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ABSTRACT

The symmetries for the wave equation governing the radial
deformations of circular cylinders composed of Blatz-Ko materials
are studied.  It is found that the wave equation possesses a special
symmetry --- the inverse time translational symmetry (ITTS) named
by us.  We find that this special symmetry is not possessed by the wave
equations for cylinders composed of other two compressible elastic
materials.  However, it appears again when we study the invariant
properties of the wave equation governing radially deformed Blatz-
Ko spheres and the one governing Blatz-Ko blocks in uniaxial tensile
motion.  We therefore infer that ITTS is a special property inherited
by many dynamical problems associated with Blatz-Ko materials.  It
is also found that this special symmetry can help us to construct
correspondence between different initial-boundary value problems of
the wave equation for Blatz-Ko cylinders.  Making use of this corre-
spondence we can obtain non-trivial solutions from known solutions.
Also, if we need to perform an experiment for a Blatz-Ko cylinder for
a long time period, we may use this correspondence to design a
substitute experiment that only runs in a short time period.

INTRODUCTION

As void growth is an important subject in the
studies of the behaviors of solids [9, 16, 21, 22, 28],
many researches about the radially symmetric deforma-
tions of elastic solids had been done after the publica-
tion of a fundamental paper by John Ball in 1982 [3].  An
extensive review of these researches was given by
Horgan and Polignone [15].  And in this article we try to
carry out some investigations on the invariant proper-
ties of the wave equation governing the dynamic radial
deformations of a typical cross section of a circular
cylinder composed of Blatz-Ko material [5].  We adopt
the Blatz-Ko material model because it was derived
from experimental data of real materials.  It had been
found to be important in modeling the fuel of jet engine

and thus many researches about it had been done [1, 4,
14, 16, 17, 19].  In recent years the material model was
also applied to describe vascular behavior [8, 30].

The Lie groups of the wave equation contain some
coordinate transformations and the form of the wave
equation will be kept invariant when these coordinate
transformations are applied to it [6, 23, 24].  Previously,
the invariant properties of many governing equations
for incompressible nonlinear elastic materials had been
investigated [12, 18, 20].  And here we focus on the
invariant properties of the wave equation for Blatz-Ko
cylinders which are elastic and compressible.  It is
found that the wave equation possesses a special
symmetry, the inverse time translational symmetry
(ITTS) named by us.  The form of ITTS is so special that
we want to examine it more deeply.

We want to clarify three things.  First, we want to
know whether if ITTS frequently appears in the invari-
ant properties of the wave equations for cylinders com-
posed of other compressible elastic materials.  We thus
analyze two cylinders composed of the Shang-Cheng
material [27] and the generalized Varga material [7, 13]
respectively and find that none of their governing equa-
tions possesses ITTS.  This suggests that ITTS does not
frequently occur in the invariant properties of the wave
equations for cylinders composed of materials other
than the Blatz-Ko material.  The second thing we want
to clarify is whether if the governing equations for other
objects composed of Blatz-Ko materials also possess
ITTS.  We thus investigate the wave equation governing
radially deformed Blatz-Ko spheres and the one govern-
ing uniaxial tensile blocks composed of Blatz-Ko
materials.  And it is found that both of them possess
ITTS.  This suggests that ITTS might appear in many
dynamical problems for Blatz-Ko materials.  The third
thing we want to study is the usefulness of ITTS.  It is
found that ITTS can be applied to establish the corre-
spondence between different initial-boundary value
problems of the wave equation for Blatz-Ko cylinders.
The correspondence is useful since it can help us to
obtain non-trivial solutions from known solutions.  Also,
if we need to perform an experiment for a Blatz-Ko

INVERSE  TIME  TRANSLATIONAL  SYMMETRY  OF
THE  WAVE  EQUATION  FOR  BLATZ-KO

CYLINDERS

Hin-Chi Lei* and Sheng-Wei Chen*



Journal of Marine Science and Technology, Vol. 15, No. 3 (2007)150

cylinder for a long time period, we may use the above
correspondence to design a substitute experiment that
only runs in a short time period.  It should be pointed out
that, using other groups such as scaling groups or time
translation groups we can also obtain new solutions
from known solutions.  However, the new solutions
obtained by using these groups are trivial since they are
different with the old solutions only by simple time
translation or coordinate scaling.  It should also be
noted that correspondence principles linking boundary
value problems have been the subject of much literature
in linear elasticity [10, 11, 25, 26, 29].  In nonlinear
elastostatics there is the famous Adkins’s duality prin-
ciple connecting boundary value problems [2].  And the
correspondence between initial-boundary value prob-
lems reported in this paper is applied to connect nonlin-
ear elastody-namic problems.

