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ABSTRACT

In this paper, the practical covariance control theory is applied to
incorporate the concept of variance constrained control for the dis-
crete nonlinear systems using T-S fuzzy models.  This paper focuses
on the control problem of finding observed-state feedback gains for
the discrete fuzzy controllers, which can achieve the common state
covariance assignment.  Finally, a numerical example will be used to
show the simulation results of the present fuzzy control method and
usefulness of the proposed approach.

INTRODUCTION

This paper considers the discrete Takagi-Sugeno
(T-S) fuzzy model [9, 24], that is described by a set of
fuzzy “IF-THEN” rules with fuzzy sets in the anteced-
ents and dynamics systems in the consequent.  In this
type of fuzzy model, local dynamics in different state-
space regions are represented by linear models.  Recently,
its stability analysis and design problems have been
considered in [25-27].  To solve this control problem,
Tanaka and Wang proposed the design method of Paral-
lel Distributed Compensation (PDC) [25-27] as a design
framework.  The goal of PDC method is to design linear
feedback gain for each local linear model, and let the
overall system input can be blended by these linear
feedback gains.  This method requires to find a common
positive define matrix P such that the sufficient stability
conditions are satisfied for every “IF-THEN” rule.  Al-
though looking for a common positive definite solution
of the Lyapunov inequalities is by no means easy, the
Lyapunov inequalities can be transformed into a set of

Linear Matrix Inequalities (LMI) [3, 25, 26].  The LMIs
can be solved by a numerical algorithm, which is an
useful tool in finding a common positive definite matrix
P.

For the stochastic systems, many scholars have
provided methodologies for designing the controllers
by using the covariance control technology [4-6, 10-17,
23].  It has been proposed as an alternative approach for
stochastic controller design.  It is known that the qua-
dratic optimization has been the most popular controller
design method.  However, it can guarantee only that the
control system state vector as a whole behaves well.  In
order to deal with the individual variance constrained
design problem, a methodology of designing controllers
has been developed for several stochastic systems.  The
methodology is called as “Covariance Control Theory”
[4-6, 10-17, 23].  In the covariance control theory, all
state feedback gains are found which can assign the
state covariance to a specified matrix value.  This is
extremely useful when it is desired to assign all the
Root-Mean-Square (RMS) values of the individual states
to specified values.

Over the past decade, a number of researchers
have already given much insight into the problems
related to the estimation and control theories of various
dynamic systems.  A series of results appeared in [2, 19-
22].  Most recently, the authors have already success-
fully dealt with the constrained variance design, based
on the covariance control theory, for continuous nonlin-
ear stochastic systems [8] and discrete nonlinear sto-
chastic systems [7].  Nonetheless, [7, 8] assumed a
priori that each of the system states can be measured
accurately.  Therefore, this work continues to discuss
the nonlinear systems whose states are partially
immeasurable.  The main objective of this paper is to
design the observed-state feedback laws which achieve
the closed-loop system with a specified state covariance.
Here, this problem is referred to as “Covariance Control
with the Observed-State Feedback (CCOSF)”.  In this
study, the state estimation theory and the covariance
control theory will be combined to achieve individual
performance objectives completely.  The contribution
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of this approach is that the individual variance con-
straints can be achieved by combining covariance con-
trol theory and estimation theory for the nonlinear dis-
crete stochastic systems whose states are partially
immeasurable.  In addition, the proposed approach pro-
vides another advantage that the covariance matrices of
true states and estimation errors may be chosen sepa-
rately to design observed-state feedback controllers and
optimal filter gains.

The organization of this paper is presented as
follows.  Section 2 introduce the stability conditions of
discrete T-S fuzzy control systems, then describes the
control problem and discusses the optimal state estima-
tion of discrete nonlinear stochastic systems using T-S
fuzzy models.  Section 3 will find the solutions of the
CCOSF problem.  In addition, the existence of ob-
served-state feedback gains of T-S type fuzzy control-
lers will be developed and solved.  In Section 4, a
numerical simulation is presented to demonstrate the
feasibility and applicability of this approach.  Finally,
conclusions are drawn in Section 5.

