
Volume 20 Issue 4 Article 12 

A MANIFOLD-BASED EXPONENTIALLY CONVERGENT ALGORITHM FOR A MANIFOLD-BASED EXPONENTIALLY CONVERGENT ALGORITHM FOR 
SOLVING NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS SOLVING NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS 

Chein-Shan Liu 
Department of Civil Engineering, National Taiwan University, Taipei, Taiwan, R.O.C., liucs@ntu.edu.tw 

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal 

 Part of the Ocean Engineering Commons 

Recommended Citation Recommended Citation 
Liu, Chein-Shan (2012) "A MANIFOLD-BASED EXPONENTIALLY CONVERGENT ALGORITHM FOR SOLVING NON-
LINEAR PARTIAL DIFFERENTIAL EQUATIONS," Journal of Marine Science and Technology: Vol. 20: Iss. 4, Article 12. 
DOI: 10.6119/JMST-011-0421-1 
Available at: https://jmstt.ntou.edu.tw/journal/vol20/iss4/12 

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been 
accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and 
Technology. 

https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/vol20
https://jmstt.ntou.edu.tw/journal/vol20/iss4
https://jmstt.ntou.edu.tw/journal/vol20/iss4/12
https://jmstt.ntou.edu.tw/journal?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol20%2Fiss4%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/302?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol20%2Fiss4%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jmstt.ntou.edu.tw/journal/vol20/iss4/12?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol20%2Fiss4%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages


A MANIFOLD-BASED EXPONENTIALLY CONVERGENT ALGORITHM FOR SOLVING A MANIFOLD-BASED EXPONENTIALLY CONVERGENT ALGORITHM FOR SOLVING 
NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS 

Acknowledgements Acknowledgements 
Taiwan’s National Science Council project NSC-99-2221- E-002-074-MY3 granted to the author is highly 
appreciated. 

This research article is available in Journal of Marine Science and Technology: https://jmstt.ntou.edu.tw/journal/
vol20/iss4/12 

https://jmstt.ntou.edu.tw/journal/vol20/iss4/12
https://jmstt.ntou.edu.tw/journal/vol20/iss4/12


Journal of Marine Science and Technology, Vol. 20, No. 4, pp. 441-449 (2012) 441 
DOI: 10.6119/JMST-011-0421-1 

 

A MANIFOLD-BASED EXPONENTIALLY 
CONVERGENT ALGORITHM FOR SOLVING 

NON-LINEAR PARTIAL DIFFERENTIAL 
EQUATIONS 

 
 

Chein-Shan Liu 
 
 

Key words: non-linear algebraic equations (NAEs), non-linear partial 
differential equations, manifold-based exponentially con- 
vergent algorithm (MBECA), fictitious time integration 
method (FTIM). 

ABSTRACT 

For solving a non-linear system of algebraic equations of 
the type: Fi(xj) = 0, i, j = 1, …, n, a Newton-like algorithm is 
still the most popular one; however, it had some drawbacks as 
being locally convergent, sensitive to initial guess, and time 
consumption in finding the inversion of the Jacobian matrix 
∂Fi /∂xj.  Based-on a manifold defined in the space of (xi, t) we 
can derive a system of non-linear Ordinary Differential Equa-
tions (ODEs) in terms of the fictitious time-like variable t, and 
the residual error is exponentially decreased to zero along the 
path of x(t) by solving the resultant ODEs.  We apply it to 
solve 2D non-linear PDEs, and the vector-form of the ma-
trix-type non-linear algebraic equations (NAEs) is derived.  
Several numerical examples of non-linear PDEs show the 
efficiency and accuracy of the present algorithm.  A scalar 
equation is derived to find the adjustive fictitious time stepsize, 
such that the irregular bursts appeared in the residual error 
curve can be overcome.  We propose a future direction to con- 
struct a really exponentially convergent algorithm according 
to a manifold setting. 

