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GLOBAL EXPONENTIAL STABILITY CRITERIA
FOR SWITCHED NEUTRAL SYSTEMS WITH
INTERVAL TIME-VARYING DELAY

Ker-Wei Yu*
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ABSTRACT

The delay-dependent and delay-independent conditions are
proposed to guarantee the global exponential stability for
uncertain switched neutral system with interval time-varying
state delay. New additional nonnegative inequalities are intro-
duced to improve the conservativeness of system. Razumikhin-
like approach is used to prove the exponentia stability for
system. Structured and unstructured uncertainties are inves-
tigated in this paper. The solving schemes based on Linear
Matrix Inequality (LMI) approach along with the selective
examples are presented to demonstrate the improvements
achieved.

. INTRODUCTION

A switched system is a class of hybrid systems which con-
sists of several subsystems and exhibits the switching feature
between multi-models, which is usually used to approximate
many practical nonlinear systems [10]. It is well known that
the existence of time delay in asystem may causeinstability or
bad system performance in feedback control systems. Since
time-delay phenomenon may encounter in many practical
systems, such as aircraft stabilization, chemical engineering
systems, inferred grinding model, neural network, nuclear
reactor, population dynamic model, rolling mill, ship stabili-
zation, and systems with lossless transmission lines [2, 3, 5].
Hence stability analysis for switched time-delay systems has
been investigated in recent years[4-9, 11, 13].

It isinteresting to note that for each stable subsystem can-
not imply that the overall system is also stable [7]. Hence
we will consider the global exponentia stability problem for
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switched neutral systems with interval time-varying state
delay and two classes of perturbations under arbitrary switched
signal. Based on Razumikhin-like [12] and LMI approaches
[1], delay-dependent and delay-independent results are pro-
vided. The LMI approach [1] isan efficient and powerful tool
in solving some control problems; such asH,, control, stability
analysis, guaranteed cost control, state feedback control, static
output feedback control, and observer-based control. Hence
LMI approach will be used to guarantee the stability problem
of systems. Some numerical examples are provided to dem-
onstrate the main proposed resullts.

The notation used throughout this paper isasfollows. For a
matrix A, we denote the transpose by AT, spectral normby ||A],
minimal (maximal) eigenvalue by 4,.(A) (4. (A),
symmetric positive (negative) definiteby A>0(A>0). A<B
means that matrix B — A is symmetric positive semi-definite.
For avector x, we denote the Euclidean norm by ||x| . For the
state x; of system, we define x (6) = x(t+86),Vée[-H,0]

and denoteitsnorm by ||x ||, = _'?;lgo\/"x(t + 49)||2 + %t + 49)||2 :

| denotes the identity matrix.

I1.PROBLEM FORMULATION AND MAIN
RESULTS

Consider the following uncertain switched neutral system
with interval time-varying state delay:

X(t) - DX(t=7) =[ A, +AA, (D]X()

+[A, +AA, (OIX(t-h(t)), t 20, (1)

x(t) =¢(t), te[-H,0], (1b)
where x e R". Switching signal ¢ may depend on t or x and
takes its values in the finite set {i=1,2,---,N} . Interva
time-varying delay h(t) satisfies 0 < h,, < h(t) < hy, h(t) <h, .
Constant delay = > 0 and H = max{h,,,7} . Matrices D, Ag;,
and A, e R™, i=12.---,N, are constant, and the initia
vector ge C, where C, is the set of differentiable functions
from [-H,0] to R".
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In this paper, we will consider the following two types of
perturbations on system:

(A1) Structured perturbations. AA,; (t) and AA, (t) satisfy the
following conditions

[A'Abi(t) A'A&J(t)]:MiFi(t)[NOi Nli]’
Vie{l2,-,N},t=0, (24)
where M, , N, , and N, , i=12,--,N, are some given

constant matrices with appropriate dimensions, and F (t),
i=12,---,N, are unknown matrices representing the pa-
rameter perturbation which satisfy

FTOF @) <I,Vie{l2 N},t>0. (2b)

(A2) Unstructured perturbations: AA, (t) and AA, (t) satisfy
the following conditions

"A'Abi (t)” <o, and ”AA&J (t)" <0y, 3

where o, and o, i =1 2,---,N, are some given nonnega-
tive constants.
Define the functions A (t), i=12,---,N, asfollows:

1 o =i,

/ﬂ(t)={ i=12,--N. (4)

0, otherwise,

We can rewrite the switched system (1) to the following
form:

X(t)-Dx(t-7) = Z A OU[ A +AA, O1X()

+[A +AA OIXE-h®)},t20, (59

X(t) = ¢(t)1 te [_H 70] ’ (5b)

where A (t) is defined in (4) and i&(t):], A=A,

and 4 (t)-4,(t)=0,i# j, Vt>0.