WAVE  EQUATION  FOR  BLATZ-KO
CYLINDERS

We consider a cylinder with circular cross sections.
Assuming that the cylinder is in plane-strain condition
we only investigate the deformations of one of its cross
sections.  If radially symmetric deformations are con-
sidered the Eulerian coordinates of a material point in
the cross section can be denoted as r = r (R, t) and θ =
Θ.  Here R and Θ are the Lagrangian coordinates of the
material point.  The deformation gradient can be ex-
pressed as

F =
FrR FrΘ

FθR FθΘ
=

dr/dR 0
0 r/R . (1)

We can denote λ1 = FrR = dr/dR and λ2 = FθΘ = r/R as the
principal stretches.  If W = W (λ1, λ2) is the strain energy
density function, the first Piola-Kirchhoff stress tensor
can be computed by

S =
SrR SrΘ

Sθ R SθΘ
=

W1 0

0 W2
, (2)

where W1 = ∂W/∂λ1 and W2 = ∂W/∂λ2.  The Cauchy
stress tensor T is linked to S by S = JFTF–T with JF =
det (F) and it can be computed by

T =
Trr Trθ

Tθ r Tθθ
=

W1/λ2 0

0 W2/λ1
. (3)

The stress tensor S satisfies the momentum-balance
equation

Div S = ρ0
∂2r

∂ t 2 , (4)

where ρ0 is the constant mass density, Div denotes the
divergence operator in the Lagrangian coordinates
(R, Θ) and t is the time variable.  Due to the radial
symmetry the above equation can be written as

∂SrR

∂R
+

SrR – SθΘ
R

= ρ0
∂2r

∂ t 2
. (5)

Combining (5) with (2) yields

∂
∂R

(∂W
∂λ1

) + 1
R

(∂W
∂λ1

– ∂W
∂λ2

) = ρ0
∂2r

∂ t 2
. (6)

If the cylinder is composed of Blatz-Ko material [8] the
strain energy density function will be

W = 
µ
2  (λ1

–2 + λ2
–2 – 2) + µ (λ1λ2 – 1) (7)

and its Equation of motion will take the form

3Rr3rRR + r4
RR3 – rRr3 = ρRr4

Rr3rtt (8)

according to (6).  Here µ denotes the shear modulus at
infinitesimal deformations and ρ is defined by ρ = ρ0/µ.

LIE  GROUPS  OF  THE  WAVE  EQUATION

We consider a Lie group G  of coordinate
transformations:

R
–

 = F (R, t, r; s),

t– = G (R, t, r; s),

r– = H (R, t, r; s), (9)

where s is a parameter.  We want to determine the
expressions of the transformation functions F, G, H
such that the form of the governing Eq. (8) will be kept
invariant when it is transformed by (9).  In order to
obtain the expressions of F, G, H we consider the
infinitesimal coordinate transformations

R
–

 = R + sξ (R, t, r) + O (s2),

t– = t + sτ (R, t, r) + O (s2),

r– = r + sη (R, t, r) + O (s2). (10)

The function ξ, τ and η can be determined by a routine
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but tedious procedure [6, 23, 24].  After a lengthy
calculation it is found that

ξ = A1R,

τ = A4t2 + (2A2 – A1) t + A3,

η = (A4t + A2) r. (11)

Here Ai (i = 1, 2, 3, 4) are arbitrary constants.  The finite
coordinate transformations are obtained by integrating
the following ODEs [6, 23, 24]:

dR
ds  = A1R

–
,

dt
ds  = A4t–2 + (2A2 – A1) t– + A3,

dr
ds  = (A4t– + A2) r–. (12)

The initial conditions for the above ODEs are

R
–

 = R, t– = t, r– = r at s = 0. (13)

We define Gi (i = 1, 2, 3, 4) as the one-parameter group
of coordinate transformations corresponding to the
choice of arbitrary constants Ai = 1 and Aj = 0 ( j ≠ i, j =
1, 2, 3, 4).  We can integrate (12) with (13), A1 = 1 and
A2 = A3 = A4 = 0 to get

