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ABSTRACT 

In this paper, a residual-norm based algorithm (RNBA) is 
applied to solve determinate/indeterminate systems of non- 
linear algebraic equations.  The RNBA is derived from a 
manifold and defined in terms of a squared residual norm and 
a fictitious time variable, from which a robust iterative algo-
rithm with either fixing or adjusting parameters can be ob-
tained.  Besides, some convergent indexes, such as manifold 
factor A0 and ratio of residual errors S, are defined to indicate 
the manifold attracting effect.  Through the convergent in-
dexes, the convergent mechanism of the RNBA displays a 
Hopf bifurcation when approximating the true solutions.  
Several numerical examples, including the root finding in two-, 
three-variable and in elliptic-type partial differential equations 
(PDEs), are examined.  Comparisons of numerical results and 
exact solutions show that the proposed algorithm has good 
computational efficiency and accuracy simultaneously. 

I. INTRODUCTION 

Numerical solutions of algebraic equations are widely ap-
plied in many fields of engineering and science.  In practical 
engineering problems, numerical methods such as the finite 
element method (FEM), finite difference method (FDM), 
boundary element method (BEM), and meshless method are 
typically used to solve a system of algebraic equations.  Re-
garding the area of computational mechanics, Atluri et al. [1-4, 
35] have proposed approaches, such as meshless local Petro- 
Galerkin (MLPG) method and local boundary integral equa-

tion (LBIE) method, to obtain solutions for linear algebraic 
equations of a linear problem and for nonlinear algebraic 
equations (NAEs) of a nonlinear problem.  Until now, a series 
of approaches [5, 6, 8, 13-15, 18, 21, 22] have been proposed 
to solve algebraic equations. 

Over the past few centuries, many contributions have been 
made towards finding the solutions of NAEs.  Among these 
methods, Newton’s method is a well-known method for find-
ing the roots of a real-valued nonlinear system that can con-
verge quadratically.  However, a Newton-like algorithm is 
sensitive to the initial guess of the solution, and the computa-
tions of the Jacobian matrix and its inverse at each iterative 
step are computationally expensive.  Frequently, the require-
ment of Jacobian matrix inverse causes a failure to search for 
the solution when a singular Jacobian matrix is encountered.  
Thus, to overcome these difficulties, the homotopy method 
was proposed [7] to enhance the convergence of solution by 
converting the local converging solution to global converging 
one.  The homotopy method finds the solution by constructing 
an auxiliary function and thus, avoids solving the original 
problem directly.  For the study of homotopy method, re-
searchers such as Davidenko [7], Gorji et al. [9], He [10, 11], 
Liao [19], Wu [34], and Marinca and Herisanu [33] have 
presented different investigation and applications for different 
problems.  However, many vector-based homotopy methods 
that determine the inverse of a Jacobian matrix at each time 
step cannot completely avoid divergence under certain condi-
tions.  To overcome this problem of divergence, Liu et al. [32] 
proposed a scalar-based homotopy method, which converts a 
vector function into a scalar function by taking the squared 
norm of the vectorial algebraic equations and simultaneously 
introducing a fictitious time variable.  For a scalar-based 
homotopy method, it does not need to calculate the inverse of 
the Jacobian matrix and has great numerical stability.  How-
ever, the main drawback of a scalar-based homotopy method is 
its slow convergence.  That is, the convergence criterion is not 
easily well satisfied. 

In addition to homotopy methods, a novel time integration 
method called the fictitious time integration method (FTIM) 
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has been proposed by Liu and Alturi [29].  The FTIM embeds 
the linear or nonlinear algebraic equations into a system of 
first-order ordinary differential equations (FOODs) by intro-
ducing a time-like or fictitious variable.  Liu [23, 24], Liu and 
Atluri [27, 28, 30], and Liu [25, 26] have demonstrated that 
FTIM can solve certain classes of problems more effectively 
than Newton-like methods do.  This scheme has the advantage 
that needs not to calculate the Jacobian matrix or its inverse.  
With the aim of improving the convergence and a robust im-
plementation, a new time-like function with the incorporation 
of the FTIM has been proposed by Ku et al. [17].  Ku et al.  
[16] then proposed a manifold-based exponentially conver-
gent algorithm (MBECA) for solving NAEs.  The MBECA  
is based on the construction of a space-time manifold by 
transforming a vector function of algebraic equations into a 
time-dependent scalar function that employs a fictitious time 
variable.  It uses the concept of plastic flow rate to force the 
trajectory of the unknown vector onto the manifold by as-
suming that the direction of the plastic flow rate of the un-
known vector is in the gradient direction.  The MBECA has 
the same important features as the FTIM with respect to the 
ability to solve a large class of problems effectively.  Although 
the MBECA and FTIM have many advantages, both the  
viscous-damping and time-like function parameters must be 
determined in advance.  In particular, when the magnitudes of 
these parameters increase, numerical instability occurs.  To 
overcome the above mentioned difficulties, the Residual 
Norm Based Algorithms (RNBAs) [31] with a construction of 
a space-time manifold, which is derived from the square norm 
of the vector function of the algebraic equation, is applied to 
solve those problems. 