I. INTRODUCTION 

In many practical non-linear engineering problems gov-
erned by partial differential equations, the methods such as the 
finite element method, boundary element method, finite vol- 
ume method, the meshless method, etc., eventually led to a 
system of non-linear algebraic equations (NAEs).  Many nu-

merical methods used in the computational mechanics, such as 
demonstrated by Zhu et al. [31], Atluri and Zhu [6], Atluri [2], 
Atluri and Shen [5], and Atluri et al. [3] were always led to the 
solution of a system of linear algebraic equations for a linear 
problem, and of an NAEs system for a non-linear problem. 

Over the past forty years two important contributions have 
been made towards the numerical solutions of NAEs.  One of 
the methods has been called the “predictor-corrector” or 
“pseudo-arclength continuation” method.  This method has its 
historical roots in the embedding and incremental loading 
methods which have been successfully used for several dec-
ades by engineers to improve the convergence properties when 
an adequate starting value for an iterative method is not avail- 
able.  Another is the so-called simplical or piecewise linear 
method.  The monographs by Allgower and Georg [1] and 
Deuflhard [12] are devoted to the continuation methods for 
solving NAEs. 

Liu and Atluri [23] have employed the technique of Ficti-
tious Time Integration Method (FTIM) to solve a large system 
of NAEs, and showed that high performance can be achieved 
by using the FTIM.  More recently, Liu [17] has used the 
FTIM technique to solve the non-linear complementarity 
problems.  Then, Liu [18, 19] has used the FTIM to solve the 
boundary value problems of elliptic type partial differential 
equations.  Liu and Atluri [24] also employed this technique of 
FTIM to solve mixed-complementarity problems and opti-
mization problems.  Liu and Atluri [25] using the technique of 
FTIM solved the inverse Sturm-Liouville problem under 
specified eigenvalues.  Liu [20] has utilized a simple FTIM to 
compute both the forward and backward in time problems of 
Burgers equation, and has found that the FTIM is robust 
against the disturbance of noise.  Liu and Chang [28] have 
used the FTIM to solve ill-posed linear problems.  For its 
numerical implementation being quite simple, the FTIM was 
also used in other problems, like as, Liu [21, 22], Liu and 
Atluri [26], Chang and Liu [8], Chi et al. [10], and Tsai et al. 
[30]. 

In spite of its success, the FTIM is local convergence and 
needs to determine viscous damping coefficients for different 
equations in one problem.  Liu and Atluri [27] were the first to 
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make a breakthrough by deriving a residual-norm based algo-
rithm, which can circumvent the drawbacks of FTIM and 
Newton’s algorithm; also refer Atluri et al. [4]. 

In this paper we introduce a novel continuation method  
of Manifold-Based Exponentially Convergent Algorithm 
(MBECA), which can be easily implemented to solve non- 
linear partial differential equations, after some suitable dis-
cretizations by using the finite difference method or expansion 
by the radial basis function [14].  To remedy the shortcoming 
of vector homotopy method as initiated by Davidenko [11], 
Liu et al. [29] have proposed a scalar homotopy method, and 
Ku et al. [15] combined this idea with the exponentially de-
cayed scalar homotopy function, developing a Manifold- 
Based Exponentially Convergent Algorithm (MBECA).  In 
this paper we will point out the limitation of MBECA, and 
explain why it may stuck and after that the algorithm cannot 
proceed to find solution. 

II. THEORETICAL BASIS 

For the following non-linear algebraic equations (NAEs) in 
a vector form: 

 ( ) ,=F x 0   (1) 

we will propose a numerical algorithm to solve it based on a 
space-time manifold. 

1. Motivation 

To motivate the present approach, let us consider an un-
coupled algebraic system: 

 1 0, 1 0.x y− = − =  (2) 

The above two equations can be combined into a single 
one: 

 
2 2 21 1

[( 1) ( 1) ] 0.
2 2

x y= − + − =F  (3) 

We can see that it is a circle in the spatial-plane (x, y) with a 
center (1,1) but with a zero radius. 

Now, we introduce an extra variable t as a fictitious time- 
like variable, and let x and y be functions of t.  We consider the 
following equation defined in the space-time domain by 

 
22 2 2 21 1

[( 1) ( 1) ] ,
2 2

t te e x y Cα α= − + − =F  (4) 

where α > 0 and C is determined by the initial values of x(0) = 
x0 and y(0) = y0 by 

 2 2
0 0

1
[( 1) ( 1) ].