G1: R
–

 = Res, t– = te-s, r– = r. (14)

In the similar way we can get

G2: R
–

 = R, t– = te
2s

, r– = res; (15)

G3: R
–

 = R, t– = t + s, r– = r. (16)

G4: R
–

 = R, t =
t

1 – st
, r =

r
1 – st

; (17)

We see that G1 and G2 are the groups of scaling
transformations, and G3 is the group of translations of
time.  The group G4 contains the translations of
the “inverse time”.  In fact the second relation in (17)

implies 
1
t

=
1
t

– s.  The relation t =
t

1 – st
 is plotted in

Figure 1 for different value of s.  One can see that for any

positive value of s the t in [0, 
1
s
) is mapped to the t– in

[0, ∞) by the group operation.  Further, for any negative

value of s the t in [0, ∞) is mapped to the t– in [0, 
– 1
s ).

It is clear that G4 is a local Lie group [16-18].  The
inverse operation of G4 takes the form

R = R
–

, t =
t

1 + st
, r =

r
1 + st

.

The relation  t =
t

1 + st
 is plotted in Figure 2.  We see that

for positive s the t– in [0, ∞) is mapped to the t in [0, 
1
s)

while for negative s the t– in [0, 
– 1
s ) is mapped to the t

in [0, ∞). The physical interpretation of this special
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group action will be given in Section 6.
When the above coordinate transformations are

acting on Eq. (8) the form of the equation will not be
changed.  For example, the coordinate transformations

in (14) imply that rR = esr R , rRR = e2sr R R , rtt = e– 2sr t t .

Therefore, when (14) is applied to (8) we shall have

3esR r 3r R R + esr R
4 R 3 – esr R r 3 = esρ R r R

4 r 3r t t ,

which is in the same form of (8) since the term es is just
a nonzero constant and can be cancelled out.  It should
be noted that scaling symmetries as well as time trans-
lational symmetries appear in the invariant properties of
many linear and nonlinear wave equations.  This is not
the case for the symmetry associated with G4, the in-
verse time translational symmetry (ITTS) named by us.
In fact, many linear wave equations possess ITTS, but
few nonlinear wave equations do [16-18].  Therefore we
would like to investigate it more deeply.  There are three
things we want to clarify about ITTS.  First, we want to
see whether if ITTS frequently appears in the invariant
properties of the wave equations for cylinders com-
posed of other compressible elastic materials.  Second,
we want to see whether if the governing equations for
other objects composed of Blatz-Ko materials also pos-
sess ITTS.  The third thing we want to explore is the
usefulness of ITTS.  We shall deal with these three
issues in the following sections.

CYLINDERS  COMPOSED  OF  OTHER
COMPRESSIBLE  ELASTIC  MATERIALS

In this section we want to study the symmetries of
the wave equations for the cylinders composed of other
compressible elastic materials.

We first study the cylinders composed of the ma-
terial whose model was proposed by Shang and Cheng
in [27].  We call it the Shang-Cheng material.  This
material model was proved to be effective in helping
one to construct analytical solutions for void growth
problems as can be seen in [27].  The strain energy
density function for Shang-Cheng material is

W = c1 (λ1 + λ2 – 2) + c2 (
1
λ1

+
1
λ2

– 2)

+ c3 (λ1λ2 – 1), (18)

in which

c1 = µ
1 – 3ν
1 – 2ν

, c2 = µ
1 – ν
1 – 2ν

, c3 = µ
2ν

1 – 2ν .

Here µ and ν are respectively the shear modulus and the
Poisson ratio at infinitesimal deformations.  Putting
(18) into (6) we get the wave equation for Shang-Cheng
cylinders:

2Rr2rRR – r2rR + R2r3
R = ρ*Rr2r3

Rrtt, ρ
* =

ρ0

c2
.

(19)

After some calculations [6, 23, 24] it is found that the
above wave equation admits the following groups of
coordinate transformations:

G5: R
–

 = Res, t = te–
1
2

s
, r– = r. (20)

G6: R
–

 = R, t = te
3
2

s, r– = res. (21)

G7: R
–

 = R, t– = t + s, r– = r; (22)

It is clear that the wave equation for Shang-Cheng
cylinders does not possess ITTS.