The paper is organized as follows.  In Section 2, we derive 
the mathematical formulation of the RNBA and obtain an index 
of a manifold of nonlinear algebraic equations.  In Section 3, we 
demonstrate five numerical examples, including finding the 
roots of nonlinear algebraic equations in two, and three vari-
ables and comparing our method with the original MBECA in a 
high-dimensional elliptic-type PDEs.  Finally, some important 
findings and conclusions are summarized in Section 4. 

II. THE RESIDUAL-NORM BASED  
ALGORITHM 

1. Construction of Gradient-Flow 

Let us consider the following nonlinear algebraic equations 
(NAEs) in a vector form: 

 ( ) 0.=F x  (1) 

From (1), we can formulate a residual-norm based algo-
rithm (RNBA) from the following manifold [31]: 

 
2 2

( ) .
( )

C

Q t
=F x  (2) 

Here, we let x be a function of a fictitious time variable t.  
We do not need to specify the function ( )Q t  a priori, of which 

2 ( )C Q t  is a measure of the residual error in time.  At the 

same time, Q(t) > 0 is an increasing function of t and C is a 
constant.  We let Q(0) = 1, and C to be obtained by initial 
condition x(0) = x0 with 

 
21

( ) .
2

C = 0F x  (3) 

In order to determine the evolution equation for x, we as-
sume a “normality condition” that  

 ,
hλ ∂= −

∂
x

x
�  (4) 

where  

 
21

( , ) : ( ) ( ) .
2

h t Q t=x F x  (5) 

A gradient flow can be derived from (2), (4) and (5): 

 
2

T
2T

( ) ,q t= − F
x B F

B F
�  (6) 

in which B is the Jacobian matrix with its ij-component being 
given by /ij i jB F x= ∂ ∂  and  

 
( )

( ) : .
2 ( )

Q t
q t

Q t
=

�

 (7) 

2. Maintaining the Manifold Property of the  
Trial Solution 

To stay in the manifold defined by (2), we can consider the 
evolution of F along the path x(t) by 

 
2

2T
( ) ,q t= = − F

F Bx AF
B F

� �  (8) 

where 

 T: .=A BB  (9) 

Suppose that we use the Euler scheme to integrate (8): 

 
2

2T
( ) ( ) ( ) ,t t t tq t+ ∆ = − ∆ F

F F AF
B F

 (10) 

 
2

T
2T

( ) ( ) ( ) .t t t tq t+ ∆ = − ∆ F
x x B F

B F
 (11) 
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Taking the square norms of both sides of (10) and using (2), 
we can obtain 

( ) 2T

2 2 2 ( )
2 ( )

( ) ( ) ( )

C C C
q t t

Q t t Q t Q t

⋅= − ∆
+ ∆

F AF

B F
 

( )
2

2 2
4T

2
( ) .

( )

C
q t t

Q t
+ ∆ F

AF
B F

 (12) 

Thus, we have the following scalar equation: 

 2 ( )
( ) 2 1 0,

( )

Q t
a t t

Q t t
∆ − ∆ + − =

+ ∆
 (13) 

where 

 
2 2

2
4T

: ( ) ,a q t
⋅= F AF

B F
 (14) 

 : 2 ( ).b q t=  (15) 

Because of the Cauchy-Schwarz inequality: 

 2 ,T = ⋅ ≤F AF F AFB F  (16) 

we can yield : 

 
2 2

40 : 1.
T

A = ≥F AF

B F
 (17) 

Inserting (17) into (13), we can yield 

 20 ( ) 2( ) 1 0,A  q t q t S∆ − ∆ + − =  (18) 

where ( ) ( )S Q t Q t t= + ∆  and we can take the solution of  
q∆t from (13) to be 

 
2

2

1 1 (1 ) 0
, if 1 (1 ) 0 0.