DESCRIPTIONS  OF  DISCRETE  OBSERVED-
STATE  FEEDBACK  NONLINEAR  SYSTEMS

USING  T-S  FUZZY  MODELS

The fuzzy inference engine uses the fuzzy IF-
THEN rules to perform a mapping from an input linguis-
tic vector x = [x1x2 ... xnx]

T ∈ ℜnx to an output variable
y ∈ ℜny.  The system is described by fuzzy IF-THEN
rules, which represent local linear input-output rela-
tions of nonlinear systems.  In this section, a T-S type
fuzzy stochastic model is used to construct a nonlinear
stochastic system as follows.

Plant Rule i :

IF x1(k) is Mi1 ... and xnx(k) is Minx,
THEN x(k + 1) = Aix(k) + Biu(k) + Div(k),

y(k) = Cix(k) + Eiµ(k), i = 1, 2,..., r, (1)

where x(k) ∈ ℜnx is the state vector; u(k) ∈ ℜnu is the
control input vector; and y(k) ∈ ℜny is the control output
vector in i-th rule.  The v(k) ∈ ℜnv and µ(k) ∈ ℜnµ are
stationary zero-mean mutually independent white noise
processes with covariance V > 0 and Ω > 0, respectively.
The matrices, Ai ∈ ℜnx × nx, Bi ∈ ℜnx × nu, Ci ∈ ℜny × nx,
Di ∈ ℜnx × nv, and Ei ∈ ℜny × nµ are constant; i =1, 2, ...,
r and r is the number of IF-THEN rules.  The Mij are
fuzzy sets and it is assumed that Bi is full-column rank.
Besides, the pairs (Ai, Bi) and (Ai, Ci) are controllable
and observable, respectively.

The state and output equations for the system can
be represented in term of the rules (1) as

x (k + 1) = hiΣ
i = 1

r

(k) Ai x (k) + hiΣ
i = 1

r

(k) Bi u(k)

+ hiΣ
i = 1

r

(k) Di v (k), (2)

y (k) = hiΣ
i = 1

r

(k) Ci x (k) + hiΣ
i = 1

r

(k) Ei µ (k), (3)

w h e r e  hi (k) = ωi (k) / ωiΣ
i = 1

r

(k), ωi (k) = MijΠ
j = 1

nx

(xj (k)) a n d

Mij (xj (k)) is the grade of membership of xj (k) in Mij;
ωi(k) is the weight of the i-th rule.

In some nonlinear systems, the system states usu-
ally cannot be completely measured.  Therefore, the
designers need to design the fuzzy observers to estimate
the states for the fuzzy system in order to implement the
fuzzy controller.  In [18], the authors consider the so-
called separation property for a controller and an ob-
server for the linear stochastic systems.  The fuzzy
observers require to satisfy the condition x (k) – x (k)→ 0
when k → ∞, where x̂ (k) denotes the estimated state
vector of the fuzzy observer.  In this paper, the fuzzy
observer is described as follows:

Observer Rule i :

IF x1(k) is Mi1 ... and xnx(k) is Minx,

THEN x (k + 1) = Ai x (k) + Bi u(k) + Ki (y (k) – y (k)),

y (k) = Ci x (k), i = 1, 2, …, r, (4)

where Ki ∈ ℜnx × ny are observer gain matrices and x̂ (k)
∈ ℜnx is the state vector of observer.  The y(k) and ŷ (k)
are the output of the fuzzy system and the fuzzy observer,
respectively.  Then, the final estimated state and output
of the fuzzy observer are characterized as follows.

x (k + 1) = hiΣ
i = 1

r

(k) Ai x (k) + hiΣ
i = 1

r

(k) Bi u (k)

+ hi (k)Σ
j = 1

r

Σ
i = 1

r

hj (k) Ki Cj [x (k) – x (k)]

+ hi (k)Σ
j = 1

r

Σ
i = 1

r

hj (k) Ki Ej µ(k), (5)

y (k) = hi (k)Σ
i = 1

r

Ci x (k), (6)

The same weight hi(k) of i-th rule of the fuzzy system
(2) and (3) is used for the fuzzy observer (5) and (6).
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The design parameters of the fuzzy observer are gain
matrices Ki in each rule.