The following lemmawill be used in the proof of our main
results.

Lemma 1: [12] Let U, V, W and M be rea matrices of
appropriate dimensions with M satisfying M = M", then

M +UVW+W'VTUT <0, foralV'Vv <1,

if and only if there existsascalar £ > 0 such that

M+et-UUT +& W'W

=M+t UU" +£7(eW)" (W) < 0.

Definition 1. The system (1) with (A1) or (A2) is said to be
the globally exponentially stable with convergence rate a > 0,
if there are two positive constants « and ¥ such that

[x®)|<¥-e*, t=0.

Now we present adel ay-dependent condition for stability of
system (1) with (Al).

Theorem 1. System (1) with (A1) and h, <1 (resp., h, =21
or unknown) is globaly exponentially stable with con-
vergence rate 0< a <—(In||D)/7, if |D| <1 and there exist

somen x nmatricesP, Q1, Qz, Ry, Ry, Rs, Ry, § Roo, S, T22> 0,
R, S;, T, >0e R™" (resp., Q, = 0), some matrices U, ,

Uy, Uy, Uy, Uy, Ug Uy eR™ R, 512,1'1269{7“"'
and some positive constants ¢, i =1, 2,---,N, such that the
following LMI conditionshold for al i=1,2,---,N

g*".R-R,>0,e*™ R ~S, >0,

g™ .R,~-T, >0, (6a)

|:R11 R12:|>0,|:§1 Sz:|>O[T11 T12}>0, (6b)

* Ry S, * Ty
_lei Z12i Z13i Z14i Z15i Z16i Z17i Z18i Z19i ]
Ty Zym O 0 0 0 Xy O
* Ly s a5 Zas  Zan ey g
* * Xy X Zg 0 X O
ﬁli = ¥ * * D Y2 D VSED YT D 0
* * * * ¥ X L g O
* * * * * * Z77i Z78i 0
* * * * * * * Zggi 0
* * * * * * * * Zggi
o, 00
+ 0 0 0|<0, (6¢)
0O 0O

where * represents the symmetric form in the matrix and

T =20-P+PA + A P+Q +Q,+U A, + AU, +S+R,,
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¥, =—2a-PD-A,PD,

. =PA +UJA +AU, .2, =AU,,
T =AU -Ul +AU,,

s =-AUD+U;D+AU,, 2., =AU,

T =PM, +UIM,, 2, =¢-Ng,

%, =20-D'PD-e?*.S 5, =-D"PA,,

Ty =—D'PM,,

Zagi =—g 2 '(1_hD)'Q2+U;A§j +AtTiU3ia234i ZAIU&’

35| Ail U;+A1i-u4i’

o = AU1|D+U3|D+A1U5| Lo = ALU7| L =U;

a
Y =6 N, 2, =—€".Q+e”" R,
T =Vl 2 =ULD, 2, =UIM,,
Tg =N, R+(h, —h,)-R-U;-U; -U, -Ug,
X =y +U1|)D+U4|D—U5i,257i=—U7i,
Y =U;M, +UiM,,
Zesi = =-D"(U, +U, )D+U5ID+DTU i1 X7 = D'U.,

T =—D'UyM, +UgM,, X, =™ (R, +R)),

g :U;Mi!zssi =2y =&

1,
(D11=hn'R11+R12A1+AIR1Tz+(hM -h,) (M +S,)

+S A, + AL S, +TpAs + AT,

A,=[l 00 -1 00 0],
A,=[0 01 00 0 —I].,
A,=[10 0 =1 1 0 0 0

nx7n*

Proof. Define the Lyapunov functional

M i

Journal of Marine Science and Technology, Vol. 18, No. 2 (2010)

V(%) = € (x(t) ~ Dx(t - 7)) P(x(t) - Dx(t 7))
+ [ X (9Qx(9ds
+ [ € X (9QX()s
+ 1 e X (9)5¢9)ds
+£mé“(S%PhoﬂW$aﬂg$
+IH"M(SU hy DX (R, X(s)ds
+(h, —h,)- I:_hm &% . X (R K(S)ds