0

S A
q t S A

A v

− − − ∂ Ω∆ = − − ≥
∂

 (19) 

3. A Novel Algorithm 1 

Let 

 
2

2 1
1 (1 ) 0 0, 1 ,

0
S A S

A

γγ −− − = ≥ = −  (20) 

and thus, we have 

 
1

.
0

q t
A

γ−∆ =  (21) 

From the Euler method for (11), we can obtain the follow-
ing residual-norm based algorithm (RNBA): 

 
2

2( ) ( ) ,t t t η+ ∆ = −
T

TB Fx x B F
AF

 (22) 

where 

 1 .η γ= −  (23) 

Here, 0 ≤ γ < 1 is a parameter choosing by user and 0 ≤ η ≤ 
1 is a weighting factor.  As γ  = 0, it is interesting that in (22) no 
parameter and no ∆t are required.  That is, it guarantees the 
RNBA to be absolutely convergent to the true solution.  Under 
the above conditions, we can prove that the new algorithm 
RNBA satisfies 

 2(t )
, if 1 (1 ) 0 0,

(t)

t
S S A γ+ ∆ = − − = ≥F

F
 (24) 

 1(t )
1 0 , if 1 (1 ) 0 0.

(t)

t
A S A−+ ∆ = − − − <F

F
 (25) 

which means that the residual error is absolutely decreased. 

4. A Novel Algorithm 2 

According to (22), we can understand that 
2 TT B FB F / 

2
AF  is a regularized gradient vector.  The weighting factor 

η can be placed to speed up the convergence speed.  Here, we 
introduce the concept of the group-preserving scheme (GPS) 
into RNBA.  The GPS first proposed by Liu [20] is a nu-
merical scheme with a space-time manifold, which maintains 
the manifold property and changes the weighting factor.  Then, 
the GPS can be presented as follows: 

 
( ) ( )  ( ) ( ( ) 1) ( ) ( )

( )
( )

b t t t a t t t
t t

t

+ − ⋅
+ ∆ =

x F F x
x

F
 

( ) ( ) ( ),t t tη= +x F  (26) 

 
( )

( ): cosh( ),
( )

t t
a t

t

∆
=

F

x
 (27) 

 
( )

( ): sinh( ).
( )

t t
b t

t

∆
=

F

x
 (28) 

Thus, under the above conditions, we can use exponential 
function to replace with a(t) and b(t), and develop an auto-
matically adaptive numerical method as follows: 

 ( )( ) 1 exp .
t

t
t

β
η α

 
= − −  

 

F( )

x( )
 (29) 



586 Journal of Marine Science and Technology, Vol. 22, No. 5 (2014) 

 

50403020100
Evolutionary Number

R
es

id
ua

l N
or

m

105

100

10-5

10-10

= 1
= EXP
= 1-

η
η
η γ

 
Fig. 1. A nonlinear equation (30) solved by the RNBA with different 

weighting factors at the initial value of (50, -30). 

 
 
Here, 0 ≤ α  < 1 is the range of the fictitious time weighting 

factor and β is a fictitious time step size chosen by the user.  
When the solutions are obtained, the norm of F will become 
zero. 

In the following we will give some numerical tests of the 
Residual Norm Based Algorithms (RNBAs): the RNBAs with 
γ  = 0, the RNBA with 1 – γ, and the RNBAs associated with 
the GPS, respectively. 

III. NUMERICAL EXAMPLES 

Example 1 

Let’s consider a system of two NAEs with two variables 
that were previously studied by Hirsch and Smale [12]: 

3 2 2 2
1 1 1 1 2( , ) 3 (2 ) 0,F x y x x y a x xy b y c x a y= − + + + + + =  

2 3 2 2
2 1 2 2( , ) 3 (4 ) 0,F x y x y y a xy y b x c= − − − + + =  (30) 

where (a1, b1, c1, a2, b2, c2) = (25, 1, 2, 3, 4, 5). 
For this problem, Liu and Atluri [29] solved (30) by using 

the FTIM, and Liu and Atluri [30] then found four solutions.  
To examine the characteristics of the RNBA, we resolved  
the same problem with the following parameters: γ  = 0, γ  = 
0.08, α = 0, and β = 0.005.  Starting from an initial value of  
(x, y) = (50, -30), we solved this problem using the RNBA with 
different weighting factors under a convergence criterion of  
ε = 1 × 10-10.  We compared the residual norms and iterative 
paths of the RNBA with algorithms 1 and 2, and the results are 
shown in Figs. 1 and 2 respectively, of which the red, pink and 
blue lines denote the RNBA by algorithm 1 with γ  = 0, algo-
rithm 1 with γ = 0.06 and algorithm 2 with α = 0 and β = 
0.0005, respectively.  The numerical results are very close to 
the true solution with the residual on the order of 10-12, and the 
numerical solution path of the RNBA converges to the solution 
(x, y) = (50.46504, -37.2634) when the evolution numbers are  

46 47 48 49 50 51
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= EXP
= 1-

η
η
η γ

Exact solution

-38

-37

-36

-35

-34
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-32

-31
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Y

X  
Fig. 2. A nonlinear equation (30) solved by the RNBA comparing the 

iterative path with different weighting factors. 
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Fig. 3. A nonlinear equation (30) solved by the RNBA by algorithm 1 

with γ = 0 showing (a) the residual norm, (b) A0 and (c) S. 
 
