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ABSTRACT 

In this paper, two novel angle tracking algorithms are pro-
posed for tracking multiple targets using an array of sensors 
with known locations.  First, we present an extended Kalman 
particle filter (EKPF) which is capable of determining the 
direction-of-arrival (DOA) angles using a single snapshot of 
data during the interval between each time step.  The proposed 
EKPF algorithm combines particle filtering with the extended 
Kalman filter (EKF) in order to prevent sample impoverish-
ment during its resampling process.  Next, we present a robust 
Kalman filter (RKF) tracking  algorithm intended to improve 
tracking success rates of other existing algorithms for the case 
of multiple snapshots of data within each time increment.  In 
the proposed RKF algorithm, a robust decision mechanism is 
proposed and incorporated into the Kalman filter (KF), lead-
ing to a much better tracking success rate.  Because KF (or 
EKF) is able to offer the predictability of DOA angles, the 
proposed EKPF and RKF algorithms can avoid the data asso-
ciation problem that usually occurs in multitarget tracking.  
The effectiveness of the proposed algorithms are demonstrated 
via computer simulations in scenarios involving targets with 
crossing trajectories. 

I. INTRODUCTION 

Tracking multiple targets based on measurements of sensor 
array is an important research topic in the fields of sonar, radar, 
air traffic control, remote sensing as well as wireless commu-
nications.  Various target angle tracking algorithms have been 
proposed and reported in the literature for multiple narrow-

band targets [5-8, 10, 11, 14-16].  Yang and Kaveh proposed 
an iterative adaptive eigen-subspace method in conjunction 
with the MUSIC algorithm to track the direction-of-arrival 
(DOA) angles of multiple targets [16].  Due to the data asso-
ciation problem caused by multi-target tracking, the adaptive 
MUSIC method fails to track targets when they are moving 
closer.  Although the method proposed by Sword et al. [14] 
can avoid the data association problem, errors are accumulated 
in each iteration making it unable to track targets that are 
mutually close.  Due to the nature of prediction-correction 
filtering process, Kalman filter (KF) can reduce estimation 
errors and avoid the data association problem when applied to 
angle tracking, as stated in several references [5, 7, 8].  Rao et 
al. [8] proposed to estimate DOA angles of targets using the 
maximum likelihood method and feeding the results to the KF.  
However, it assumes that the signal powers of the targets 
are all different, making the algorithm impractical.  Javier and 
Sylvie [5] suggested to estimate target angles using the pro-
jection approximation subspace tracking algorithm with de-
flation (PASTd) [15] and a Newton-type method (for MUSIC 
spectrum) for the use in the KF.  It has lower computational 
load and better tracking performance than Rao’s algorithm, but 
still exhibits poor tracking success rate at low signal-to-noise 
ratios (SNRs).  Park et al. [7] proposed an approach which 
utilizes predicted angles obtained from Sword’s method.  The 
approach also uses the constrained least-squares criterion to 
confine the dynamic range of angles.  The choice of relevant 
parameters is empirical and is not suitable for various sce-
narios of different moving speeds and signal-to-noise ratios.  
Besides, tracking performance degrades seriously with an 
increasing number of crossing targets.  Later on, in order to 
improve Park’s method, Ryu et al. [10, 11] suggested to obtain 
the angle innovations of the targets from a signal subspace, 
instead of the sensor output covariance matrix, via PAST al-
gorithm [15].  Chang et al. [3] modified Park’s algorithm 
by incorporating a spatial smoothing technique to overcome 
multipath interference, and also coherent signal-subspace 
processing for tracking wideband targets.  All of the above 
algorithms are based on the sample covariance matrix or sig-
nal subspace made with multiple snapshots of data from a 
sensor array.  However, they all fail to track multiple targets 
when only a single snapshot measurement is available be-
tween two consecutive time steps during the tracking process, 
because DOA estimation using subspace-based approach re-
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quires sample covariance matrix or signal subspace with a rank 
of more than one. 