In this paper, the concept of PDC [25-27] is used
to synthesize fuzzy control laws of observed-state feed-
back stabilization for the nonlinear systems, which are
represented by discrete T-S type fuzzy stochastic mod-
els (1).  The basic idea of the PDC approach is to design
the feedback gains for each rule in the fuzzy models.
Linear control design techniques can be used to design
these linear controllers for each rule.  Hence, the nonlin-
ear system controller can be blended by local linear
fuzzy controllers sharing the same fuzzy sets with the
discrete T-S type fuzzy stochastic models (1).  By using
the observed state from the fuzzy observer, the feedback
fuzzy controller becomes

Observer-based Fuzzy Controller Rule i :

IF x1(k) is Mi1 ... and xnx(k) is Minx
THEN u(k) = Gix̂(k), i = 1, 2, ..., r, (7)

where i = 1, 2, ..., r and r is the number of IF-THEN rule.
The overall observed-state feedback fuzzy controller
becomes

u(k) = hi (k)Σ
i = 1

r

Gi x (k). (8)

This observed-state feedback fuzzy controller is nonlin-
ear in general.  By substituting (8) into (2) and (5), state
and observer equations of the fuzzy system can be
described as follows.

x (k + 1) = hi (k)Σ
i = 1

r

Ai x (k) + hi (k)Σ
j = 1

r

Σ
i = 1

r

hj (k) Bi Gj x (k)

+ hi (k)Σ
i = 1

r

Di v (k), (9)

x (k + 1) = hi (k)Σ
j = 1

r

Σ
i = 1

r

hj (k) (Ai + Bi Gj ) x (k)

+ hi (k)Σ
j = 1

r

Σ
i = 1

r

hj (k) Ki Gj [x (k) – x (k)]

+ hi (k)Σ
j = 1

r

Σ
i = 1

r

hj (k) Ki Ej µ(k). (10)

Introducing x (k) = x (k) – x (k), Rij =
(Ai + Bi Gj ) + (Aj + Bj Gi )

2

and R ij =
Bi Gj + Bj Gi

2
, i < j ≤ r, Eq. (9) can be rewritten

as

x (k + 1) = hi (k)Σ
i = 1

r

hi (k) (Ai + Bi Gi ) x (k)

+ 2 hi (k)Σ
i < j

hj (k) Rij x (k)

– hi (k)Σ
i = 1

r

hi (k) Bi Gi x (k) + 2 hi (k)Σ
i < 1

r

hj (k) Rij x (k)

+ hi (k)Σ
i = 1

r

Di v (k). (11)

The observer error dynamics becomes

x (k + 1) = hi (k)Σ
i = 1

r

hi (k) (Ai – Ki Ci ) x (k)

+ 2 hi (k)Σ
i < j

hj (k) Hij x (k)

– hi (k)Σ
i = 1

r

hi (k) Ki Ei µ(k) + 2 hi (k)Σ
i < 1

r

hj (k) Hij µ(k)

+ hi (k)Σ
i = 1

r

Di v (k), (12)

where Hij =
(Ai – Ki Cj ) + (Aj – Kj Ci )

2
 and Hij =

Ki Ej + Kj Ei

2
.

Augmenting (11) and (12) yields:

χ (k + 1) = hi (k)Σ
k = 1

r

Σ
i = 1

r

hi (k) hk (k) [Liχ (k) + Nik v (k)]

+ 2 hi (k)Σ
i < j

r

hj (k) [Lijχ (k) + Nij v (k)], (13)

where

χ (k) =
x (k)
x (k)

, v (k) =
v (k)
µ (k)

,

Li =
Ai + Bi Gi – Bi Gi

0 Ai – Ki Ci
, Lij =

Rij – Rij

0 Hij

,

Nik =
Dk 0

Dk – Ki Ei
, Nij =

0 0

0 – Hij

.

If Li is a stable matrix, the state covariance matrix
Xi of each subsystem of (13) can be defined by [18, 21]

Xi = lim
k →∞

E [χ (k) χ (k)T] (14)

Let the common covariance matrix for (13) be X such
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that

X = Xi =
Xaa Xab

Xab
T Xbb

, i = 1, 2, …, r, (15)

and X = XT > 0, then X satisfies the following Lyapunov
equation for each rule [18, 21]:

Li X + XLi
T + Ni ΦΦ Ni

T = 0 (16)

where ΦΦ =
V 0
0 ΩΩ

.

The purpose of this paper is to find the set of controllers
Gi which satisfy the Lyapunov Eq. (16) such that the
covariance matrix Xaa satisfies the following variance
performance objectives:

lim
k →∞

E [xϕ
2 (k)] = [Xaa]ϕϕ ≤ σϕ

2, ϕ = 1, 2, …, nx, (17)

where σϕ denote the Root-Mean-Squared (RMS) con-
straint for the variances of system states.  This problem
will be referred to as the variance constrained design
using the CCOSF.