 

at 49, 42 and 17 steps.  From the path of the numerical results, 
shown in Fig. 2, we can observe that algorithm 2 forces the 
path to depart from the manifold and searches the optimal path 
to approach the true solution.  Also, we show the residual 
norm, A0, S, and η of the RNBA by algorithms 1 and 2 in Figs. 
3, 4 and 5, respectively.  As shown in Fig. 3, we can observe 
that A0 and S maintain a moderate value when using algorithm 
1 with γ = 0 searching along the manifold.  We can clearly see 
that A0 and S of algorithm 1 with γ = 0.06, as shown in Fig. 4, 
reveal that there is oscillation when the searching direction is 
attracted by the manifold.  Again, as shown in Fig. 5, A0 
maintains a very small value and η returns to one by algorithm 
2 when the gradient direction is found. 

In this problem, there is another solution given by (x, y) = 
(36.045402, 36.80750808).  For this solution, the parameters 
are given by γ  = 0, γ  = 0.06, ε  = 1 × 10-10, α  = 0 and β = 0.0043, 
and the initial value is (x, y) = (40, 20).  We compare the residual 
norms and iteration paths of the RNBA by algorithms 1 and 2.  
The results are shown in Figs. 6 and 7, respectively, of  
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Fig. 4. A nonlinear equation (30) solved by the RNBA by algorithm 1 

with γ = 0.06 showing (a) the residual norm, (b) A0 and (c) S. 
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Fig. 5. A nonlinear equation (30) solved by the RNBA by algorithm 2 

with α = 0 and β = 0.0005 showing (a) the residual norm, (b) A0,  
(c) S and (d) η. 

 
 

which the red, pink and blue lines denote the RNBA by algo-
rithm 1 with γ  = 0, algorithm 1 with γ  = 0.06 and algorithm 2 
with α = 0 and β = 0.0043, respectively.  We can observe that 
the numerical results are very close to the true solution with 
the residual on the order of 10-10, and the result is obtained at 
152, 57 and 26 steps.  We also show the residual norm, A0, S, 
and η of the RNBA by algorithms 1 and 2 in Figs. 8, 9 and 10, 
respectively.  In this case, we can clearly observe that the 
iterative path zigzags when the searching path is attracted by 
the manifold.  With the parameters of ε = 1 × 10-10, γ  = 0, γ  = 
0.08, α = 0 and β = 0.005, and starting from an initial value of 
(x, y) = (10, 10), we can find the fifth root (x, y) = (1.635972, 
13.847665).  The results of the residual norm and iterative 
paths are shown in Figs. 11 and 12, respectively, in which the 
red, pink and blue lines denote the RNBA by algorithm 1 with  
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Fig. 6. A nonlinear equation (30) solved by the RNBA with different 

weighting factors at the initial value of (40, 20). 
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Fig. 7. A nonlinear equation (30) solved by the RNBA comparing the 

iterative path with different weighting factors. 

 
 
γ  = 0, algorithm 1 with γ  = 0.08 and algorithm 2 with α = 0 
and β = 0.005, respectively; the solution is obtained at 1768, 
244 and 64 steps.  In addition, we show the residual norms, A0, 
S, and η of the RNBA by algorithms 1 and 2 in Figs. 13-15.  As 
mentioned above, the RNBA becomes less computationally 
efficient and a Hopf bifurcation occurs when the iteration path 
is very close to the manifold. 

Example 2 

In this example, we study the following system of two al-
gebraic equations: 

2 2
1 1 2 1 2( , ) 2 0,F x x x x= + − =  

1( 1) 2
2 1 2 2( , ) 2 0.xF x x e x−= + − =  (31) 
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Fig. 8. A nonlinear equation (30) solved by the RNBA by algorithm 1 

with γ = 0 showing (a) the residual norm, (b) A0 and (c) S. 
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Fig. 9. A nonlinear equation (30) solved by the RNBA by algorithm 1 

with γ = 0.06 showing (a) the residual norm, (b) A0 and (c) S. 
 
 
The Jacobian matrix of (31) can then be expressed as fol-

lows:  

 
1

1 2
( 1)

2

2 2
.