+ '[:hh“ e . X" ()R, x(s)ds

+ J‘ih e - X" (S)R,x(s)ds, ©)

where P,Q,,Q,, R, R,, R, R,, S>0. The time derivatives
of V(x) , aong the trgjectories of system (5) satisfy

V(x) =€ -[2a- (x(t) - Dx(t - 7))" P(x(t) - Dx(t - 7))]

263" 4 OHTA, +A4, (1O} PO - DXt~ 2]

26" i/ﬂ OUTA; +AA; OIX( - h(©)}' P(x(t) - Dx(t-7))]

+ e [XT (QX() —e*™ - X" (t—h, )Qx(t—h,)]
X (OQX() — (- h(t) - €2V X7 (t—h(t)Q,x(t — h(t))]
+ & [X (O)SX() -2 X (t—7)X(t—7)]

& [, X (ORXO - [, €X' (JRX($)ds]

& [(h, ~h,) X ORXD- [ "€ X (R A(s)ds]

“ (e (t-h,)Rx(t-h,)
— e (t-hy )Rx(t—hy )]

+ X (ORX() —e "™ X" (t=h, )Rx(t—hy,)]. (8)
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By some simple derivatives, we have

] K (9RM(ds S e [ X (RS

(8b)

and

- e (YR X(Sds

_e (It n(t) T(S)sz(s)ds+J X" (S RX(s)ds|. (8c)

Define

XT=[x'(t) X (t-7) X (t-h@t) X (t-h)
() K(t-7) X (t-h,)].

By Leibniz-Newton formula and LMIs (6b), we have

J" X T{Rn F")12:| X ds
X)) LY Re ] X(9)

=h, XTR, X +2X R, [x(t) - x(t—,)]

+ j{im K" (S)R,X(5)ds> 0, (8d)

J‘tt:wt){x(s)} {Sﬂ :ij{xfs)}ds

= (h, —h()- X"S, X +2X" S, [x(t—h() - x(t - h,,)]

+ TR (98.x9ds20, 89

tihm |: X :|T |:-r11 T12:||: )2 :|
I _ . ds
OIS | LY T ][ X(9)
= (h(t)—h,)- X"T, X +2X T, [x(t—h,) - x(t - h(t))]

+ jt o X" (S)T,,%(s)ds >0, (8f)

By system (5), and 42(t) = 4 (1), and 4 ()4, (1) =0,i # |,
we have

~2 A M) = DX(t=2))" (U +UD)(X(H) - DX(t-7))

+ i% OIX() — DX(t - 7)) Uy {[ A, + AA; (D]x(1)
+[A +AA (OIX({E-h(0))}]

+ ﬁ‘/ﬁ OH A +AA; (DIX®)} Uy (X(1) - DX(t - 7))]

+ SADHIA, + 34 Ot hO)Y UL () - DKL)
=0, (89)
ZNl“ﬂi ®-{X" (U, + X" (t—h)UJ +X (OU, + X (t-7)US
X (E-h)UT 4 X7 (t-h, )UT)
D A5+ DXt -)
+ 1A, + A8, O1XO)+TA, +AA, OIXE- @)
# A0 (X0 + DXt D)+ {4, + 44,010
FIA,+0A, O~
D AQ)DE QUL +X (RO +K (U]
R (- UL X =R UL + X (t—h)UTYT

= _ZN:& @ [{x" (U + X (t-h®)Uy + X" (OU;

+X (t—7)UL + X (t—h UL + X (t—h,)U;}
A{=x(t) + Dx(t —7) +[ Ay + AA, (D]X(1)
+[A +AA (O]t —h(t))}]

#3 A0 [0+ DX(-2)+1A, +A4, OIXO

+[ A +AA O1X(t-h(®)}
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AXT MU + X (t=h()U] + X (U, + X (t—7)U]
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+X (t—h)Ug +x (t-h,)Us}"1=0. (8h)

By (8a)-(8h), we obtain the following result

V(x)<e {iut)fﬂ %X

- L X Oe™™ R -RyIX(9)ds

- [T (™™ Ry~ S, ]x(9)ds

J.