Based on the common covariance matrix defined
in (15), references [20] provided the conditions and
solutions for the optimal filter gains Ki as follows:

Ki = Ai Xbb Ci
T(Ci Xbb Ci

T + Ei ΩΩ Ei
T)– 1 (18)

(Ai + Bi Gi ) Xaa(Ai + Bi Gi )
T

– Bi Gi Xbb (Ai + Bi Gi )
T – (Ai + Bi Gi ) Xbb (Bi Gi )

T

+ Bi Gi Xbb (Bi Gi )
T + Di VDi

T – Xaa = 0 (19)

Xbb = (Ai – Ki Ci ) Xbb (Ai – Ki Ci)
T

+ Ki (Ei ΩΩ Ei
T) Ki

T + DiVDi
T (20)

where Xaa > 0, Xbb > 0 and Xab = Xbb are defined in (15).
Note that the assumption Xab = Xbb implies that the
estimate x̂  and the error x~ are orthogonal, i.e., E[x̂ x~T] =
0.  From the results of [20], it can be found that the
optimal filter gain Ki = Ai Xbb Ci

T(Ci XbbCi
T + Ei ΩΩ Ei

T)– 1

leads to the fact that the steady state error between the
system state x(k) and the estimated state x̂ (k) converges
to zero when k → ∞.  Without loss of generality, this
assumption has been applied in the design of optimal
filter for the continuous-time systems [21, 22] and
discrete-time system [20], respectively.

From (18), note that if discrete T-S fuzzy model
(1) is corrupted only by state noise without measure-
ment noise (i.e., Ω = 0), then the optimal gain Ki does
not exist.  A variance constrained design methodology
for discrete T-S fuzzy models, based on the theory of
covariance control, has been developed in [8].  To offer
a lucid presentation of the covariance control theory for
discrete T-S fuzzy model (1), this paper recall the
results of the stability of the whole system with the
fuzzy observers.  The CCOSF problem will be solved
using the above optimal estimations (18-20) by the
following theorem.

Theorem 1

Consider the fuzzy system (1) driven by (5) and (8)
with the observer gain Ki defined in (18).  If there exist
common positive definite matrices Xaa > 0, Xbb > 0,
Xab = Xbb and (Xaa = Xbb) > 0 (as defined in (15))
satisfying the following conditions, then the equilib-
rium of the observed-state feedback fuzzy control sys-
tem (11) is asymptotically stable in the large.

Ai Xbb Ai
T – Ai Xbb Ci

T(Ci Xbb Ci
T + Ei ΩΩ Ei

T)– 1Ci Xbb Ai
T

+ Di VDi
T – Xbb = 0 (21)

(Ai + Bi Gi )(Xaa – Xbb ) (Ai + Bi Gi )
T

+ Ai Xbb Ci
T(Ci Xbb Ci

T + Ei ΩΩ Ei
T)– 1Ci Xbb Ai

T

– (Xaa – Xbb) = 0  (22)

Rij (Xaa – Xbb ) Rij
T – (Xaa – Xbb ) < 0, i < j ≤ r (23)

Proof:

From the previous statements, it is clear that the
matrix Ki performs an optimal filter gain if and only if
there exist matrices Xaa > 0, Xbb > 0 such that (18-20) are
all satisfied with Xab = Xbb defined in (15).  Substituting
(18) into (20) and rearranging yields

Xbb = Ai Xbb Ai
T – Ai Xbb Ci

T (Ci Xbb Ci
T + Ei ΩΩ Ei

T)– 1

Ci Xbb Ai
T + Di VDi

T (24)

which is equivalent to (21).  Putting (24) into (19), then
one can obtain

Xaa – Xbb = (Ai + Bi Gi ) (Xaa – Xbb) (Ai + Bi Gi )
T

+ Ai Xbb Ci
T(Ci Xbb Ci

T + Ei ΩΩ Ei
T)– 1Ci Xbb Ai

T

(25)
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Thus, the conditions (19) and (20) can be replaced by
(23) and (21) with the observer gain Ki defined in (18).
From [20], it can be found that the optimal filter gain Ki

defined in (18) satisfying (19-20) or (21-22) leads to the
fact that the steady state error of x~(k) approximates to
zero when k → ∞.  From Theorem 3 of [25], one can find
that if there exist a common positive definite error state
covariance matrix (Xaa – Xbb) satisfying (22) and (23),
then the equilibrium of continuous fuzzy control system
(11) is asymptotically stable in the large due to AiXbbCi