2
C x y= − + −  

Eq. (4) can be written as 

 2 2 2( 1) ( 1) 2 ,tx y Ce α−− + − =  (5) 

which is a manifold in the space-time domain (x, y, t), at each 
cross-section of a fixed t it being a circle with center (1,1) and 

with a radius 22 .tCe α−   We can construct the following 
ODEs: 

 ( 1), ( 1),x x y yα α= − − = − −� �  (6) 

such that the path of (x(t), y(t)) generated from the above 
ODEs is located on the manifold defined by Eq. (5). 

Solving Eq. (6) we have 

 0 0( ) [ 1] 1, ( ) [ 1] 1.t tx t x e y t y eα α− −= − + = − +  (7) 

Inserting them into Eq. (4) we indeed can prove that (x(t), 
y(t)) is located on the manifold, and (x(t), y(t)) fast tends to the 
solution (1,1) . 

2. A Setting Based on Manifold 

From the above idea of space-time manifold, for Eq. (1) we 
can consider 

 
21

( , ) : ( ) ( ) ,
2

h t Q t C= =x F x  (8) 

where Q(t) > 0 is a given function of t, monotonically in-
creasing with t and with Q(0) = 1, and C is determined by the 
initial condition x(0) = x0 with 

 
2

0

1
( ) .

2
C = F x  (9) 

Usually, C > 0, and C = 0 when the initial value x0 is just the 
root of Eq. (1).  However, it is rare of this lucky case. 

When C > 0 and Q > 0, the manifold defined by Eq. (8) is 
continuous, and thus the differential operation being taken on 
the manifold makes sense.  For the requirement of consistency 
condition, by taking the differential of Eq. (8) with respect to t 
and considering x = x(t), we have 

 21
( ) ( ) ( )( ) 0,

2
Q t Q t Τ+ ⋅ =F x B F x� �  (10) 

where B is the Jacobian matrix with its ij-component given by 
Bij = ∂Fi /∂xj. 

Eq. (10) cannot uniquely determine the governing equation 
of x; however, we suppose that 

 ( ) ,
h

Q tλ λ Τ∂= − = −
∂

x B F
x

�  (11) 
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where λ is to be determined.  Inserting Eq. (11) into Eq. (10) 
we can solve for λ by 

 
2

22

( )
.

2 ( )

Q t

Q t
λ

Τ
=

F

B F

�

 (12) 

Thus we obtain an evolution equation for x defined by the 
following ODEs: 

 
2

2( ) ,q t Τ

Τ
= −

F
x B F

B F
�  (13) 

where 

 
( )

( ) : .
2 ( )

Q t
q t

Q t
=

�

 (14) 

There are many ways to choose a suitable function of Q(t); 
however, we can let 

 
( )

( ) , 0 1.
2 ( ) 2(1 )m

Q t
q t m

Q t t

ν= = < ≤
+

�

 (15) 

Hence, we have 

 1( ) exp [(1 ) 1] .
1

mQ t t
m

ν − = + − − 
 (16) 

Therefore we can derive the following equation: 

 
2

2 .
2(1 )mt

ν Τ

Τ

−=
+

F
x B F

B F
�  (17) 

It is not difficult to prove that the orbit x(t) with x(0) = x0 
solved from Eq. (17) is located on the space-time manifold 
defined by Eq. (8) with Q(t) given by Eq. (16).  Hence, we 
have an exponentially convergent property in solving the 
NAEs in Eq. (1): 

 
2 2

( ) .
( )

C

Q t
=F x  (18) 

When t is increasing the above equation enforces the re-
sidual error ( )F x  tending to zero exponentially, and mean-
while the solution of Eq. (1) is obtained approximately.  
However, it is a great challenge by developing a suitable nu-
merical integrator for Eq. (17), such that the orbit of x can 
really retain on the manifold. 