~ [T K (e ™™ R, ~T,IX(9d

where
_lei 2“12i z“l3i 2“14i lei 2:L6i
* Z22i 223i 0 0 0
* * Z33i Z34i Z35i 236i
%= * * * 2ui L Zu
* * * * z"55i 256i
* * * * * zGGi
 x ok« % %
[ PM, +UIM,
~-D'PM,
UiM,
+@,+ UgM, F (1)
UM, +U M,
-D'U,M, +UIM,
LM
'N] PM, +UJ M,
0 -D'PM,
Ny UzM,
+| 0 |E'(t) UiM,
0 U,M, +U]M,
0 -D'U;M, +U . M,
| 0 | | UlM,

17i

Z37i

™M

57i

67i

7

V(X)<V(%), 120 (10)

where

V(%) = (X(0) = DX(=7))" P(x(0) — Dx(~7))
+ ] e (9Qx(E)s
+] ,Oh(o) &X' (8)Q,x(s)ds
S IR CENCLS

© N Iohﬂ e (s+h,)X" (R X(s)ds

+ [ e (s+ )X (IR X(s)ds
+(hy =hy)- [ &K (JRX(9)ds
M _ops T
+ LhM e X" (9R,x(9)ds
+ LOh ex (s)R,x(s)ds
<& I
and
51 = ﬂ’max (P) ' (1+ "D")2 + hm : /Imax (Ql) + hM ' ]’max (QZ)

+(hM _hm)z'/,imax(Rz)'i_hm'(h!\/I _r%)/lma((Rz)
+(hM _hn)'ﬂ’max(RS)-i_h\ll /1max(R4)

On the other hand, we have

Ain(P)- € |0)|* <€ - 07 (t) Peo(t)

<V(%) SV (%) <8, [% L (11)

_ By the Lemma 1 and schur complement of [1], conditions
3 <0,i=12---,N, in (6) will imply X, <0 in (9). From where g(t) = x(t) - Dx(t—7). From (11), we can obtain the

Y, <0 and LMIs(6d), we have

following result
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[Xe) = lott)+ Dx(t )| <D - |x(t - 2 + |t

<|o]-[xt-7)+ 5, e, t>o0,

where &, =[8,/ 4, (P) - [%].. Since||D|<1and >0, we
can choose a sufficiently small positive constant & =a <
—(In|D|)/7 satisfying |D|-e <1. By the Razumikhin-like
approach of [12], we obtain the following result

52 Lot
o1 3 1ol s

52 oSt
S{"Xo”SJr—l—"D"ef“} e t>0.

This completes the proof. UJ
If D =0, Theorem 1 can be rewritten in the following result
with S=U, =0.

Corollary 1. System (1) withD =0 and (A1), hp < 1 (resp.,
hp > 1 or unknown) is globally exponentialy stable with
convergence rate a > 0, if there exist some n x n matrices
P, Q1, Q2 Ry, Ry, Rg, Ry, Roz, S92, T2 > 0, Rug, Sy, T >0 €
RO (resp., Q, = 0), some matrices Uy, Uy, Ug, Us, Us,
Uz € R Ry, Sip, T2 € R™", and some positive constants
&, i =1 2,---,N, such that the following LMI conditions hold
foral i=12,---,N

g*".R-R,>0,e*".R -S, >0 .R,-T, >0,

B Bloo[S EoofB T
* I:222 * SZZ * T22_

1

i
@
=
ezl
]

N
[1] H[I]

al
[ [1]

ey
>
o O O O

N
2]
N
N

[ [l [n

W
[

B

[11 [ [ [l
R
B

T
|
*
*
*

S

* *

* *

* *

* * g

" 5[_11 @FI]

[1] ?5[.11 [1] ‘@EI] [11 [1]

*
*
*
*
*
* o
=)
[1]

B

oy
o O
o O
N
o

(12)

o O

where

E, =20-P+PA, + AP+Q+Q,+UJA, + AU, +R,,

Epn =PA +U;Aii +A{)riU3i’E‘13i = Agiuei'

[1]

14i = A;UlTl _UzTi +Agiu4i ' B = Agiuw

[1]

6 =PM+U M, E, =€ -Ng,

[1]

2i = 2t '(1_hD)'Q2+U.’;,riA§.i +AiTil-szEzsi =AJU6iv

[1]

221 = A&IU; _U; +A&Tiu4i1525i = A&Tiuﬂv

[11

-7 = = T =  __a2ahy —2ahy,
26i_U3iM"‘—‘27i_£i'Nli"—‘33i__e “ 'Q1+e “ Ra’

