each set of scattered 
nodes and presented in Table 2 in comparison with those 
obtained by LoKriging [20] and the FEM [20].  It shows a 
very good convergence of the frequencies to the reference 
solutions even with a coarse set of 55 nodes.  For quantitative 
analysis, the following norm is defined as the error indicator. 
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Fig. 11. Influence of correlation parameter θ (a) σxx (b) σyy (c) τxy distri-

butions on the cross-section of the beam at x = L/2, 0.004 < θ <5, 
α = 2.8. 
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The next numerical example dealing with a offshore 
structure-soil system as shown in Fig. 14 is considered.  The  
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Table 2.  Convergence of the natural frequencies (Hz) with various nodal densities of the cantilever beam. 

Mode 5 × 5 11 × 5 15 × 9 21 × 9 21 × 16 LoKriging [20] FEM [20] 

1 31.384 27.952 27.648 27.781 27.725   27.76 27.72 

2 149.236 143.943 142.474 142.525 141.770 140.46 140.86 

3 162.053 179.874 179.653 179.781 179.433 178.81 179.71 

4 314.614 334.562 331.419 331.385 324.355 323.83 323.89 

5 326.115 537.394 538.284 538.608 524.267 523.96 523.43 

6 365.320 548.201 545.519 542.063 537.306 534.12 536.57 

7 551.751 776.301 765.665 763.999 738.306 731.11 730.04 

8 1112.647 894.231 889.478 888.505 884.180 877.89 881.28 

9 1209.457 929.177 925.343 921.521 899.173 899.46 899.69 

10 1369.263 1046.214 1032.822 1028.855 1002.132 999.39 1000.22 
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Fig. 12. The first nine eigen-modes of the cantilever beam by the present 

method. 
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Fig. 13. Various regular nodal distributions: (a) 5 × 5, (b) 11 × 5, (c) 21 × 

9 and (d) 21 × 16. 

Table 3. Structural properties of the offshore platform with 
a pile-soil foundation system. 

Description Value Unit 
Deck size 48 m 
Number of columns 2 - 
Column center to center distance 24 m 
Column outer diameter 12 m 
Column height 39 m 
Truss structure height 39 m 
Middle pipe diameter of truss structure 1 m 
Small pipe diameter of truss structure 0.5 m 
Deck weight 4 mN 
Structure weight per unit volume 77 kN/m3 
Young’s modulus 3.0 × 107 kN/m2 
Stiffness per unit length 1.0 × 107 kN/m 
Number of piles 2 - 
Length of pile 39 m 
Diameter of pile 0.6 m 
Density of soil 1.7 ton/m3 
Poisson’s ratio of soil 0.4 - 
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Fig. 14. The geometry of offshore structure-soil prototype.  (a) Wave 

force distribution.  (b) All side boundary nodes are fitted with 
dashpots in both tangential and horizontal directions.  (c) Pile- 
soil interface spring system. 

 
 
offshore structure -soil system has been solved using several 
different computational methods such as MCS method [23].  
The geometrical parameters of the offshore structure -soil 
system can be found in Table 3 and other relevant material 
parameters are taken exactly the same as in Table 3.  The first  
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Table 4.  Natural periods of the present platform for various soil conditions (sec). 

Vs = 100 m/s Vs = 300 m/s Vs = 500 m/s Fixed Mode  
(sec) MCS* MF** MCS* MF** MCS* MF** MCS* MF** 

1 2.647 2.773 2.389 2.456 2.341 2.395 2.056 2.122 

2 2.578 2.654 2.279 2.312 2.244 2.298 2.045 2.079 

3 2.498 2.523 2.221 2.279 2.176 2.205 1.937 2.001 

4 1.150 1.198 1.072 1.132 1.063 1.088 0.983 1.012 

5 0.576 0.596 0.536 0.579 0.529 0.565 0.516 0.532 

* Monte Carlo Simulation method (FE modal) 
** Present method (MFree modal) 
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Fig. 15. The first nine eigen-modes of the offshore structure by the pre-

sent method. 
 