For the case of a single snapshot measurement within each 
time increment, tracking multiple targets becomes feasible if 
the sensor array output  is directly used as the measurement 
data in the extended Kalman filter (EKF) [6].  The EKF is an 
approximate nonlinear state estimation technique with first- 
order linearization accuracy, and is suitable for the tracking 
problem since the measurement model is nonlinear in terms of 
the angles (states) to be estimated.  The algorithm proposed by 
Kong and Chun [6] exhibits low tracking success rate when 
targets approach near the points of intersection.  The reason for 
this weakness is the EKF can be difficult to tune and often 
gives unreliable estimates if the system nonlinearities are 
severe.  Unlike the EKF, the particle filter from Metropolis and 
Wiener is a completely nonlinear state estimator [4].  It can 
provide higher tracking performance at the price of an in-
creased level of computational efforts.  However, the particle 
filter has the potential problem of sample impoverishment 
during its resampling process.  This problem will be made 
worse if the measurements are not consistent with the process 
model [13]. 

In this paper, we propose two novel tracking algorithms.  
The first one, named as EKPF (Extended Kalman Particle 
Filter) tracking algorithm, is suitable for the case of a single 
snapshot measurement within each time increment.  EKPF 
combines particle filtering with the EKF to prevent sample 
impoverishment.  It leads to remarkable performance improve- 
ment over the particle filter alone and the EKF, as demon-
strated by simulation results.  The second one, named as RKF 
(Robust Kalman Filter) tracking algorithm, is intended to 
improve the tracking success rates of other existing algorithms 
for the case of multiple snapshot measurements within each 
time increment.  RKF modifies Javier’s algorithm by replacing 
the PASTd algorithm with the Sliding Window Orthonormal 
PAST (SW-OPAST) algorithm [1], and incorporating a robust 
decision mechanism into KF.  SW-OPAST can provide faster 
tracking response than PASTd during the process of obtaining 
orthonormal basis vectors of noise subspace for the subse-
quent MUSIC algorithm.  Our proposed robust decision mecha- 
nism is helpful in preventing large errors occurring when 
target locations are mutually close, thus significantly improv- 
ing the tracking success rate especially at low SNRs as dem-
onstrated by simulation results. 

II. SYSTEM MODEL 

We consider M targets moving in a plane containing an 
array of L sensors.  The sensor positions are assumed to be 
known, and we take them to be placed uniformly on a line 
with spacing of d between two adjacent sensors, measured in 
the unit of wavelength λ.  The motion of the targets is assumed 
to be at constant angular speed in the presence of Gaussian 
disturbance, and is observed every T seconds.  Let θm(t) ∈ 

[ , ],
2 2

π π−  measured clockwise with respect to y axis, denote 

the DOA angle of the mth target at time t.  Assuming that 
these targets are located in the far field and their radiated 
signals are narrowband with a common angular frequency ω0, 
the output of the lth isotropic sensor at time t is then 

 
1

( ) ( ) ( )o lm

M
j

l m l
m

r t e s t n tω τ−

=

= +∑  (1) 

where ( )ms t R∈  is the signal transmitted by the mth target at 

time t, nl(t) is a complex Gaussian white noise with zero mean 

and variance 2 ,nσ  which is uncorrelated with the target signals, 

and τlm is the difference in time delays of the mth target 
reaching the first (reference) sensor and the lth sensor.  By 
using vector-matrix representation, the output of the sensor 
array is given by 

 ( ) [ ( )] ( ) ( )t t t t= +r A θ s n  (2) 

where r(t) = [r1(t),…, rL(t)]T, s(t) = [s1(t),…, sM(t)]T, n(t) = 
[n1(t),…, nL(t)]T are the output data, target signal, and noise 
vectors, respectively.  θ(t) = [θ1(t), θ2(t),…, θM(t)]T is the 
target DOA vector and A[θ(t)] is the array direction matrix 
with the direction vector of the mth target (the mth column 
vector)  

 
2 2

sin ( 1) sin
[1, ,..., ]

m mj d j L d T
m e e

π πθ θ
λ λ

− − −
=a  (3) 

Suppose there are K measurements (snapshots) that are 
taken for each increment T, and the time increment is suffi-
ciently small allowing us to approximate the target as sta-
tionary.  The tracking problem is aimed at estimating θ(t), t = T, 
2T,… from K snapshots of array data measured within each 
time increment T. 