In order to get more information for our under-
standing we consider one more compressible elastic
material, namely the generalized Varga material.  This
material model was also proved to be useful in helping
one to construct analytical solutions for void growth
problems as can be seen in [13].  The strain energy
density function for generalized Varga material is

W = c1
* (λ1 + λ2 – 2) + c2

* (λ1λ2 – 1) + g (J),

J = λ1λ2. (23)

Here c1
* and c2

* are some constants related to µ and υ [23,
24].  To simplify the calculations we consider the case
where g (J) takes the form

g (J) = b0 + b1J + b2J2 (24)

with b0, b1 and b2 being some constants related to µ and
υ [7, 13].  Substituting (23) together with (24) into (6)
gives us the wave equation for generalized Varga
cylinders:

Rr2rRR – r2rR + Rrr2
R = ρ**R3rtt, ρ

** = 
ρ0

2b2

. (25)

And it is found that the above wave equation admits the
following groups of coordinate transformations:

G8: R
–

 = Res, t– = te2s, r– = r; (26)
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G9: R
–

 = Res, t– = t, r– = re2s; (27)

G10: R
–

 = R, t– = t + s, r– = r; (28)

G11: R
–2 = R2 + 2s, t– = t, r– = r. (29)

Once again ITTS is missing in the symmetries associ-
ated with the above Lie groups. According to our studies
so far we infer that ITTS does not frequently occur in the
invariant properties of the wave equations for cylinders
composed of materials other than the Blatz-Ko material.

OTHER  OBJECTS  COMPOSED  OF  BLATZ-KO
MATERIALS

In this section we study the symmetries of the
wave equations for other objects composed of Blatz-Ko
materials.  We want to see whether if we shall find ITTS
again.

We first study the dynamic radial deformations of
a sphere composed of the Blatz-Ko material.  Let

D0 = {(R, Θ, Φ)| a < R < b, 0 < Θ ≤ 2π, 0 ≤ Φ ≤ π}

denote a hollow sphere in its undeformed configuration.
A radial deformation takes a point in D0 with spherical
polar coordinates (R, Θ, Φ) to the point (r, θ, φ) in the
deformed region D.  Since the deformation is radially
symmetric we have

r = r (R, t) > 0, θ = Θ and φ = Φ. (30)

The deformation gradient tensor associated with
(30) is given by

F =

FrR FrΘ FrΦ

FθR FθΘ FθΦ

FφR FφΘ FφΦ

=

dr/dR 0 0

0 r/R 0

0 0 r/R
. (31)

We denote λ1 = FrR = dr/dR, λ2 = FθΘ = r/R and λ3 = FφΦ

= r/R  as the principal stretches.  It is obvious that λ2 =
λ3.  If W= W (λ1, λ2, λ3) is the strain energy density
function, the first Piola-Kirchhoff stress tensor can be
computed by

S =

SrR SrΘ SrΦ

SθR SθΘ SθΦ

SφR SφΘ SφΦ

=

W1 0 0

0 W2 0

0 0 W3

, (32)

where W1 = ∂W/∂λ1, W2 = ∂W/∂λ2 and W3 = ∂W/∂λ3.  The

stress tensor S satisfies the momentum-balance Eq.

∂SrR

∂R
+

2 (SrR – SθΘ)
R

= ρ0
∂2r

∂ t 2
. (33)

In this case the strain energy density function for the
Blatz-Ko material is

W = 
µ
2

 (λ1
-2 + λ2

-2 + λ3
-2 + 2λ1λ2λ3 – 5). (34)

Combining (32), (33) and (34) we get the wave equation
for Blatz-Ko spheres:

3Rr3rRR + 2R3r4
R – 2r3rR = ρRr3r4

Rrtt. (35)

In the above equation we had denoted ρ = ρ0/µ.  The Lie
groups of the above wave equation are found to be

G12: R
–

 = Res, t– = te-s, r– = r; (36)

G13: R
–

 = R, t– = te2s, r– = res; (37)

G14: R
–

 = R, t =
t

1 – st
, r =

r
1 – st

; (38)

G15: R
–

 = R, t– = t + s, r– = r. (39)

Obviously the symmetry associated with (38) is ITTS.
In fact, we see that the Lie groups of the two wave Eqs.,
(8) and (35), for Blatz-Ko cylinders and Blatz-Ko spheres
are the same.