[1]

T = T
ai = U, Eg =Ug M,

[1]

wi =hy R+(hy —h) R -U, _UlTi -U, _ULl

[11

s =Yg, B =UyM, +Uz-|1—iMi’E‘55i =—g M (R3+ R4),

(i)ll = hm'R11+R12/~\1+1~\IR1TZ+(hM _hm)'(Tu*'%l)
+S,A, +ATS, +TL A+ AT,

A=[l 0 =1 0 Og A,=[0 | 0 0 —I]p

A,=[0 -1 1 0 0O

nx5n *

In the next, we will consider the delay-dependent condition
for stability of system (1) with (A2).

Theorem 2. System (1) with (A2) and hp <1 (resp.,hp > 1or
unknown) is globally exponentially stable with convergence
rate 0<a < —(In||D[)/z, if |D| <1 and there exist some n x
nmatrices P, Qu, Qz, Ry, Ry, Rs, Ry, SRy, S, T22 > 0, Ryg, S,
Tu>0e R™ ™ (resp., Q, = 0), some matrices Uy, Uy, Us;,
U4i, U5i, Uei, U7i e R~ n! Rlz, S_Lz, T12 € EKM Xn, and some
positive constants ug, w1, 1=12,---,N, such that the
following LMI conditionshold for al i=1,2,---,N

e*™ . R-R,>0e*"%.R,-S,>0€e*" .R,-T, >0,

|:R11 R12:|>0,|:§1 SZ:|>O, |:-r11 T12:|>0,
* R22 * S22 * T22
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(Y i VY Y Vi Wi Wi Y Yo |
Vo W O 0 0 0 Wy Yo
* oWy oy W Vi Yo Y Wi
* * oW Ve Ve 0 Wi P
Y= ¥ * * oWy Yo Yo W W
* * * * ¥ Ve Ve Ve Yoo
* * * * * W Yo W
* * * * * * * \PSS 0
L * * * * * * * * \ngi ]
o, 00
+| 0 0 0(<0, (13)
0 0O

where
¥, =20-P+PA, + AP+Q +Q,

+UJ A, + AU, +S+u, 051 +R,,
¥, =—2a-PD— AL PD,
V.. =PA, +U2Ti,01i +PgiU3i,‘I’14i = A;Uei,
Y. =AU Ul +AU,,
Yoo =—A;U;D+U;D+A;U5i,‘l-’l7i = A;Uﬂ,
b4 =‘I’19i=P+U;,‘{’ =2a-D'"PD-e?".S,

18i 22i

W,y =—D'PA, Wy =¥, =—D'P,

Vo =—€2M (1)) Q,+U A + AU, + 4107 -1,
Yo = AlUg, P = AU -Ug + AU,

¥, =-AU D+U;D+AU,, ¥, = AU,

=Wy =Ug, Wy =€ -Q+e* "R, ¥, =V,
=UgD, ¥, =¥, =Ug,

Wes =y R+ (hy —h,)-R-U; U] -U, -Ug,

= (U, +U;)D+U D-U,, ¥, =-U,,

=W =U, +UIi'

Vs =-D' (Uli +U;)D+U;D+ DTUsi-Tmi = DTU7i-

Voo =Yoo :_DTUIi +U;’qj77i =—g %M (R3+R4),
Wog =W =Ug, Weg =ty |, Woo =11 1,

(D11=hn'Rn+RzA1+AIR1Tz+(hM -h,) Ty +S,)

+S,A, +ALS, + oA, + ALT)

120

A=[l 00 -l 00 0]

nx7n?

A,=[0 0 1 00 0 -],
A,=[0 0 =1 | 0 0 0]

nx7n*

Proof. From the assumptionin (A2), we have

oo X (OX() - X" (DAA] (DAA, ()X(1) 20, (14a)
oy X (t=h®)x(t-h(),
X" (t—h(t))AA] ()AA, ()Xt —h(t))>0,i=12,---,N.
(14b)
By (8a)-(8h), we can obtain the following result
V) +E 240ty - [05 X OXO)
=X (£)AA (DAA, (£)X ()]

+€ 340y [o5X (= hE)x(-h()

— X' (t=h(D)AA; (DAA, (D)x(t - h(t))]