III. THE PROPOSED TRACKING ALGORITHMS 

1. The EKPF Tracking Algorithm 

For the case of a single snapshot measurement within each 
time increment, the EKPF algorithm is proposed and stated as 
follows.  First, we describe the discrete-time state (process) 
model for the target motion described in the previous section.  
For each time index k, we define the state vector for the mth 

target as ( ) ( ) ( ) ,
T

m m mk k kθ θ =  x �  consisting of its DOA 

angle and angular speed.  The target motion can lead to the 
process equation [8] 

 ( 1) ( ) ( )m m mk k k+ = +x Fx w  (4) 

 
1

0 1

T 
=  
 

F  
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where wm(k) is the process noise vector and is assumed to be 
Gaussian distributed with zero mean and covariance  

 

3 2

2

2

3 2

2

m w

T T

T
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σ

 
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 
 

Q  

Assume that the motion of each target is mutually inde-
pendent.  By defining the composite state vector as x(k) = 

1 ( ),..., ( ) ,
TT T

Mk k 
 x x  the system dynamics is governed by the 

process model  

 ( 1) ( ) ( )k k k+ = +x Fx w  (5) 
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The process noise vector w(k) reflects the random modeling 
error, which is Gaussian distributed with zero mean vector and 
covariance 
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The matrices F  and Q  are all block diagonal.  Although 
the process equation is a linear model, the measurement model 
of (2) is a vector nonlinear function of the target DOA angles 
(and thus, of the target state vectors as well), which can be 
restated as 

 ( ) ( ( ), ( ), ( )) ( ( )) ( ) ( )k k k k k k k= +r h x s n A x s n�  (6) 

where n(k) is complex Gaussian noise process with the known 

covariance 2 ,nσ I  and is assumed to be uncorrelated with the 

process noise w(k). 

In this section, we propose to use the EKF [13] for the 
nonlinear tracking system to obtain high performance.  The 
proposed EKPF tracking algorithm is formed by combining 
the particle filter with the EKF in order to prevent sample 
impoverishment in the resampling process of the particle filter.  
Since the particle filter was invented to numerically imple-
ment the Bayesian state estimator for nonlinear/nonGaussian 
systems [4], it is anticipated that the proposed tracking algo-
rithm can achieve superior performance even if the meas-
urement noise is not Gaussian.  In this paper, we make use of 
the particle filter described in [9], because the main idea is 
intuitive and straightforward. 

The proposed tracking algorithm for the case of  a single 
snapshot measurement is stated as follows. 

 

• Initially (at k = 0), the target DOA angles, ˆ{ ( 1)}mθ −  and 

ˆ{ (0)}mθ  at two successive time instants, k = -1 and k = 0, 

are assumed to be available, which can be estimated by 
any kind of angle estimation algorithm (for instance the 
MUSIC algorithm [12]).  Assuming that the state vector is 
Gaussian distributed, we then randomly generate N state 
vectors, based on the Gaussian probability density function 

(pdf) with the mean vector 1
ˆ(0|0) = [ (0),θx  1

ˆ( (0)θ – 1θ̂ (–1))/ 

T,…, ˆ (0),Mθ  ˆ( (0)Mθ – ˆ ( 1)) / ]T
M Tθ −  and the covariance 
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These state vectors are called particles and are denoted 
x(i)(0|0).  Their covariance matrices are denoted P(i)(0|0) = 
P(0|0) (i = 1,…, N).  The parameter N is chosen by the user 
as a trade-off between computational effort and estimation 
accuracy. 