2x

x x

e x−

 
=  
 

B  (32) 

This example has been discussed by Kuo, Yeih, and Liu  
[16] using the scalar Newton-homotopy continuation method.  
The solution search easily fails at the stagnation point (x1, x2) = 
(3.5192, 0) because the Jacobian matrix B derived from the 
target functions is singular.  We use this test to examine the 
numerical stability of the RNBA.  Setting the parameters as  
γ  = 0, γ  = 0.04, α = 0, β = 0.152, ε = 1 × 10-10 and starting from 
an initial value of (x1, x2) = (3, 5), we compare the residual  
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Fig. 10. A nonlinear equation (30) solved by the RNBA by algorithm 2 

with α = 0 and β = 0.005 showing (a) the residual norm, (b) A0,  
(c) S and (d) η. 
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Fig. 11. A nonlinear equation (30) solved by the RNBA with different 

weighting factors at the initial value of (10, 10). 
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Fig. 12. A nonlinear equation (30) solved by the RNBA, comparing the 

iterative path with different weighting factors. 
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Fig. 13. A nonlinear equation (30) solved by the RNBA with γ = 0 show-

ing (a) the residual norm, (b) A0 and (c) S. 
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Fig. 14. A nonlinear equation (30) solved by the RNBA with γ = 0.06 

showing (a) the residual norm, (b) A0 and (c) S. 
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Fig. 15. A nonlinear equation (30) solved by the RNBA by algorithm 2 

with α = 0 and β = 0.05 showing (a) the residual norm, (b) A0, (c) 
S and (d) η. 
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Fig. 16. A nonlinear equation (31) solved by the RNBA with different 

weighting factors. 
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Fig. 17. A nonlinear equation (31) solved by the RNBA comparing the 

iterative paths with different weighting factors. 
 
 

norm of the RNBA by algorithms 1 and 2, respectively; the 
results are shown in Figs. 16 and 17, in which the red, pink and 
blue lines denote the RNBA by algorithm 1 with γ  = 0, algo-
rithm 1 with γ  = 0.04 and algorithm 2 with α = 0 and β = 0.152, 
respectively.  The numerical solution is very close to the true 
solution with the residual error on the order of 10-7 as shown in 
Fig. 16, and the iterative path of the RNBA converges to the 
solution (x1, x2) = (1, 1) in 180 steps for algorithm 1 with γ  = 0, 
28 steps for algorithm 1 with γ  = 0.04, and 18 steps for algo-
rithm 2, respectively.  In addition, we show the residual norm, 
A0, S, and η in Figs. 18-20. 

Example 3 

In this example, we study the following system of three 
algebraic equations: 

1( , , ) 3 0,F x y z x y z= + + − =  

2 2
2 ( , , ) 2 4 7 0,F x y z xy y z= + + − =  

8 4 9
3 ( , , ) 3 0.F x y z x y z= + + − =  (33) 
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Fig. 18. A nonlinear equation (31) solved by the RNBA by algorithm 1 

with γ = 0 showing (a) the residual norm, (b) A0 and (c) S. 
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Fig. 19. A nonlinear equation (31) solved by the RNBA by algorithm 1 

with γ = 0.04 showing (a) the residual norm, (b) A0 and (c) S. 
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Fig. 20. A nonlinear equation (31) solved by the RNBA by algorithm 2 

with α = 0 and β = 0.152 showing (a) the residual norm, (b) A0,  
(c) S and (d) η. 
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Fig. 21. A nonlinear equation (33) solved by the RNBA by algorithm 1 

with γ = 0 showing (a) the residual norm, (b) A0 and (c) S. 
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Fig. 22. A nonlinear equation (33) solved by the RNBA with α = 0 and β = 

0.1 showing (a) the residual norm, (b) A0, (c) S and (d) η. 

 
 
To observe the relationship between the manifold and the 

parameters, we set the parameters ε = 1 × 10-10 and γ  = 0 and 
start from (x, y, z) = (0.5, 0.6, 0.6) to obtain the solution (x, y, 
z) = (1, 1, 1).  The residual norm, A0 and S are shown in Figs. 
21(a), 21(b), and 21(c), respectively.  In Fig. 21(a), the solu-
tion is obtained in 6640 steps, and the residual norm is on the 
order of 10-11.  In Fig. 21(b), we can clearly see that a moderate 
value of A0 exists in the system, which denotes the system 
limit of the manifold.  That is, the limit of the manifold needs 
to be broken through to improve the computational efficiency 
and accuracy of the numerical scheme, and, at the same time, 
A0 and S must remain as small values.  To demonstrate how to 
break through the attracting effect of the manifold, we use 
algorithm 2 with α = 0 and β = 0.1, and the numerical result is 
shown in Fig. 22.  In 1447 steps, the solutions of system are 
obtained with the same residual norm.  We also show the  
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Fig. 23. A nonlinear equation (33) solved by the RNBA with α = 0.016 

and β = 0.1 showing (a) the residual norm, (b) A0, (c) S and (d) η. 
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Fig. 24. Comparison of the iterative path with different weighting fac-

tors. 
 
 

residual norm, A0, S, and η in Fig. 22.  We further find that by 
using a large fictitious time step as shown in Fig. 22(b), the 
numerical solution quickly approaches to the true one.  How-
ever, fictitious time step is not the sole factor that controls 
whether the convergence path can depart from the manifold. 