III. NUMERICAL METHODS 

1. Adjusting the Fictitious Time Step 

In order to keep x on the manifold defined by Eq. (18) we 
can consider the evolution of F along the path x(t) by 

 
2

2( ) ,q t
Τ

= = −
F

F Bx AF
B F

� �  (19) 

where 

 : .Τ=A BB  (20) 

Suppose that we simply use the Euler forward scheme to 
integrate Eq. (19), which yields 

 
2

2( ) ( ) ( ) .t t t q t t
Τ

+ ∆ = − ∆
F

F F AF
B F

 (21) 

Taking the square-norms of both the sides and using Eq. (18) 
we can obtain 

 

2

2
22

4

2 2 2 ( )
2 ( )

( ) ( ) ( )

2
( ( ) ) .

( )

C C C
q t t

Q t t Q t Q t

C
q t t

Q t

Τ

Τ

⋅= − ∆
+ ∆

+ ∆

F AF

B F

F
AF

B F

 (22) 

Thus we have the following scalar equation to solve ∆t: 

 2 ( )
( ) : ( ) 1 0,

( )

Q t
f t a t b t

Q t t
∆ = ∆ − ∆ + − =

+ ∆
 (23) 

where 

 
2 2

2
4: ( ) ,a q t

Τ
=

F AF

B F
 (24) 

 : 2 ( ).b q t=  (25) 

Obviously, ∆t = 0 is a root of Eq. (23); however, we prefer 
to search another one with ∆t > 0.  On the other hand, we note 
that ν in Eq. (16) cannot be too large, say ν > 100; otherwise,  
the term Q(t) /Q(t + ∆t) in Eq. (23) can be very near to zero, 
and thus makes Eq. (23) having no real solution, because of 

 
2 2

2 2
4( ) 4 4 1 0,b a q

Τ

 
 − − = − <
 
  

F AF

B F
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which is due to 

 
2

( ) .Τ = ⋅ <B F F AF F AF  (26) 

We can apply the FTIM to find the solution of Eq. (23): 

 ( ).
(1 )

x f x
t γ

µ= −
+

�  (27) 

When ∆t is solved, we can use the following iteration to 
calculate x(t + ∆t):  

 
2

2( ) ( ) ( ) .t t t q t t Τ

Τ
+ ∆ = − ∆

F
x x B F

B F
 (28) 

The above algorithm is indeed a very powerful numerical 
method with exponentially convergent speed and the orbit of 
x(t) being retained on the manifold.  Thus, we may call  
the present algorithm a Manifold-Based Exponentially- 
Convergent Algorithm (MBECA). 

2. A Matrix Type NAEs 

Sometimes we may encounter the NAEs generated from  
the discretization of PDE with a matrix type.  In this situation 
it is not so straightforward to write its counterpart as being a  
vector-form NAEs.  Let us consider 

 ( , ) ( , , , , , ), ( , ) ,x yu x y F x y u u u x y∆ = ∈Ω…  (29) 

 ( , ) ( , ), ( , ) ,u x y H x y x y= ∈Γ  (30) 

where ∆ is the Laplacian operator, Γ is the boundary of a 
problem domain Ω := [a0, a1] × [b0, b1], and F and H are given 
functions. 

By a standard finite difference applied to Eq. (29), one has a 
system of NAEs of matrix type: 

, 1, , 1, , 1 , , 12 2

1, 1, , 1 , 1
,

1 2

1 1
[ 2 ] [ 2 ]

( ) ( )

, , , , ,
2 2

0,1 ,1 .

i j i j i j i j i j i j i j

i j i j i j i j
i j i j

F u u u u u u
x y

u u u u
F x y u

x y

i n j n

+ − + −

+ − + −

= − + + − +
∆ ∆

− − 
−  ∆ ∆ 

= ≤ ≤ ≤ ≤

…  

  (31) 

Here, we divide the rectangle Ω by a uniform grid with ∆x = 
(a1 – a0) / (n1 + 1) and ∆y = (b1 – b0)/(n2 + 1) being the uniform 
spatial grid lengths in the x- and y-direction, and ui, j := u(xi, yj) 
be a numerical value of u at the grid point (xi, yj) ∈ Ω. 

Let K = n2(i – 1) + j and with i running from 1 to n1 and j 
running from 1 to n2 we can, respectively, set the vectorial 

variables xK and the vectorial algebraic equations FK by 

 

1

2

2

,

,

Do 1,

Do 1,

( 1)

.