 
• For k = 1, 2,…, do the following. 
(a) Perform the time propagation step to obtain a priori parti-

cles x(i)(k|k-1) and covariances P(i)(k|k-1) using 

 ( ) ( )( | -1)= ( -1 | -1)+ ( )i ik k k k kx Fx w  (7) 

 ( ) ( )( | -1) ( 1 | 1)i i Tk k k k= − − +P FP F Q  (8) 
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Thus, the predicted array direction matrix, A(i)(k|k-1) can 
be obtained from (6) using x(i)(k|k-1).  The complex 
measurement vector r(k) and the array direction matrix 
A(i)(k|k-1) can be expressed as the composite real vector 
and matrix, i.e. 

( )
( )

( )

( ( )) ( ( | 1))
( ) , ( | 1)

( ( )) ( ( | 1))

i
i

i

real k real k k
k k k

imag k imag k k

   −
= − =    −   

r A
r A

r A
 

By applying the maximum likelihood principle to (6), we 

can obtain the target signal vectors s(i)(k) = ( )
1[ ( ),is k  

( ), ( )]i T
Ms k�  as 

 ( ) ( ) ( ) 1 ( )( ) [ ( | 1) ( | 1)] ( | 1) ( )
H Hi i i ik k k k k k k k−= − − −s A A A r  (9) 

Therefore, the composite real predicted sensor array output 
vector becomes 

 ( ) ( ) ( )( | 1) ( | 1) ( )i i ik k k k k− = −r A s  (10) 

(b) Update the a priori particles and covariances to obtain a 
posteriori particles and covariances: 
The partial derivative matrix of the measurement model (6) 
is given by 

 ( ) ( )
( )

1( | 1) ( | 1)
( ) | [ ( ),..., ( )] |i i

i
Mk k k k

k k k
= − = −

∂= =
∂ x x x x

h
H H H

x
 

By augmenting the real and imaginary parts of each com-
plex matrix Hm(k), we have the composite real matrix of 
dimension 2 2L M×  

 1( )

1
( ) ( | 1)

( ( ),..., ( ))
( )

( ( ),..., ( ))
Mi

M
i k k

real k k
k

imag k k
= −

 
=  
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x x

H H
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H H
 

which can be expressed as 
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 (11) 

where pm,b = –sin(πbsin(θm(k)))cos(θm(k))sm(k), cm,b = –cos 
(πbsin(θm(k)))cos(θm(k))sm(k), m = 1,…, M, b = 1,…, L-1.  

Thus, the Kalman gain matrices K(i) are given by 

( ) ( ) ( ) ( ) ( ) ( ) 2 1( ) ( | 1) ( )[ ( ) ( | 1) ( ) ]i i i T i i i T
nk k k k k k k k σ −= − − +K P H H P H I  

  (12) 

and a posteriori particles are then updated according to 

( ) ( ) ( ) ( )( | ) ( | 1) ( )[ ( ) ( | 1)]i i i ik k k k k k k k= − + − −x x K r r  

  (13) 

The covariances of a posteriori particles are given by 

 ( ) ( ) ( ) ( )( | ) ( ( ) ( )) ( | 1)i i i ik k k k k k= − −P I K H P  (14) 

(c) Compute the relative likelihood q(i) of each a posteriori 
particle conditioned on the measurement r(k).  This is 
done by evaluating the Gaussian pdf p(r(k)|x(i)(k|k), 
s(i)(k)), which is the Gaussian distributed with mean vector 

( )iA (k|k)s(i)(k) and covariance 2 ,nσ I  wherein ( )iA (k|k) is 

obtained using a posteriori particles.  Namely, 

( ) ( ) ( ) ( )
( )

2

( ( ) ( | ) ( )) ( ( ) ( | ) ( ))
exp[ ]

2

i i T i i
i

n

k k k k k k k k
q

σ
− −− r A s r A s

∼  

  (15) 

We then normalize the relative likelihoods q(i) as 

 
( )

( )

( )

1

i
i

N j

j

q
q

q
=

=
∑

 (16) 

This ensures that the sum of all the likelihoods is equal to 
one. 