 
five natural frequencies are given in Table 4.  Two sets of  
126 and 393 scattered nodes are used, as well as θ = 0.2 and  
α = 3.0 are specified in the computation as shown in Fig. 16.  
As a consequence, it is found that the present solutions are in  
a good agreement with the ones obtained by BEM, FEM.  
Additionally, the first nine eigenmodes are also presented in 
Figs. 15 and 17 for the offshore structure-soil system. 

2. Forced Vibration Analysis 

Regarding the analysis of the forced vibration, the same 
cantilever bean and offshore structure-soil system in two- 
dimensional setting are chosen.  At first, the composite beam 
is considered to be in plane stress condition with parameters  
E1 = 3 × 107 (kN/m2), E2 = 3 × 106 (kN/m2), ν = 0.3, mass 
density ρ = 1.0 (kN/m3), and the thickness t = 1.0 m, respec-
tively.  A regular set of 189 scattered nodes is used for all 
implementations of the forced vibration analysis.  The dy-
namic loadings depicted as Heaviside step loading with a 
finite decreasing time are analyzed associated with a traction 
at the free end of the beam by P = 1000 N × g(t), where g(t) is 
the time-dependent function.  The implicit Newmark β time 
integration scheme is applied.  The vertical displacement or  
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Fig. 16. Offshore structure-soil system regular nodal distributions, unit: m 

(a) offshore-structure with a (b) pile-soil interface spring system. 
 
 

deflection at point A as depicted in Fig. 18 is computed, and 
the detailed results obtained by the present method are then 
compared either to other available solutions. 

For the transient loading with a finite decreasing time as 
depicted in Fig. 19, the loading function is determined by (64).  
The corresponding results with and without damping are pro-
vided in Fig. 22, respectively.  Because the input values of the 
problem are set up the same as that of [15, 20], 

 [ ]( ) (1 ) ( ) ( 1)g t t H t H t= − − − . (64) 
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Fig. 17. The first nine eigen-modes of the offshore pile-soil interface 

spring system by the present method. 
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Fig. 18.  A cantilever composite beam subjected to a tip uniform traction. 
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Fig. 19. Schematic diagram of dynamic transient loading with a finite 

decreasing time. 
 
 
Thus the responses obtained in Figs. 20 and 21 can be di-

rectly compared with the results presented in [15, 20].  Here 
again, a very good agreement can be found.  Furthermore, it can 
be observed in Fig. 22 that the amplitude decreases as the time 
increases from 0 to 1.0 s.  The response oscillates in a steady 
state way after 1.0 s because damping affect is ignored in the 
system.  On the other hand, a damping in the system results an 
amplitude decrease to zero as the time increases, as illustrated  
in Fig. 19.  Very stable results for the forced vibration analysis 
are obviously achieved by the present meshfree method. 

The offshore structure is modeled with mesh free while the 
soil domain is described by boundary elements instead.  For  
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Fig. 20.  Regular nodal distributions 15 × 5 for composite beam, unit: m. 
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Fig. 21. Set up Gauss point for interface and traction boundary of com-

posite beam. 
 
 

both situations, the two different parts are then coupled to-
gether ensuring compatibility and equilibrium along the 
common interface.  For the coupling itself, quite mature al-
gorithms are available meanwhile, in fact, it can be done either 
in a direct way by solving a coupled system of equations or by 
means of an iterative coupling scheme. 

If the soil domain is modeled by mesh free nodes, some 
kind of truncation in the soil region is necessary, as a closed 
domain is compulsory for the implementation of the Mfree 
methods.  Such truncations lead to different artificial bounda-
ries, which can reflect elastic waves generated from structural 
vibrations.  Since in most soil-structure interaction problems 
the soil domain is assumed to be semi-infinite, the spurious 
wave reflection due to artificial boundaries may substantially 
deteriorate the accuracy of the computation.  This phenome-
non is well known as the “boxing effect” in geomechanics.  A  
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Fig. 22. Transient displacement uy at point A without and with damping 

under transient loading with a finite decrease time. 