K i j

K i j

i n

j n

K n i j

x u

F F

=

=

= − +

=

=

 (32) 

At the same time the components of the Jacobian matrix B 
are constructed by 

1Do 1,i n=  

2Do 1,j n=  

2 ( 1)K n i j= − +  

1 2 ( 2)L n i j= − +  

2 2 ( 1) 1L n i j= − + −  

3 2 ( 1)L n i j= − +  

4 2 ( 1) 1L n i j= − + +  

5 2L n i j= +  

1, 2

1, 1, , 1 , 1
,

1

( )

1
, , , , ,

2 2 2x

K L

i j i j i j i j
u i j i j

B
x

u u u u
F x y u

x x y
+ − + −

=
∆

− − 
+  ∆ ∆ ∆ 

…

 

2, 2

1, 1, , 1 , 1
,

1

( )

1
, , , , ,

2 2 2y

K L

i j i j i j i j
u i j i j

B
y

u u u u
F x y u

y x y
+ − + −

=
∆

− − 
+  ∆ ∆ ∆ 

…

 

3, 2 2

1, 1, , 1 , 1
,

2 2

( ) ( )

, , , , ,
2 2

K L

i j i j i j i j
u i j i j

B
x y

u u u u
F x y u

x y
+ − + −

= − −
∆ ∆

− − 
−  ∆ ∆ 

…

 

4, 2

1, 1, , 1 , 1
,

1

( )

1
, , , , ,

2 2 2y

K L

i j i j i j i j
u i j i j

B
y

u u u u
F x y u

y x y
+ − + −

=
∆

− − 
−  ∆ ∆ ∆ 

…

 

5, 2

1, 1, , 1 , 1
,

1

( )

1
, , , , , .

2 2 2x

K L

i j i j i j i j
u i j i j

B
x

u u u u
F x y u

x x y
+ − + −

=
∆

− − 
−  ∆ ∆ ∆ 

…

 

  (33) 
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In above, Fu, Fux and Fuy denote, respectively, the partial 
differentials of the function F(x, y, u, ux, uy, …) with respect to 
u, ux and uy.  When the above quantities are available, we can 
apply the vector-form MBECA to solve the non-linear PDE in 
Eq. (29). 

IV. NUMERICAL TESTS OF MBECA 

In this section we apply the new method of MBECA to 
solve some non-linear PDEs. 

1. Example 1 

We consider a non-linear heat conduction equation: 

 2( ) '( ) ( , ),t xx xu x u x u u h x tα α= + + +  (34) 

 2 2 4 2( ) ( 3) , ( , ) 7( 3) ( 3) ,t tx x h x t x e x eα − −= − = − − − −  (35) 

with a closed-form solution u(x, t) = (x – 3)2e−t. 
By applying the MBECA to solve the above equation in the 

domain of 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1 we fix n1 = n2 = 13, ν = 500 
and m = 1.  We apply the group-preserving scheme (GPS) 
developed by Liu [16] to integrate the resultant ODEs with a 
fictitious time stepsize ∆t = 0.005. In Fig. 1(a) we show the 
residual errors with respect to the number of steps up to 2000.  
The absolute errors of numerical solution are plotted in Fig. 
1(b), which reveal an accurate numerical result with the 
maximum error being 6.288 × 10−3. 

2. Example 2 

One famous mesh-less numerical method to solve the 
non-linear PDE of elliptic type is the radial basis function 
(RBF) method, which expands the solution u by 

 
1

( , ) ,
n

k k
k

u x y a φ
=

=∑  (36) 

where ak are the expansion coefficients to be determined and 
φ k is a set of RBFs, for example, 

 

2 2 3/ 2

2

2

2

2
2 2 3/ 2

2

( ) , 1, 2, ,

ln , 1, 2, ,

exp ,

( ) exp , 1, 2, ,

N
k k

N
k k k

k
k

N k
k k

r c N

r r N

r

a

r
r c N

a

φ

φ

φ

φ

−

−

= + =

= =

 
= − 

 

 
= + − = 

 

…

…

…

 (37) 

where the radius function rk is given by rk = 
2 2( ) ( )k kx x y y− + − , while (xk, yk), k = 1, …, n are called 

source points.  The constants a and c are shape parameters.  In  

(a) 
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Fig. 1. For example 1: (a) showing the convergence speed of residual 

errors, and (b) displaying the numerical error. 