In order to obtain more information for our under-
standing we consider one more object --- an uniaxial
tensile block composed of Blatz-Ko material.  The
strain energy density function for Blatz-Ko material in
this case is just

W = 
µ
2

 (λ1
-2 + 2λ1 – 3), (40)

which can be obtained by setting λ2 = λ3 = 1 in (34).

Here the principal stretch is computed by 
dy
dx  with y and

x denoting the deformed and reference positions
correspondingly.  It is easy to find that the governing
equation for y (x, t) is just

yxx = ρy4
x ytt (41)

with ρ defined by ρ = ρ0/3µ.  It is easy to check that the
above equation  admits the group

G16: R
–

 = R, t =
t

1 – st
, r =

r
1 – st

, (42)
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and thus the wave Eq. (41) also possesses ITTS.  The Lie
groups of all the wave Equations studied in this paper
are summarized in Table 1.  According to the investiga-
tions we have done so far we can infer that ITTS might
appear in many dynamical problems for Blatz-Ko
materials.  Of course, more researches must be done in
the future before we can obtain a clearer picture about
this inference.  In this article, we just try to shed some
light on this interesting phenomenon and draw the
attention of those people who are interested in it.  In
the next sections we shall investigate the usefulness of
ITTS.

CONNECTING  INITIAL-BOUNDARY  VALUE
PROBLEMS  FOR (8) BY G4

In this section we look at the applications of ITTS.
In fact, the group G4 can be used to connect different
initial-boundary value problems for the governing Eq.

(8).  We consider the radial deformations of a cylinder
with its cross section bounded by R = A and R = B (B >
A).  A solution of the governing (8),

r = f (R, t), (43)

is considered which satisfies the following initial-bound-
ary conditions:

r = θ (R) when t = 0, (44)

∂r
∂t

(R, 0) = φ (R) when t = 0, (45)

r = p (t) at R = A, (46)

r = q (t) at R = B. (47)

When the group G4 acts on the solution (43) it becomes

Table  1. Lie groups of all the wave equations

Lie groups
Does the wave

equation process
ITTS?

Wave equation
for Blatz-Ko

cylinders

Wave equation
for Shang-Chang

cylinders

Wave equation
for generalized
Varga cylinders

Wave equation
for Blatz-Ko

spheres

Wave equation
for Blatz-Ko

blocks

Note: Not all the groups of this wave equation are presented here.  One can consult [6, 23, 24] for more details.

Yes

G1: R = Res, t = te-s, r = r

G2: R = R, t = te2s, r = res

G3: R = R, t = t + s, r = r

G4: R = R, t =
t

r =
1 – st

r
1 – st

,

G14: R = R, t =
t

r =
1 – st

r
1 – st

,

G16: R = R, t =
t

r =
1 – st

r
1 – st

,

G5: R = Res, t = te    s, r = r

G6: R = R, t = te     , r = res

G7: R = R, t = t + s, r = r

1
2

3
2

s

G8: R = Res, t = te2s, r = r

G12: R = Res, t = te-s, r = r

G13: R = R, t = te2s, r = res

G9: R = Res, t = t, r = re2s

G10: R = R, t = t + s, r = r

G15: R = R, t = t + s, r = r

G11: R
2 = R2 + 2s,  t = t, r = r

Yes

Yes

No

No
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r = (1 + st ) ⋅ f (R ,
t

1 + st
) (48)

On the other hand, when G4 acts on Eq. (8) it will be
turned into the same equation written in terms of the
transformed coordinates (R

–
, t

–
, r

–
).  Therefore, (48) is a

solution of 3R r 3r R R + r R
4 R 3 – r R r 3 = ρ R r R

4 r 3r t t .  If

 the overhead bars are omitted then it is clear that

r = (1 + st) ⋅ f (R,
t

1 + st
) (49)

is also a solution of (8) and it satisfies the following
conditions:

r = θ (R) when t = 0, (50)

∂r
∂t

= sθ (R) + φ (R) when t = 0, (51)

r = (1 + st) ⋅ p (
t

1 + st
) at R = A, (52)

r = (1 + st) ⋅ q (
t

1 + st
) at R = B. (53)