 
 

number of assumptions, such as absorbing or non-reflecting 
boundary conditions have been proposed to modify different 
artificial boundaries in order to reduce the wave reflection.  
However, strict restriction and soaring computational effort by 
applying such measures make them less effective in practical 
applications.  If boundary elements are applied to model the 
soil region, the dimensionality of the problem is reduced by 
one order and the treatment of infinite domain is straight for-
ward. 

In this study, dynamic response analysis for an ideal 2D 
offshore-structure with a soil-pile foundation system induced 
by seismic motions is performed.  Fig. 14 shows an overview 
of the offshore structure-soil system.  For mathematical mod-
eling of the current structure, a Cartesian coordinate system 
was chosen such that the origin is located at a point on the sea 
bottom projected from the left corner of the deck plate.  x is 
positive to the right and y is positive in the upward direction.  
For numerical calculation, the system is composed of discrete 
mesh and nodal points as shown in Fig. 16.  Three nodal points 
A, B, C on the superstructure, as indicated in Fig. 14, were 
selected to calculate the respective displacement against seis- 
mic motions.  The governing equation of motion for the entire 
structure can be formulated as (27). 

In the seismic analysis, it is assumed that tanks are sub-
jected to North-South component of the ground motion re-
corded at the Chin-Shui Elementary School during the Sep-
tember 21st, 1999 Chichi earthquake in Taiwan.  To evaluate 
the dynamic response of the offshore structure-soil system, 
Three soil types shown in Table 4 were considered.  Soil con-
ditions recommended in the literature were considered in the 
selection of soil types and their properties.  The time history 
analyses were carried out by using the above-mentioned sys-
tem in Fig. 23. 

The results of the present model are compared with and 
without offshore structure-soil interaction analysis.  All the 
vertical side nodes are fitted with dashpots while the bottom  
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Fig. 23.  Chichi earthquake motion 1999. 
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Fig. 24. Offshore structural model with time histories of the displace-

ment at node ‘A’. 
 
 

nodes are considered to be rollers.  The 921-Chichi earthquake 
acceleration is applied to the offshore structure system proto-
type and solved this problem by the coupled MKEFG- 
BEM method.  They included the effect of viscous damping 
with a damping ratio of 0.05.  Moreover, the effect of hydro-
dynamic pressure was incorporated in the analysis by the 
added mass concept proposed by Westergaard [30].  The effect 
of wave scattering and reflection was tackled by the present 
method.  When the model is solved by the proposed scheme, 
the effect of viscous damping and the hydro- dynamic pressure 
is also considered in similar way.  Also, initially the dam has 
been analyzed considering the effects of itself weight and the 
hydrostatic pressure which produced initial acceleration in the 
system.  Fig. 24 shows the comparison between the variation 
of node A displacements, obtained with and without offshore 
structure-soil interaction analysis during 20~30 sec.  The 
maximum and minimum values of the horizontal displace-
ments for the interaction analysis are found to be 1.92 cm  
and -2.27 cm respectively, while those for rigid analysis are 
1.12 cm and -1.83 cm.  Fig. 25 shows the comparison between 
the variations of bending stresses at all nodal points for rigid 
and interaction analysis.  A maximum value of 119.98 MPa is  
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Fig. 25. Offshore structural model with time histories of maximum 

bending stresses at all nodal points. 
 
 
obtained with interaction analysis while the maximum value 
for rigid analysis is found to be 100.39 MPa.  It is evident from 
the above observations that the displacements have increased 
for interaction analysis compared to the rigid case.  Also, the 
stresses at the pile head zone have increased when the flexi-
bility effect of pile-soil system is taken care in the coupled 
analysis.  Since the bottom mounted platform region to the 
head of the pile experiences more stresses compared to the 
stresses observed at the tip 43.66 Mpa, therefore the stresses 
obtained from offshore structure-soil interaction analysis 
should govern design criteria of the offshore structure system. 