T

(CiXbbCi
T + EiΩEi

T)–1 CiXbbAi
T ≥ 0 and x~(k) → 0.  Hence,

it can be concluded that if conditions (21-23) are satis-
fied with the observer gain Ki defined in (18), then the
equilibrium of the observed-state feedback fuzzy con-
trol stochastic system (11) is asymptotically stable in
the large.

From Theorem 1, the main purpose of this paper is
to solve the control feedback gain matrices Gi such that
the designers can directly assign common positive defi-
nite error state covariance matrix (Xaa – Xbb) to achieve
the variance constraints (17).  Achieving the above
stability conditions requires the control feedback gains
Gi that satisfy (21-23) so that the closed-loop fuzzy
system (11) will be asymptotically stable.  The next
section shows how to assign the common covariance
matrix X and then find control feedback gains Gi by
using the theory of generalized inverse.

THE  SOLUTIONS  OF  OBSERVED-STATE
FEEDBACK  GAINS  FOR  DISCRETE  T-S  TYPE

FUZZY  CONTROLLERS

In this section, the results of above section will be
applied to develop a method for solving Gi subject to the
assigned common covariance matrix X.  Stability condi-
tions of Theorem 1 and the solutions of CCOSF prob-
lems are discussed in the following theorem.

Theorem 2

Consider the discrete T-S fuzzy model (1) driven
by (5) and (8) with the observer gain Ki = AiXbbCi

T

(CiXbbCi
T + EiΩEi

T)–1, where Xbb > 0 satisfies Eq. (21).
It is assumed that the factor of (Xaa – Xbb), where Xaa and
Xbb are defined in (15), is F (i.e., FFT = (Xaa – Xbb) and
the matrices Hi and Li are defined by

Hi = (I – Bi Bi
+) (Xaa – Xbb – Ai Xbb Ci

T (Ci Xbb Ci
T

+ Ei ΩΩ Ei
T)– 1Ci Xbb Ai

T)
1
2 (26)

Li = (I – Bi Bi
+) Ai F (27)

where [⋅]+ denotes the Moore-Penrose inverse of [⋅],

[ ⋅ ]
1
2  is the unique positive semi-definite square root of

[⋅] and the matrices H i and L i have rank mr and the
following singular value decompositions.

Hi = ΓΓi ΣΣi Qi
T (28)

Li = ΓΓi ΣΣi Ti
T (29)

where Γi, Qi, Ti are orthonormal, Σ = diag (σ1, ..., σnx),
σ1 ≥ σ2 ≥ ...≥ σmr > 0 = σmr + 1 = ...= σnx.

Then the system has observed-state feedback gains
Gi that achieve stability condition (22) for a common
positive definite error state covariance (Xaa – Xbb) > 0 if
and only if the following condition is satisfied.

Xaa ≥ Xbb + Ai Xbb Ci
T(Ci Xbb Ci

T + Ei ΩΩ Ei
T)– 1Ci Xbb Ai

T

(30)

(I – Bi Bi
+) (Ai Xaa Ai

T – Xaa + Di VDi
T) (I – Bi Bi

+ ) = 0
(31)

Moreover, assume that the conditions (30) and
(31) are all satisfied, and then the set of all convenient
observed-state feedback gains Gi that solve CCOSF
problem is given by

Gi = Bi
+ (Xaa – Xbb – Ai Xbb Ci

T(Ci Xbb Ci
T + Ei ΩΩ Ei

T)– 1

Ci Xbb Ai
T)

1
2Si F

– 1 – Ai + (Inu
– Bi

+Bi )Yi , (32)

where Yi ∈ ℜnu × nx is arbitrary (note Yi = 0 is such
arbitrary) and Si ∈ S i .  The set S i  is expressed as

Si = Si : Si = Qi

Ir 0

0 U0
Ti

T, U0 ∈ℜ(nx – mr ) × (nx – mr )

is arbitrarily orthonormal (33)

Proof:

Necessity

Suppose there exists an observed-state feedback
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gain Gi satisfies

Ai + Bi Gi = (Xaa – Xbb – Ai Xbb Ci
T(Ci Xbb Ci

T

+ Ei ΩΩ Ei
T)– 1Ci Xbb Ai

T)
1
2Si F

– 1

or

Bi Gi = (Xaa – Xbb – Ai Xbb Ci
T(Ci Xbb Ci

T

+ Ei ΩΩ Ei
T)– 1Ci Xbb Ai

T)
1
2Si F

– 1 – Ai (34)

where Si is some orthonormal matrix.  From the well-
know results of the generalized inverse theory [1], (34)
has a solution Gi if and only if

Bi Bi
+ (Xaa – Xbb – Ai Xbb Ci

T(Ci Xbb Ci
T

+ Ei ΩΩ Ei
T)– 1Ci Xbb Ai

T)
1
2Si F

– 1 – Ai

= (Xaa – Xbb – Ai Xbb Ci
T(Ci Xbb Ci

T

+ Ei ΩΩ Ei
T)– 1Ci Xbb Ai

T)
1
2Si F

– 1 – Ai

or

(I – Bi Bi
+) (Xaa – Xbb – Ai Xbb Ci

T(Ci XbbCi
T

+ Ei ΩΩ Ei
T)– 1Ci Xbb Ai

T)
1
2Si = (I – Bi Bi

+)Ai F
(35)

Then, it is well known that (34) is consistent, if and
only if there exists an orthonormal matrix Si which
satisfies

HiSi = Li (36)

where Hi and Li are defined in (26) and (27).
Now, assume that Si is orthonormal and multiply

(36) by its transpose to obtain

Hi Hi
T = Li Li

T (37)

Then, (37) is a necessary condition for the existence of Gi.

Sufficiency

By assuming (37), this proof wants to show that
(36) is true.  Note that the symmetric, positive semi-
definite matrix Li Li

T  of rank mr may be expressed as

Li Li
T = ΓΓi ΣΣ i

2ΓΓi
T (38)

where Γi is orthonormal, Σ = diag(σ1,...,σnx), and σ1 ≥ σ2

≥...≥ σmr > 0 = σmr + 1 =...= σnx.  Therefore, if (37) is
satisfied, then

Hi Hi
T = ΓΓi ΣΣ i

2 ΓΓi
T (39)

Thus, Hi and Li may be expressed as (28) and (29) by
means of singular value decomposition.

Now, substitute (28) and (29) into (36) to obtain

ΓΓi ΣΣi Qi
TSi = ΓΓi ΣΣi Ti

T (40)

Then, it is seen that (40) admits an orthonormal solution

Si = Qi Ti
T (41)

Thus, if (37) is assumed, the orthonormal matrix Si

defined by (41) satisfies (36).  Consequently, the ob-
served-state feedback gains Gi, which satisfies (34),
will exist, if and only if (37) is true.  By substituting (26)
and (27) into (37), it is easily seen that (37) is equivalent
to (31).

Moreover, the solution of the present problem will
be obtained as follows.  Substituting (28) and (29) into
(36) gives

ΓΓi ΣΣi Qi
TSi = ΓΓi ΣΣi Ti

T (42)

Also, premultiplying (42) by Qi ΓΓi
T  gives

Qi ΣΣi Qi
TSi = Qi ΣΣi Ti

T (43)

Since Qi ΓΓi
T  is nonsingular, (42) and (43) are equivalent

statements, so Si must be an orthonormal solution of
(43).  However, by comparing (43) with Lemma A1 and
Lemma A2, it is seen that Si is an orthonormal matrix in
the polar decomposition of the matrix Ji = QiΣiTi

T.
Thus, using Lemma A2, Si satisfies (43) (or equivalently,
the condition (36)), if and only if Si ∈ S i .

For any Si ∈ S i , the observed-state feedback gain
Gi is a solution of (34), if and only if it may be expressed
as [1]

Gi = Bi
+ (Xaa – Xbb – Ai Xbb Ci

T (Ci Xbb Ci
T

+ Ei ΩΩ Ei
T)– 1Ci Xbb Ai

T)
1
2Si F

– 1 – Ai

+ (Inu
– Bi

+Bi )Yi (44)
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for some Yi ∈ ℜnu × nx.
Theorem 2 provides the conditions and solutions

for the existence of observed-state feedback gains Gi

such that the stability condition (22) is satisfied.  From
the above results, the design steps for the constrained
variance design procedure of the CCOSF fuzzy control-
ler design problems can be summarized as follows.