(d) Refine the set of a posteriori particles and covariances 
based on the normalized relative likelihoods q(i).  This can 
be done several different ways.  Here, we use the resam-
pling way of [9], which is described as follows.  For i = 
1,…, N, perform the following two steps: First, generate a 
random number γ that is uniformly distributed on [0, 1].  
Second, accumulate the likelihoods q(i) into a sum, one at 
time, until the accumulated sum is greater than γ.  The new 
particle ( ) ( | )i k kx  is then set equal to the old particle 

x(j)(k|k – 1) (i, j = 1,…, N). 
(e) Compute the expected value of posterior pdf p(x(k)|r(k)) 

by approximating it as the algebraic mean of the a poste-
riori particles 

 ( )

1

1
( ( ) | ( )) ( | )

N
i

i

E k k k k
N =

≈ ∑x r x  (17) 
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Repeat the steps of (a)-(e) until K measurements are 
used, then average over these resultant expected values to 
obtain a refined state vector. 

2. The RKF Tracking Algorithm 

For the case of multiple snapshot measurements within 
each time increment, the RKF  algorithm is presented.  Tradi-
tionally, the signal subspace W is obtained by an eigende-
composition of the sample covariance matrix of the sensor 
array data, which involves a heavy computational load (at least 
O(L2K) operations for the computation of sample covariance 
matrix) and thus has limited use for tracking.  Here we suggest 
to estimate W via the SW-OPAST algorithm, which only re-
quires O(LMK) operations [1].  The SW-OPAST algorithm 
uses the recursive least squares (RLS) principle with a sliding 
window to obtain faster response in tracking the approximate 
signal subspace.  As such, the subspace W(k) can be tracked to 
offer the orthonormal basis vectors for the noise subspace 
required by the MUSIC algorithm in an adaptive manner as the 
time k evolves.  In addition, a robust decision mechanism is 
proposed to be incorporated into the KF procedure.  It is aimed 
to prevent large errors which often occur when the target lo-
cations are mutually close, thus potentially improving the 
tracking success rate particularly at low SNRs.  The predict-
ability characteristic of KF can avoid the data association 
problem for tracking multiple targets. 

Suppose ( ) [ ( ) ( ) ( )]T
m m m mk k k kθ θ θ=x � ��� denotes the state 

vector for the mth source at time k.  We model the dynamics 
and measurement equations of the mth source by [2, 5] 

 ( 1) ( ) ( )m m mk k k+ = +x Fx w�� �  (18) 

 ˆ ( ) ( ) ( )m m mk k v kθ = +hx�  (19) 

with the state transition matrix F�  and the vector h which 
relates states to measurements 
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=  
 
 
 

F�  and [1 0 0]=h  

wm(k) is the process noise vector with zero mean and covari-
ance matrix [5]. 
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Q  (20) 

vm(k) is a zero-mean noise with variance 2 ,vσ  uncorrelated 

with wm(k).  Theoretically, the variance 2
vσ  is basically de-

termined by the estimation error of the MUSIC algorithm.  
Because angle-of-arrival is estimated via MUSIC and fur-
nished to KF as a measurement data in lieu of sensor data 
directly used in EKPF, the state vector of each target can be 
processed in parallel. 
• Initially, the MUSIC algorithm is used twice to obtain two 

angle estimates 1θ−  and 0θ  at k = 0.  Then the initial es-

timate of angle and angle speed can be obtained as 0 0θ̂ θ=  

and 0 1
ˆ ( ) / ;Tθ θ θ−= −�  namely, the initial state vector is 

0 0
ˆˆˆ (0) [ 0]Tθ θ=x �  and its covariance matrix is given by 

[5] 

 2 2

1 1/ 0

(0 | 0) 1/ 2 / 0

0 0 0
m v

T

T Tσ
 
 =  
 
 

P  

• For k = 1, 2,…, do the following. 
(a) Signal subspace determination via SW-OPAST 

Apply the SW-OPAST algorithm to obtain the signal sub-
space matrix W(k) recursively using K snapshots of sensor 
data. 