The results of the present model are compared with and 
without offshore structure-soil interaction analysis.  All the 
vertical side nodes are fitted with dashpots while the bottom 
nodes are considered to be rollers.  The 921-Chichi earthquake 
acceleration is applied to the offshore structure system proto-
type and solved this problem by the coupled MKEFG-BEM 
method.  They included the effect of viscous damping with a 
damping ratio of 0.05.  Moreover, the effect of hydro-dynamic 
pressure was incorporated in the analysis by the added mass 
concept proposed by Westergaard [30].  The effect of wave 
scattering and reflection was tackled by the present method.  
When the model is solved by the proposed scheme, the effect 
of viscous damping and the hydro-dynamic pressure is also 
considered in similar way.  Also, initially the dam has been 
analyzed considering the effects of itself weight and the hy-
drostatic pressure which produced initial acceleration in the 
system.  Fig. 24 shows the comparison between the variation 
of node A displacements, obtained with and without offshore 
structure-soil interaction analysis during 20~30 sec.  The 
maximum and minimum values of the horizontal displace-
ments for the interaction analysis are found to be 1.92 cm  
and -2.27 cm respectively, while those for rigid analysis are 
1.12 cm and -1.83 cm. 

Fig. 25 shows the comparison between the variations of  

Water 
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Fig. 26.  The geometry of dam-foundation prototype. 

 
 

bending stresses at all nodal points for rigid and interaction 
analysis.  A maximum value of 119.98 MPa is obtained with 
interaction analysis while the maximum value for rigid 
analysis is found to be 100.39 MPa.  It is evident from the 
above observations that the displacements have increased for 
interaction analysis compared to the rigid case.  Also, the 
stresses at the pile head zone have increased when the flexi-
bility effect of pile-soil system is taken care in the coupled 
analysis.  Since the bottom mounted platform region to the 
head of the pile experiences more stresses compared to the 
stresses observed at the tip 43.66 Mpa, therefore the stresses 
obtained from offshore structure-soil interaction analysis 
should govern design criteria of the offshore structure system. 

A dam in Fig. 26 of height 15.0 m, crest-width 2.0 m and 
base width 10.0 m discretized with isoparametric linear quadric 
lateral elements.  This particular dam-foundation system was 
originally solved by Yazdchi et al. [34] using coupled 
FEM-BEM technique considering soil-structure interaction 
effects.  While solving the dam-foundation interaction prob-
lem, the side nodes of the discretized finite elements in the 
foundation portions were considered to be connected to dash-
pots allowing only the horizontal movements and the bottom 
nodes were considered to be rollers.  The middle node at the 
base of the foundation is kept fixed in order to prevent rigid 
body translation in the x direction.  A 2 × 2 Gauss Integration 
rule is adopted for the calculation of both the stiffness matrix 
and the mass matrix.  The dam and the foundation are assumed 
to be linear elastic with the following material properties.  
Poisson’s ratio 0.2; modulus of elasticity E = 3 × 107 kN/m2 
and mass density as 2600 kg/m3.  The Poisson’s ratio and the 
mass density of the foundation were assumed to be the same as 
those of the dam. 

The maximum crest displacement of the dam under seismic 
excitation (Fig. 27) by both the method has been tabulated  
in the Table 5 for a comparison purpose.  The present results 
are also compared with the results obtained by Reddy et al. 
[25].  The obtained displacements by the proposed interaction 
scheme are in very close agreement with the results obtained 
both by Yazdchi et al. [34] and Reddy et al. [25]. 
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Table 5. Comparison of maximum horizontal crest dis-
placements (mm). 