 
 

the below we take the first set of φ k as trial functions, which is 
known as a multi-quadric RBF [9, 13], with N = 2. 

In this example we apply the multi-quadric radial basis 
function to solve the following non-linear PDE: 

 3 2 2 24 ( ),u u x y a∆ = + +  (38) 

where a = 4 was fixed.  The domain is an irregular domain 
with 

 2 2( ) (sin 2 ) exp(sin ) (cos2 ) exp(cos ).ρ θ θ θ θ θ= +  (39) 

The analytic solution is given by 

 2 2 2

1
( , ) ,u x y

x y a

−=
+ −

 (40) 

which is singular on the circle with a radius a. 
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Fig. 2. For example 2: (a) showing the convergence speed of residual 

errors, and (b) displaying the numerical error.  
 
Inserting Eq. (36) into Eq. (38) and placing some field 

points inside the domain to satisfy the governing equation and 
some points on the boundary to satisfy the boundary condition 
we can derive n NAEs to determine the n coefficients ak.  The 
source points (xk, yk), k = 1, …, n are uniformly distributed on a 
contour given by R0 + ρ(θ k), where θ k = 2kπ /n.  Under the 
following parameters R0 = 0.5, c = 0.5, ν = 5, m = 0.01 and ∆t = 
0.01, in Fig. 2(a) we show the residual errors up to 1000 steps.  
It can be seen that in the residual-error curve there is a little 
oscillation, and it decays very fast at the first few steps.  The 
absolute error of numerical solution is plotted in Fig. 2(b), 
which is accurate with the maximum error being 8.57 × 10−3. 

Now we test the effect by adjusting the stepsize.  Under the 
following parameters R0 = 0.5, c = 0.1, ν = 5, and m = 0.01, in 
Fig. 3 we compare the residual errors obtained by fixing a 
stepsize with ∆t = 0.01, which exhibits many irregular bursts 
as shown by the dashed line, and that obtained by adjusting the 
stepsize as shown by a solid line, which is smooth and de-
creased.  The adaptive stepsize is also shown by the dashed- 
dotted line up to 500 steps. 
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Fig. 3. For example 2 comparing the residual errors obtained by a fixed 

stepsize and an adaptive stepsize. 

 

3. Example 3 

In this example we apply the MBECA to solve the follow-
ing boundary value problem of non-linear elliptic equation [6, 
7, 31, 32]: 

 2 3( , ) ( , ) ( , ) ( , ).u x y u x y u x y p x yω ε∆ + + =  (41) 

While the exact solution is 

 3 3 2 25
( , ) ( ) 3( ),

6
u x y x y x y xy

−= + + +  (42) 

the exact p can be obtained by inserting the above u into Eq. 
(41). 

By introducing a finite difference discretization of u at the 
grid points we can obtain 

, 1, , 1, , 1 , , 12 2

2 3
, , ,

1 1
( 2 ) ( 2 )

( ) ( )

0.

i j i j i j i j i j i j i j

i j i j i j

F u u u u u u
x y

u u pω ε

+ − + −= − + + − +
∆ ∆

+ + − =

 

  (43) 

The boundary conditions can be obtained from the exact 
solution in Eq. (42). 

Under the following parameters n1 = n2 = 13, ∆t = 0.005,  
ν = 500, ω = 1 and ε = 0.001 we compute the solution of the 
above system, and compare them with the exact solution.  In 
Fig. 4(a) we show the residual errors up to 2000 steps.  The 
absolute errors of numerical solution are plotted in Fig. 4(b), 
of which the maximum error is smaller than 1.626 × 10−3. 
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Fig. 4. For example 3: (a) showing the convergence speed of residual 

errors, and (b) displaying the numerical error. 