(b) Prediction of DOA angles 
Obtain the predicted estimate ˆ ( | 1)m k k −x  of the state 

vector ( )m kx�  from the existing estimates ˆ ( 1 | 1)m k k− −x  

available at time kT and their covariance matrices Pm(k|k – 
1), 1,...,m M=  by the equations 

 ˆ ( | 1)m k k −x ˆ ( 1 | 1)m k k= − −Fx�  (21) 

 ( | 1) ( 1 | 1) ( )T
m m mk k k k k− = − − +P FP F Q� �  (22) 

The first component of ˆ ( | 1)m k k −x  gives the predicted 

angle-of-arrival ˆ ( | 1)m k kθ − . 

(c) DOA angles estimation via MUSIC 
To maximize the spatial spectrum of the MUSIC algorithm, 

we obtain an estimate of DOA angles ˆ ( )m kθ  via the 

Newton method [6] (initialized with ˆ ( | 1)m k kθ − ) as 

 ˆ ( )m kθ
ˆ ( | 1)

ˆRe ( ) ( ) ( )
ˆ ( | 1)

ˆ( ) ( ) ( ) m

H

m k kH

k
k k

k θ θ

θ θ
θ

θ θ = −

 
 = − −
d Π a

d Π d
 (23) 

where ˆ ( ) ( ) ( ),H
Lk k k= −Π I W W  and ( ) ( )/ .d dθ θ θ=d a   It is 

noted that (23) is similar to (5) in the Javier’s paper [5]. 
(d) Sifting DOA angles via a robust decision mechanism 

The performance of the MUSIC algorithm worsens when 
target locations are getting closer to each other.  The reason 
for this degradation in performance is the direction matrix 
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becomes rank deficient.  If the DOA angle estimate ˆ ( )m kθ  

obtained in Step (c) is in large error and is still used in the 
subsequent KF procedure, then the algorithm has a large 
probability of not being able to correctly track the target 
trajectories.  Therefore, a robust decision mechanism is 
proposed and stated as follows. 

In principle, the motion of each target is slowly chang-
ing within a time increment T.  Therefore, a typical source 
trajectory can be expanded via the Taylor series up to the 
first three items as 

 21
( ) ( 1) ( 1) ( 1)

2m m m mk k k T k Tθ θ θ θ≈ − + − + −� ��  (24) 

( 1)m kθ −��  is the angle acceleration obtained by substituting 

( 1) [ ( 1) ( 2)] /m m mk k k Tθ θ θ− = − − −�� � �  into (24).  Therefore, 

(24) becomes 

 
3 1

| ( ) ( 1) | | ( 1) ( 2) |
2 2m m m mk k k k Tθ θ θ θ− − ≈ − − −� �  (25) 

wherein the angle velocities ( 1)m kθ −�  and ( 2)m kθ −� can 

be provided by the state estimates of the KF at times k-1 
and k-2 respectively.  If θm(k) is offered by step (c) and 
θm(k – 1) is substituted with ( | 1)m k kθ −  (obtained from 

step (b)), then (25) becomes 

3 1
| ( ) ( | 1) | | ( 1) ( 2) |

2 2m m m m kk k k k k Tθ θ θ θ δ− − ≤ − − −� � �   

  (26) 

This is because the predicted value of the angle at  time k is 
closer than the estimated angle at time k-1 to the true angle 
at time k, namely  

 | ( ) ( | 1) | | ( ) ( 1) |m m m mk k k k kθ θ θ θ− − ≤ − −  

(26) forms the criterion for sifting DOA angles of the tar-
gets wherein the threshold value δk is time-variant de-
pending on the angular velocity at the present time k-1 and 
the previous time k-2.  When the target locations are mu-
tually close, the associated DOA angle estimates may ex-
hibit large errors leading to the angle difference exceeding 
the threshold δ.  In this case, (26) is not satisfied and thus 

the angle estimate ˆ ( )m kθ  should be discarded and substi-

tuted with ( | 1),m k kθ −  and the procedure returns to Step 

(a) (skipping Step (e)) for the next cycle of recursive 
processing.  However, Step (e) should not be skipped for 
the succeeding cycle, regardless of whether the estimated 
angle satisfies (26) or not.  This condition is posed to 
prevent excessive error accumulation that would result in 

tracking failure.  In the case that the estimated angle satis-

fies (26), ˆ ( )m kθ  is used and updated via Step (e) before the 

next cycle of recursive processing begins.  The sifting 
procedure requires only addition operation, thus its com-
putational complexity is insignificant.  However, it can 
reduce overall computation complexity if the step (e) is 
skipped, as to be discussed later. 