Horizontal crest 
displacements  

(mm) 

Coupled FE-BE 
solution Yazdchi  

et al. [34] 

Reddy et al.  
[25] 

Proposed 
method 

Impedance  
ratio(Ef/Ed) 

   

 6.89 8.60  6.77 
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Fig. 27.  Koyna earthquake motion 1967. 

 

VI. CONCLUSION 

Since seismic motions may cause serious damage to a 
bottom mounted platform, the effects of earthquakes on the 
dynamic response of the structure should be scrutinized in 
order to design reliable structures in seismic zones.  This paper 
presents a methodology for the analysis of offshore structural 
system subjected to seismic excitations considering the soil- 
structure interaction effect.  The proposed method is validated 
from the literature which shows the accuracy of the developed 
algorithm.  The offshore system like structure, having the 
coupling effect due to the soil-pile foundation material during 
earthquake excitations is analyzed.  The numerical results 
presented here prove the efficiency of the present algorithm to 
solve a soil-structure coupled problem of massive structures 
such as the typical offshore system.  The advantage of using 
the present MKEFG-BEM method is that it requires less 
computational effort, in terms of both time and memory.  The 
responses of the soil-structure system considering an absorb-
ing boundary indicate that the incident energy is effectively 
absorbed at the truncation boundary.  Another advantage of 
this method is that it requires less computational effort since it 
avoids evaluation of convolution integrals and Fourier trans-
forms to calculate soil-structure interaction forces.  The algo-
rithm presented here is simple so that it may be programmed 
easily.  The results show that the displacements and stresses 
have increased for the elastic as compared to the rigid base.  
Hence it is advisable to carry out the interaction analysis for 
pile structures like offshore under flexible base.  It is also 

observed that the pile head is the most severely stressed zone; 
hence one may expect the appearance of cracks around the pile 
head region of the offshore structure system. 

The model used in the current study is illustrated in Fig. 14, 
and Table 2 lists its properties.  Table 3 shows the respective 
natural periods of the present platform for various soil condi-
tions.  The natural period of the platform decreased as the 
shear-wave velocity of the soil increases (i.e., as soil becomes 
harder).  Therefore, the dynamic behavior of the present sys-
tem is directly dependent on soil conditions.  The dynamic 
response of the structure was calculated using a time history of 
the most severe seismic waves.  Fig. 23 shows the time histo-
ries of displacement at node A for the seismic motions given  
in Fig. 24 The maximum acceleration and the shearwave ve-
locity of the soil (Vs) were adjusted to 156 Gal and 100 m/s, 
respectively.  It is observed that the displacement of the fixed 
foundation system was relatively small compared to that of  
the pile-soil foundation system, due to less structure-soil in-
teraction.  Since platform motion is significantly influenced  
by seismic frequency, the maximum response induced by 
interaction analysis was greater than that induced by rigid  
case.  The patterns of displacement differ greatly in the slow 
shear velocities, and variations in time histories converge at 
high velocities (e.g., 500 m/s).  Since the body responses show 
similar patterns in firm soil conditions for both seismic mo-
tions, it is found that displacement in the pile-soil foundation 
system was influenced more by soil condition than by the 
magnitude of the seismic motions.  Fig. 25 shows because the 
structure bottom is influenced by the soil conditions; thus, the 
bending stress at the bottom is reduced in soft soil conditions 
due to the large displacement. 

The capability of equation solver has been significantly 
improved with the advances of computer science.  Many 
problems traditionally considered to be ill-conditioned, now 
can be accurately calculated without difficulty by using the 
proposed MK-EFGM-BEM together with the analysis of 
condition number.  A more systematic study on the accuracy 
and condition number for the MK-EFGM deserves further 
investigation.  The further details of a method may be obtained 
from picking the reference from the exhaustive list presented 
in the paper [19, 26]. 
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