With the parameters of α = 0.016 and β = 0.1 and the same 
convergence criterion, the residual norm, A0, S, and η are 
shown in Fig. 23.  As shown in Fig. 23(a), only within 292 
steps, the result of the RNBA converges to the solution (x, y, 
z) = (0.999999, 0.999999, 1), with the residual norm on the 
order of 10-11.  We can see that the RNBA adopts an oscillatory 
fashion to depart from the manifold and to find an optimal 
evolution path.  In Fig. 24, we compare the iterative paths of  
α = 0.016, α = 0 and γ  = 0.  We can clearly observe that when 
a large fictitious time step with α = 0 and β = 0.1, is used, the 
path departs from the manifold only in the first few steps.   
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Fig. 25. Two solutions of equation (34) solved by the RNBA comparing 

the iterative paths from different initial conditions. 

 
 
However, it is not real and thus, cannot break through the 
manifold.  On the contrary, the path of the RNBA with α = 
0.016 and β = 0.1 is parallel to the manifold, which means that 
the optimal path is the maximal gradient direction. 

Example 4 

This example under investigation is a system of two NAEs 
in three variables as follows: 

2 2 2
1( , , ) 1 0,F x y z x y z= + + − =  

2 2
2

2 ( , , ) 1 0.
4 4

x y
F x y z z= + + − =  (34) 

In this problem, number of equations is less than that of 
variables for the underdetermined nonlinear system which 
raises the difficulty of finding solutions by numerical schemes.  
With the parameters of ε = 1 × 10-7, α = 0 and β = 0.01 and 
starting from (x, y, z) = (5, 5, 5) and (5, 5, -5), we can easily 
find that (x, y, z) = (0, 0, 1) and (x, y, z) = (0, 0, -1), as shown in 
Fig. 25, in which the solutions satisfy (34) under 179 steps.  It 
can be seen that the RNBA approaches to the solution very 
rapidly and that the solution path is an optimisation of the local 
solution.  Also, we show the residual norm, A0, S, and η in  
Fig. 26.  We can see that this scheme masterfully avoids being 
constrained by the manifold and finds the numerical solution 
with the residual norm on the order of 10-7 when both solutions 
are neighbours. 

Example 5 

For this example, we use the RNBA associated with the 
NFDM to solve the elliptic boundary value problem.  For this 
problem, we need to obtain multi-variables in a higher- 
dimensional space, and at the same time, the residual is not 
equal to zero.  A two-dimensional arbitrary domain with Di-
richlet boundary conditions is further considered to test the 
accuracy and stability of this algorithm. 

The computational domain is plotted in Fig. 27, and the  
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Fig. 26. A nonlinear equation (34) solved by the RNBA with α = 0 and  

β = 0.01 showing (a) the residual norm, (b) A0, (c) S and (d) η. 

 
 

contour shape of this problem is given by 

{ }( , ) | cos 1.5,  sin 1.5,  0 2 ,x y x yρ θ ρ θ θ πΩ = = + = + ≤ ≤  

  (35) 

where 

 ( )
1

32 .cos(3 ) 2 sin (3 )ρ θ θ= + −  (36) 

We then consider the analytical solution 

 ( , ) cos 20xu x y e y= +  (37) 

of the Laplace equation 

 2 0, ( , ) .u x y∇ = ∈ Ω  (38) 

We apply a finite difference procedure to the Laplace op-
erator and discretize the domain with the finite difference 
method with a uniform grid.  Then, (38) can be rewritten as 
follows: 

 
( ) ( )

1, , 1, , 1 , , 1
2 2

2 2
0,i j i j i j i j i j i ju u u u u u

x y

+ − + −− + − +
+ =

∆ ∆
 

,  2,  3,  4, ,  1.i j m= −…  (39) 

In order to conveniently deal with an arbitrary computa-
tional domain using the FDM, we introduce a fictitious  
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Fig. 27.  The shape of the calculation domain. 

 
 

equidistant rectangle to enclose the problem domain Ω as 
shown in Fig. 27. 

Suppose that the rectangle is given by : [ ,  ]x xa aΩ = − ×
 

[ ,  ]y yb b−  such that ax and by can cover the maximum length of 

the problem domain along the x-axis and y-axis, respectively.  
Next, we discretize the rectangle Ω  by a uniform grid, with 
∆x = 2ax/(m – 1) and ∆y = 2by/(m – 1) in the x- and y-directions, 
respectively.  At the same time, we let ui,j(t) = u(xi, yj, t) be  
a numerical value of u at the grid point (xi, yj) ∈ ,Ω  which 

varies with fictitious time t, where xi = (i − 1)∆x and yi =  
(i – 1)∆y. 