The meaning of the above connection of initial-bound-
ary value problems can be clarified by an example.  Let
us consider the case where s equals to -10.  In this case,
the term t/1 + st = t/1 – 10t will tend to infinity as t tends

to 
1
10. We see that the solution (49) and its boundary

conditions are valid for t ∈ [0, 
1
10) while the solution

 (43) and its boundary conditions are valid for t ∈ [0, ∞).
So, if we need to perform an experiment for a Blatz-Ko
cylinder for an infinite long time period, we may use the
above correspondence to design a substitute experiment
that only runs in a finite time domain.  In order to make
this concept more precise we consider a cross section of
a Blatz-Ko cylinder with inner and outer boundaries
described by R = 1 and R = 2 respectively.  The initial-
boundary conditions for the cylinder are assumed to be

r = θ (R) = 2R when t = 0, (54)

∂r
∂t

(R, 0) = φ (R) = 0 when t = 0, (55)

r = p (t) = 1 + e-3tcos (2t) at R = 1, (56)

r = q (t) = 3 + e-tcos (3t) at R = 2. (57)

The above conditions are assigned in accordance with

(44)-(47) and the solution satisfying these conditions is
still represented by r = f (R, t) just as that in (43).  Note
that the above boundary conditions (56) and (57) are
valid for t ∈ [0, ∞).  Using the transformations in G4

with s = –10, the solution (43) is transformed into

r = (1 – 10t ) f (R , t
1 – 10t

). (58)

At the same time the initial-boundary conditions (54)-
(57) are transformed into

r = θ (R) = 2R when t = 0, (59)

∂r
∂t

= 10θ (R) + φ (R) = 20R when t = 0, (60)

r = (1 – 10t) p (
t

1 – 10t
)

= (1 – 10t)(1 + e
– 3t

1 – 10t cos (
2t

1 – 10t
)) at R = 1, (61)

r = (1 – 10t) q (
t

1 – 10t
)

= (1 – 10t) (3 + e
– t

1 – 10t cos (
3t

1 – 10t
)) at R = 2. (62)

Note that the boundary conditions (61) and (62) are

applied only from t = 0 to t = 1
10

 – ε with ε being a

positive infinitesimal number.  For t  = 1
10

 + ε  the

boundary conditions (61) and (62) will no longer be
valid because the deformed positions of the inner and

outer boundaries will became negative at t = 1
10

 + ε.

Moreover, at t = 1
10

 – ε the deformed positions of the

inner and outer boundaries will both be shrunk to zero,
and this means that the cylinder will be squeezed into a
thin rod with infinitesimal volume.  This is not a physi-
cally acceptable situation, however, in reality, there is
no test needs to be performed for infinitely long time, so
the above connection might be applied to replace a long
term test by a short term one and the above physically
unacceptable situation will not occur.

We should remark that, using other groups, Gi (i =
1, 2, 3), we can also obtain new solutions from known
solutions of (8).  However, the new solutions obtained
by using these groups are trivial since they are different
with the old solutions only by simple time translations
or coordinate scalings.  Therefore  is useful since it can
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generate non-trivial solutions from known solutions of
(8).

An example is presented to illustrate the above
results.  Consider

r = g (Rt) = g (ξ), ξ = Rt. (63)

Putting (63) into (8) we get the governing Eq. of g:

3ξg3g''+ ξ3g'4 – g3g' – ρξ3g3g'4g'' = 0, (64)

which is an ordinary differential equation.  This solu-
tion is of theoretical interest since we only needs to
solve ordinary differential equation instead of partial
differential equation in order to understand its behavior.
According to the argument for taking (49) as a solution
of (8) it is evident that

r = (1 + st) g (
Rt

1 + st
) (65)

is also a solution of (8) and its behavior is essentially
different from that of (63).  In other words, it is a
solution generated non-trivially from (63) by G4.

CONCLUSION

In this paper we have obtained the following results.
1. We have found that the wave equation for Blatz-Ko

cylinders possesses a special symmetry – the inverse
time translational symmetry.  It is also found that this
special symmetry is not possessed by the wave equa-
tions for cylinders composed of other two materials,
namely, the Shang-Chang material and the general-
ized Varga material.

2. All of the three wave equations governing respec-
tively the Blatz-Ko cylinders, the Blatz-Ko spheres
and the Blatz-Ko blocks possess the inverse time
translational symmetry.

3. The inverse time translational symmetry can helps us
to construct correspondence between different ini-
tial-boundary value problems. Making use of this
correspondence we can obtain non-trivial solutions
from known solutions.  Also, if we need to perform an
experiment for a Blatz-Ko cylinder for a long time
period, we may use the above correspondence to
design a substitute experiment that only runs in a
short time period.
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