Step 1. Solve the positive definite matrix Xbb from al-
gebraic Riccati-like Eq. (21).

Step 2. Assign the diagonal elements of matrix Xaa to
satisfy [Xbb]ϕϕ ≤ [Xaa]ϕϕ ≤ σ2

ϕ, ϕ = 1, 2, ..., nx,
which can guarantee that the constraint (17) is
satisfied.

Step 3. Use variance constrained design methodology
[12] to solve the off-diagonal elements of Xaa

from (31).
Step 4. If the matrix Xaa solved from Step 3 does not

satisfy condition Xaa – Xbb – AiXbbCi
T(CiXbbCi

T +
E iΩE i

T)–1C iXbbA i
T ≥  0, then go to Step 2;

otherwise, continues.
Step 5. Substitute Xaa and Xbb into (18) and (32) to

obtain optimal filter gains Ki and observed-
stated feedback gains Gi, respectively.

Step 6. Substitute Xaa, Xbb and Gi into (23) to check
whether (23) is satisfied.  If (23) is not satisfied,
it is necessary to go to Step 2 to reassign com-
mon state covariance matrix Xaa.

In the following section, the application of the
variance constrained design approach with observer-
based fuzzy covariance controllers will be illustrated by
a numerical example.

A  NUMERICAL  EXAMPLE

To design the fuzzy controller and the fuzzy
observer, it is necessary to construct a T-S type fuzzy
model, which represents the dynamics of a nonlinear
stochastic plant.  In this section, a nonlinear discrete
stochastic system is considered as follows:

x1(k + 1) = x2(k), (45a)

x2 (k + 1) = – 2 +
π

2.39
cos x1 (k) sin x1(k)

+ (1.25 + 3.75 cos x1 (k)) x2(k)

–
1

3.144 – 0.177 cos x1 (k)
u(k)

+ (0.03 + 0.0355 cos x1(k)) v (k), (45b)

y(k) = –0.35x1(k) – 0.0025µ(k), (45c)

where the covariance matrices of zero-mean white noises
v(k) and µ(k) are V = 0.2 and Ω = 0.1, respectively.  It
is assumed that the range of nonlinear state variable

x1(k) is x1(k)∈ –
π
2

,
π
2

.  The nonlinear system (45) can

be represented by the following two-rule (i.e., r = 2)
T-S fuzzy model [26].

Plant Rule1:

IF x1(k) is about 0

THEN x (k) = A1 x (k) + B1 u (k) + D1 v (k) (46a)

y(k) = C1x(k) + E1µ(k)

Plant Rule2:

IF x1(k) is about ±
π
2

x1 <
π
2

THEN x (k) = A2 x (k) + B2 u(k) + D2 v (k) (46b)

y(k) = C2x(k) + E2µ(k)

where

A1 =
0 1

– 0.1 5
, A2 =

0 1
– 0.9 1.25

,

B1 =
0

– 0.337
, B2 =

0
– 0.318

, C1 = C2 = [0 – 0.35],

D1 =
0

0.0655
, D2 =

0
0.03

, E1 = E2 = – 0.0025,

Figure 1 shows the membership functions of non-
linear state variable x1(k) of T-S fuzzy model (46).  In
Figure 1, the fuzzy sets for fuzzy rules are described by
two triangular membership functions.  In this numerical
example, it is assumed that the constraints for state
variances of the nonlinear system (45) are

[Xaa]11 ≤ 0.2, [Xaa]22 ≤ 0.175 (47)

According to Step 1 of the design procedure, the
positive definite matrix Xbb can be obtained by solving
the algebraic Riccati-like Eq. (21).