To overcome the difficulty of imposing boundary condition 
on arbitrary boundary under FDM framework, we introduce 
the concept of a shape function to address the boundary con-
dition more easily.  Let ξ and Ψ be the local coordinates in  
the x- and y-directions in the grid space ,Ω  respectively.  We 
then define ξ and Ψ as follows: 

 ,2 1, , 1, 2, 3, , ,i jx x
i j m

x
ξ − = − = ∆ 

…  (40) 

 ,2 1, , 1, 2, 3, , ,i jy y
Ψ i j m

y

− 
= − = ∆ 

…  (41) 

where (x, y) are the global coordinates on the boundary and  
(xi, j, yi, j) denote the coordinates of grid point Ω .  By inserting 
(40) and (41) into the shape function, the weighting coefficient 
of the boundary condition can be expressed as follows: 

 ( )( )1

1
1 1 ,

4
N Ψξ= + +  

 ( )( )2

1
1 1 ,

4
N Ψξ= − +  

 ( )( )3

1
1 1 ,

4
N Ψξ= − −  

 ( )( )4

1
1 1 ,

4
N Ψξ= + −  (42) 
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Fig. 28. Example 5 solved by the RNBA by algorithm 1 with γ = 0 

showing (a) the residual norm, (b) A0 and (c) S. 
 
 
where N1, N2, N3 and N4 denote the bi-linear FEM shape 
functions.  When the boundary node is located in the element, 
a boundary condition and (39) and (42) are introduced to ob-
tain the following algebraic equations to enforce the boundary 
condition: 

1

1 1

4

1

0,b
i b b

i

N u H
=

− =∑  

2

2 2

4

1

0,b
i b b

i

N u H
=

− =∑  

�  

4

1

0,n

n n

b
i b b

i

N u H
=

− =∑  (43) 

where b1, b2 … bn are the boundary nodes, and 1 ,bN  2bN …  
nbN  and 

1 2
,

nb b bH H H…  denote the bi-linear Finite Element 

Method (FEM) shape functions associated with the boundary 
points and boundary conditions, respectively.  Finally, (39) 
and (43) can be written as an algebraic equation as (1).  To 
obtain the numerical solution, one can solve it by the RNBA. 

To observe the relation between accuracy and the manifold 
factor A0, we use different convergence criteria to test this 
problem.  First, we fix the following parameters: ax = by = 3,  
m = 20, n = 160, x0 = 1, and ε = 8 × 10-6, which denote the 
length of fictitious rectangle in the x-direction and y-direction, 
the number of fictitious grids in the x-direction and y-direction, 
the total number of boundary points, the vector of initial guess, 
and the convergent criterion, respectively.  With the problem 
defined above, the manifold of the RNBA with γ  = 0 is shown 
in Fig. 28.  We find that the existence of a manifold for the 
RNBA with γ  = 0 in a high-dimensional space will not easily 
converge to the true solution, and the evolution numbers, even  
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Fig. 29. Example 5 solved by the RNBA by algorithm 1 with γ = 0.08 

showing (a) the residual norm, (b) A0 and (c) S. 
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Fig. 30. A nonlinear equation solved by the RNBA with α = 0.15 and β = 

0.01 showing (a) the residual norm, (b) A0, (c) S and (d) η. 
 
 

up to 5 × 105, cannot satisfy the convergence criterion.  Also, 
we observe that the trend of A0 will show anti-symmetry with 
the residual norm in a high-dimensional problem.  That is, this 
algorithm may closely approach the solutions, but one cannot 
further improve the accuracy with more iteration steps when 
the iterative process is constrained by the manifold.  To ob-
serve how the variation of the RNBA can lead to departure 
from the manifold in high-dimensional space, we fix the 
convergence criterion with ε = 8 × 10-3 and use algorithm 1 
with γ = 0.08 and algorithm 2 with α = 0.15 and β = 0.01.   
The residual norm, A0, and S of the RNBA by algorithm 1 and 
2 are shown in Figs. 29 and 30, respectively.  We can see that 
the residual norms of algorithm 1 and algorithm 2 decrease  



594 Journal of Marine Science and Technology, Vol. 22, No. 5 (2014) 

 

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005
3

2
1

0 X0
1

2
3

Y

0

0.02

0.04

0.06

R
el

at
iv

e 
Er

ro
r

 
Fig. 31. Example 5 displaying the relative error of the RNBA by algo-

rithm 1. 
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Fig. 32. Example 5 displaying the relative error of the RNBA by algo-

rithm 2. 
 
 
very quickly in 822 steps for algorithm 1 and 510 steps for 
algorithm 2.  Furthermore, we can observe that the conver-
gence processes of algorithm 1with A0 = 18 and S = 0.94488 
and of algorithm 2 with A0 = 1.6 and S = 0.4197 are not  
attracted by the manifold, as shown in Figs. 29(b) and 30(b), 
respectively; this phenomenon is called intermittent chaos.  
Both algorithms 1 and 2 give accurate numerical results.  In 
addition, as shown in Figs. 31 and 32, the maximum errors are 
4.68038 × 10-2 and 2.86859 × 10-2, respectively.  We can then 
observe the effect of the RNBA with ε = 8 × 10-6 and compare 
it with the MBECA when an attractable phenomenon occurs 
between the manifold and true solution.  