 

V. LIMITATION 

Before Eq. (11) we have mentioned that the governing 
equation of x is not unique.  Indeed, it is not a necessary 
condition but a sufficient condition to satisfy Eq. (10).  Thus 
the following algorithm: 

 
2

2( ) ( ) ( )t t t q t t Τ

Τ
+ ∆ = − ∆

F
x x B F

B F
 (44) 

based-on Eq. (13) has some limitations.  Obviously, from the 
residual error curves as shown in Figs. 1(a), 2(a), 3 and 4(a) 
there is a common pattern that the curves decrease very fast at 
the beginning, and then they all tend to be flattened with a very 
slow convergence, without having an exponential conver- 
gence no longer.  Another feature as obviously shown in Figs. 
1(a) and 4(a) is that the curves exhibit irregular bursts.  To 
solve the latter problem we can employ the technology in  
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Fig. 5. For example 1: (a) displaying time stepsize, and (b) showing the 

convergence speed of residual errors.  However, the stepsize ad-
justing technique is computational time consuming. 

 
 
Section III.1 by adjusting the time stepsize.  As shown in  
Fig. 5 we plot the adjustive time stepsize and residual error for 
example 1.  In the curve of residual error the bursts disappear.  
However, it still has the first problem.  More difficultly, the 
time stepsize adjusting technique spends a lot of computa- 
tional time to find ∆t. 

In order to find the reason for a slow convergence of the 
residual error curve in its later stage we give the following 
analysis.  Inserting Eqs. (24) and (25) into Eq. (23) we can 
derive 

 2
0

( )
( ) 2( ) 1 0,

( )

Q t
a q t q t

Q t t
∆ − ∆ + − =

+ ∆
 (45) 

where 

 
2 2

0 4: 1a
Τ

= ≥
F AF

B F
 (46) 

in view of Eq. (26). 
From Eq. (14) and the approximation of 

 ( ) ( ) ( ),Q t t Q t t Q t∆ = + ∆ −�  

we have 

 
1

( ) [ ( ) 1],
2

q t t R t∆ = −  (47) 
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Fig. 6. For example 1: (a) displaying a0, (b) showing R and (c) the con-

vergence speed of residual errors.  
 
 
where the ratio ( )R t  is defined by 

 
( )

( ) .
( )

Q t t
R t

Q t

+ ∆=  (48) 

As a requirement of ( ) 0,Q t >�  we need R(t) > 1.  

Thus, through some manipulations, Eq. (45) becomes 

 3 2
0 0 0( ) (2 4) ( ) ( 8) ( ) 4 0.a R t a R t a R t− + + + − =  (49) 

It is interesting that the above equation can be written as 

 2
0[ ( ) 1] [ ( ) 4] 0.R t a R t− − =  (50) 

Because R = 1 is a double roots and it is not the desired one, 
we take 

 

4

2 2
0

44
( ) .R t

a

Τ

= =
B F

F AF
 (51) 

By using Eq. (47), Eq. (44) can now be written as 

 [ ]
2

2

1
( ) ( ) ( ) 1 .

2
t t t R t Τ

Τ
+ ∆ = − −

F
x x B F

B F
 (52) 

When R(t) tends to 1, i.e. a0 tends to 4, the dynamical force 
on the right-hand side is lost for the above equation.  In Fig. 6 
we show a0, R and the residual error with respect to the 
number of steps.  It can be seen that the above dynamic equa- 
tion loses its pushing force, and remains a large residual error 
due to a0 tending to 4 and thus R tending to 1. 

VI. CONCLUSIONS 

A manifold-based exponentially convergent algorithm 
(MBECA) was established in this paper.  When we apply it to 
solve some 2D non-linear PDEs, the vector-form was derived.  
Several numerical examples of non-linear PDEs showed the 
efficiency and accuracy of MBECA.  The irregular bursts 
appeared in the residual error curve can be overcome by 
solving a scalar equation to find the adjustable fictitious time 
stepsize.  However, the governing Eq. (13) has faced a bot-
tle-neck by only considering with the gradient vector as a 
unique source of dynamic force.  An open problem is that how 
to construct a really exponentially convergent algorithm ac-
cording to the setting of a manifold defined in Eq. (18). 
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