Sezm-{zn:zf-wi-zi

i=1

~ 1 K (9™ R - R,IX(9)ds

t=hn

— [TxT (g)e™ R, - S, ]X(s)ds

t-hy

B Lz:‘:) X (S)[e—Zam ‘R, —Tzz]X(S)dS} )

(15
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where matrices W, , i =1, 2,---,N , are defined in (13), and

Z'=[x"(t) X' (t—-7) X (t-ht) X (t-h,) X (t)

X(t-1) X'(t=hy) X (OAA;D) X (t-h1))AA (0]
From conditions in (13)-(15), we can achieve that the condi-
tion (10) issatisfied. By the samederivation of Theorem 1, we
can complete this proof. L]

If D =0, Theorem 2 can be rewritten in the following result
with S=U, =0.

Corollary 2. System (1) with D = 0 and (A2), hp < 1 (resp.,
hp > 1 or unknown) is globally exponentialy stable with
convergence rate a > 0, if there exist some n x n matrices
P, Q1 Q2 Ry, Ry, Rg, Ry, Rozy $2, T2 > 0, Rug, Sy, T >0 ¢
RO (resp., Q, = 0), some matrices Uy, Uy, Ug, Us, Usi,
Uz e R Ry, Sip, T2 € K", and some positive constants
Lois iy, 1 =1, 2,-+-, N, such that the following LMI conditions
holdforal i=1,2,---,N

e .R-R,>0€e*" R,-S,>0,e"™ R,-T, >0,
T, T
{Fin R12:|>0[§1 Sz}>0[i1 12}>0,
Rzz Szz T22
b ST 27 \Pl3i Wi ‘Illsi \P16i Yoo
* VYo Y Y LPZSi Vo Yo
* * \i"aa ‘ilszu 0 \iISGi \i‘m
‘iji = * * * \i"44i @45& \ilaei ‘ilzm
* * * * \ilssi \i’sei \i"sw
* * * * * \ileei O
* * * * * * \’1\177_
®, 00
+/ 0 0 0|<0 (16)
0O 0O
where
W, =20-P+PA, +ATP+Q +Q,
+U;'Abi +A;U2i + My 'O-ozi I+ R41
‘:I)IZi = PA, +U;Aﬁ +A;U3i'
13| AbU6I’\Pl4I AbUT_U2|+Ab| 40 15| =A-)riU7i'

¥, =¥, =P+U],

16i

li}zzi =—g 2™ -(1-h ) Q2+U3|A +A§JU3|+IUJJ O-1|

‘:I\lzsi ZAIUGN\’PM = A&TUJT _U; +AIU4N

Vo = A&IUW‘Pzei =¥, :U;1

T33i = _g 2 ~Q1+eizah"R3,\IA134i :—U;,\i"%i :\%37. :U;—i'

\ilzw =h,-R+(h, —h,) R -U, _UlTi -U, —UL,

lAP45i =U, ¥ = LP47| =U, +UT

\ijssi =—g (& + R4), \ilsei = li’sw ZU; ,

Ve =ty 1, Yoy = =15 -1,

q)llzhn'Rn"‘Ru]\l"';\IRiTz"'(hM -h,) (T, +$S)

+S,A, +ALSh+TLA, +ALTS,

A, =[l 0 -1 0 O A,=[0 I 00

nx5n ! -1 ]n><5n '

A,=[0 -1 1 0 0

If D=0, AAy(t) =0, and AAy;(t) = 0, Corollaries 1 and 2 can
be rewritten in the following result.

Coroallary 3. System (1) with D = 0, AAg(t) = 0, AA;(t) =0,
and hp < 1 (resp., hp = 1 or unknown) isglobally exponentially
stable with convergence rate a > O, if there exist somen x n
matrices P, Q1, Qz, Ry, Ry, Rs, Ra, R, S, T22> 0, Rug, S, Tua
>0e R (resp., Q. = 0), some matrices Uy;, Uy, Uz, Uy,
Ugi, U € R"*", Ry, Sip, Tio € R, such that the following
LMI conditionshold for al i =1, 2,---,N

g*".R-R,>0,e*.R -S,6>0e"".R,~T, >0,

f Bl SofB Tl
* R22 * S22 * T22

= = = = . 2= 7
=11i —12i —13i —14i —15i
* = = = =
=20 =23 =24 =25
E = Eai Za 0 [+D,<0, (17)
* * * = =)
= 44i —45i
* * * * —
L =55 |
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ci)ll =h,-R; + R12]\1+1~\IRI2 +(hy —h,) (T +S)
+ A, +ATS, +TpAL + AT,

A=[l 0 =1 0 0., A, =[0I 00 —I],

A,=[0 -1 1 0 0

nx5n 1

where 2,k 1=1,2,...,5,i =1, 2,...., N, aredefined in (12).