With the parameters x0 = 1, γ  = 0.08, α = 0.1 and β = 0.01, 
we compare the convergent rates of the RNBA with different 
weighting factors with the MBECA; the convergence plot is 
shown in Fig. 33, in which the black, red, pink and blue lines 
denote the RNBA by algorithm 1, RNBA by algorithm 2, 
RNBA with γ  = 0 and MBECA, respectively.  We can see that 
the residual norms from the RNBA by algorithms 1 and 2 
decrease very quickly and that the MBECA exhibits many 
irregular bursts.  Both the MBECA and RNBA give rather  
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Fig. 33. The convergence plot with the black, pink, red, and blue lines 

denoting the RNBA by algorithm 1 with γ = 0.08, the RNBA by 
algorithm 1 with γ = 0, the RNBA by algorithm 2 with α = 0.1 
and β = 0.01, and the MBECA, respectively. 
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Fig. 34. Example 5 displaying the relative error of the RNBA by algo-

rithm 1. 
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Fig. 35. Example 5 displaying the relative error of the RNBA by algo-

rithm 2. 
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Fig. 36. Example 5 solved by the RNBA by algorithm 1 with γ = 0.08, 

showing (a) the residual norm, (b) A0 and (c) S. 
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Fig. 37. Example 5 solved by the RNBA with α = 0.1 and β = 0.01 show-

ing (a) the residual norm, (b) A0, (c) S and (d) η. 

 
 

accurate numerical results with maximum errors of 4.35 × 10-4 
for the MBECA, 2.22 × 10-4 for the RNBA by algorithm 1, and 
2.08 × 10-4 for the RNBA by algorithm 2.  In Figs. 34 and 35, 
we only show the numerical errors for the RNBA by algo-
rithm 1 and 2.  In addition, the residual norm, A0, and S of the 
RNBA by algorithm 1 and 2 are shown in Figs. 36 and 37, 
respectively.  We can see that the residual norms of algorithm 
1 and algorithm 2 satisfy the convergence criterion in 2.1865 × 
104

 steps for algorithm 1 and 1.9897 × 104
 steps for algorithm 

2.  Furthermore, we can observe that A0 = 4.175 × 106
 and  

S = 0.9999 for algorithm 1 and A0 = 4.9088 and S = 0.79832 
for algorithm 2, which are not attracted by the manifold, as  
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Fig. 38. Example 5 solved by the RNBA with α = 0.3 and β = 0.001 

showing (a) the residual norm, (b) A0, (c) S and (d) η. 
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Fig. 39. Example 5 displaying the relative error of the RNBA by algo-

rithm 2. 
 
 
shown in Figs. 36(b) and 37(b).  Finally, to obtain a more 
accurate solution, we can fix the small values α = 0.3 and  
β = 0.001 to approach the true solution, and the residual norm, 
A0, and S of the RNBA and the residual error are shown in 
Figs. 38 and 39, respectively.  Through 2.3978 × 104 evolution 
steps, we can obtain numerical results with a maximum error 
of 1.921 × 10-4 and A0 and S are 7.9643 and 0.8857, respec-
tively.  From the results obtained above, we can conclude that 
the proposed algorithm has both good stability and high effi-
ciency for solving determinate/indeterminate systems of nonlin-
ear algebraic equations. 

IV. CONCLUSIONS 

In this paper, the RNBA has been proposed to solve the 
problems of the non-linear algebraic equations successfully.  
The fundamental concept starts from a continuous manifold 
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based on the residual-norm and the ODEs of the specified 
gradient flow to govern the evolution of the unknown vari-
ables.  In addition, from a construction of space-time manifold 
of GPS, we can develop an algorithm with a fictitious time 
step.  Several applications, including of finding the roots of 
nonlinear algebraic equations in two-, three-variable and el-
liptic-type PDEs that use a NFDM in high-dimensional space, 
were tested and illustrated in this paper.  Results of the nu-
merical examples demonstrate that the present method can 
work more effectively and accurately than conventional 
schemes that use a space-time manifold to solve nonlinear 
algebraic equations.  Most importantly, this method does not 
involve a complicated computation of the inverse of the 
Jacobian matrix and need not to solve the function Q(t).  
Therefore, the RNBA is highly efficient in finding the solu-
tions of determinate or indeterminate systems of non-linear 
algebraic equations and can enhance the accuracy and the 
convergence speed. 
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