Xbb =
0.001 0

0 0.003
. (48)
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From Step 2, we first assign the diagonal entries of Xaa

as [Xaa]11 = 0.15 and [Xaa]22 = 0.15 such that the
variance constraints (47) are satisfied.  Next, applying
the variance constrained design methodology [12] to
solve the off-diagonal elements of Xaa from (31) yields

Xaa =
0.15 0.05
0.05 0.15

. (49)

Putting the matrices Xaa and Xbb into (15), the common
covariance matrix X becomes

X =

0.15 0.05 0.001 0
0.05 0.15 0 0.003

0.001 0 0.001 0
0 0.003 0 0.003

(50)

Subtracting Xbb from Xaa, one can obtain

Xaa – Xbb – A1 Xbb C1
T(C1 Xbb C1

T

+ E1 ΩΩ E1
T)– 1C1 Xbb A1

T  =
0.1460 0.0350
0.0350 0.0721

≥ 0. (51)

Xaa – Xbb – A2 Xbb C2
T (C2 Xbb C2

T

+ E2 ΩΩ E2
T) – 1C2 Xbb A2

T =
0.1460 0.0463
0.0463 0.1423

≥ 0. (52)

According to Step 5, the optimal filter gains Ki and
observed-stated feedback gains Gi can be obtained by
substituting Xaa and Xbb into (18) and (32), respectively.

K1 = [–2.852   –14.261]T, K2 = [–2.852  –3.565]T

(53)

G1 = [1.765   13.426], G2 = [0.262   1.886] (54)

Finally, substituting Xaa, Xbb and Gi into (23) yields

Rij (Xaa – Xbb ) Rij
T – (Xaa – Xbb )

=
– 0.0020 – 0.0076
– 0.0076 – 0.0346

< 0. (55)

It can be found that the stability condition (23) is also
satisfied.  Since conditions (21-23) are all satisfied, it
can be concluded that the discrete T-S fuzzy model (46)
is asymptotically stable by applying the optimal filter
gains Ki of (53) and observed-stated feedback gains Gi

of (54).
In the simulation, the initial states are given as

[x1(0)  x2(0)]T = [–0.9  0.9]T.  Figure 2 and Figure 3 show

Fig. 1.  The membership function of x1(k).

0
0

Rule 2

π––2

1
Rule 2

Rule 1

x1(k)

π––2–

Fig. 2. The responses of x1(k) for controlled nonlinear system (45) and
fuzzy model (46).
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Fig. 3. The responses of x2(k) for controlled nonlinear system (45) and
fuzzy model (46).
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the state responses of x(k) of controlled nonlinear sys-
tem (45) and T-S fuzzy model (46).  Figure 4 and Figure
5 show the responses of true states x(k) and the esti-
mated state x̂ (k) for the controlled T-S fuzzy model
(46).  From these simulation results, the state variances
of closed-loop nonlinear system (45) are calculated as
follows:

var (x1(k)) = 0.1287 and var (x2(k)) = 0.1206
(56)

where var (x (k)) denotes the variance of system state
x (k),  = 1, 2.  It can be found that the closed-loop
stochastic system is stable and the variance constraints
(47) are achieved.

CONCLUSIONS

This paper considered the synthesis of nonlinear

stochastic control systems, whose state variables cannot
be completely measured.  The nonlinear systems are
modeled by the T-S type fuzzy models in this paper.
The optimal filtering control technique has been used to
design the observers for the T-S type fuzzy stochastic
control systems.  Applying these optimal observers, this
paper first introduced the conditions for the existence of
observed-state feedback gains.  To carry on, the theory
of generalized inverse was used to solve the observed-
state feedback gains for the T-S fuzzy controllers.  Based
on the observed fuzzy control technique, the present
approach allows the designers to assign the common
state covariance matrix for achieving the state variance
constraints.
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APPENDIX

Lemma A1 [1, 14]
Every matrix J ∈ ℜn × n of rank mr may be ex-

pressed as

J = ΨS

where Ψ is symmetric and positive semi-definite
(i.e., Ψ = Ψ T ≥ 0) and S is orthonormal (i.e., SST = I).  Ψ
is always unique.  If mr = n, then S is unique.  If mr < n,
then S is nonunique.

Lemma A2 [14]
Express J using the singular value decomposition

as J = QΣTT, where Q and T are orthonormal, Σ = diag
(σ1,..., σn), and σ1 ≥ σ2 ≥...≥ σmr > 0 = σmr + 1 = ... = σn.
Also, define

S = S : S = Q
Ir 0

0 U0
TT, U0 ∈ℜ(n – mr ) × (n – mr )

r ) is arbitrarily orthonormal

Then, J = ΨS as discussed in Lemma A1, if and only if

S ∈ S~ and ΨΨ = (JJ)
1
2 = Q ΣΣ QT.
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