Remark 1. In [7] and [11], the slow variation condition
h(t) < h, <1 is constrained in their considered systems. The
hard constraint h, <1 isnot imposed on our results.

Remark 2. By setting a = 0 in Theorems 1-2 and Corollaries
1-3, the global asymptotic stability for system (1) can be guar-
anteed. By %t“nga = 0, Rl= O, and RZ: O, R]_l: T11= S_|_1= 0
in Theorems 1-2 and Corollaries 1-3, we can obtain the
delay-independent stability result for system (1).

1. NUMERICAL EXAMPLES

Example 1. Consider the system (1) with D = 0, AAqi(t) =0,
and AA;;(t) = 0 and the following parameters: (Example 1 of
(9

N3 [2 0 (-1 - [-15 1
- ’A’l{o —1}"&“_[0 —0.5}"6"2_[ 0 —1}’

06 -1 [-05 0 [T g
Aﬁ_[o —0.4}’%3_[ 0 —3}"613{0 1}' (18)

By Corollary 3, LMI (17) with (18) for « = 0.1, hy < 0.2,
h,<0.1, hy < 1.1 hasafeasible solution. Thisimpliesthat the
system (1) with D = 1, AAg(t) =0, AA;(t) =0,0.1< h(t) < 1.1,
h(t) < 0.2, and (18) is globally exponentialy stable with
convergence rate o = 0.1. Some comparisons of the obtained
results for switched system (1) with (18) are made in Table 1.
The results of this paper provide a larger alowable upper
bound for time delay to guarantee the global asymptotic sta-
bility of system (1) with (18).

Example 2. Consider the system (1) with D = 0, AAqi(t) =0,
and AA(t) = 0 and the following parameters: (Example 1 of

k1))
-1 0 0 05
NZZ!Ab1:A>2:|:O _1:|1A11:|:_1 0:|1

0 1
A, {_0_5 0}- (19)

Table 1. Comparing some previousresultswith thispaper.

Some results of delay that guarantee global asymptotic stability
(a = 0) of the system (1) with (18)
Results [9] Our result
hp = 0 (Constant delay) 0<h<1.5004
hp =04 No results 0< h(t) £1.277
hp =0.8 0<h(t) <1.1235
hp =09 0<h(t) <1.1209
hp > 1 or unknown 0<h(t)<1.12
hp > 1 or unknown 0< h(t) < 0.9339 0.3<h(t) <117
hp > 1 or unknown 06<h(t) <121
hp > 1 or unknown 09<h(t)<1.28

Table2. Comparing some previousresultswith thispaper.

Some upper bounds of delay that guarantee the global exponential
stability of the system (1) with (19)

Results | convergencerateo | Boundsof delay h,, and h,,
and hp
9] a=03,hy=01 hp=0, hy = 0.4
a=03 h,=01 hm =0, hy = 0.497
hm =0, hy =0.475
Our results a=0.3, hn=0.3, hy, =0.511
(hp = 1 or unknown) hy, = 0.4, hy =0.519
hm = 0.5, hy = 0.525

Some upper bounds of delay that guarantee the global asymptotic
stability of the system (1) with (19)

[8] a=0,hD=0.1 hm:O,hM=1
a=0,hy=01 h, =0, hy = 3.585
h, =0, hy, =0.895
Our results a=0 h, = 0.4, hy =1.08

(hp = 1 or unknown) hn,=0.8,hy =135

hm=1, hy =1.501

Some comparisons of the obtained results for switched system
(1) with (19) are made in Table 2. The results of this paper
provide a larger allowable upper bound for time delay to
guarantee the global asymptotic and exponential stability of
system (1) with (19).

IV.CONCLUSIONS

In this paper, global exponentia stability for uncertain
switched neutral systems with interval time-varying state
delay and arbitrary switching signal has been considered.
Structured and unstructured perturbations of systems have
beeninvestigated. LMI and Razumikhin-like approaches have
been used to improve our results. The obtained results are less
conservative than previous ones via the numerical simula-
tion.
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