(e) Updating the estimated DOA angles 
Find the estimate ˆ ( | )m k kx  of the state vector ( )m kx�  by 

 ˆ ˆˆ ˆ( | ) ( | 1) ( )[ ( ) ( | 1)]m m mk k k k k k k kθ θ= − + − −x x G  (27) 

where the matrix Gm(k) is the Kalman gain given by 

 2 1( ) ( | 1) [ ( | 1) ]T T
m m m vk k k k k σ −= − − +G P h hP h  (28) 

The covariance matrix of ˆ ( | )m k kx  is obtained as 

 ( | ) [ ( ) ] ( | 1)m m mk k k k k= − −P I G h P  (29) 

3. Computational Complexity  

EKPF requires the number of (2L3 + 30LM 2 + 26M 3 + 
16L2M)N real multiplications at K = 1, whereas the Park’s 
algorithm [7] and the Kong’s algorithm [6] require the num-
bers of 3LM 2 + (3L2 + LM)K and 5M 3 + 10LM 2 + 8L2M + 
LMK real multiplications respectively.  Although the compu-
tational complexity of EKPF is higher than those of others, 
EKPF has much better tracking success rate. 

It is not available to find the exact computational com-
plexities of the proposed RKF and Javier’s algorithms [5], 
because the number of iterations for convergence is unpre-
dictable for the Newton method involved in both algorithms.  
However, RKF requires 119M + O(LMK) operations if step (c) 
is excluded.  In addition, if step (e) is skipped due to the sifting 
process, then the number of 56M real multiplications can be 
further reduced. 

IV. SIMULATION RESULTS 

In order to demonstrate the effectiveness of the proposed 
algorithms, Monte Carlo simulations were performed in the 
following scenarios.  We consider three targets emitting un-
correlated narrowband signals that impinge on a uniform lin-
ear array of 10 sensors separated by half a wavelength.  The 
targets are tracked over an interval of 40 sec with T = 1 sec.  
During each one-second interval, we consider two cases: K = 1 
(single) and K = 25 snapshots of sensor data were generated 
and used.  The parameters used in the system model for all 

algorithms to be compared are 2
vσ = 3, 2

wσ = 1, and 2
nσ = 3.  

For comparison, the algorithms developed by particle filter 
[9], Park et al. [7], Ryu et al. [10], Kong and Chun [6], and 
Javier and Sylvie [5] were simulated.  For each algorithm, 100 
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Fig. 1. The averaged tracking trajectories and variance profiles, using the proposed EKPF algorithm (N = 20), for three equipowered moving sources 

based on a single snapshot at SNR = 9 dB. 
Left: averaged tracking trajectories; Right: variance profiles. 

 
 

Table 1.  Tracking performance at varying SNRs, K = 1. 

Tracking success rate (%) MSE (deg2) 
SNR 
(dB) 

Proposed 
EKPF 

(N = 20) 

Particle  
filter 

(N = 200) 
Kong’s Park’s Ryu’s 

Proposed 
EKPF 

(N = 20) 

Particle  
filter 

(N = 200) 
Kong’s Park’s Ryu’s 

0    9  0 2 0 0 10.348 - 5.479 - - 

3  55  6 17 0 0 6.6378 10.0252 3.442 - - 

6  83  50 28 0 0 2.6653 5.0807 2.8461 - - 

9  92  66 31 0 0 2.0185 2.8115 2.6051 - - 

 
 

Table 2.  Tracking performance at varying SNRs, K = 25. 

Tracking success rate (%) MSE (deg2) 
SNR 
(dB) 

Proposed 
EKPF 

(N = 20) 

Particle  
filter 

(N = 200) 
Kong’s Park’s Ryu’s 

Proposed 
EKPF 

(N = 20) 

Particle  
filter 

(N = 200) 
Kong’s Park’s Ryu’s 

0 11  0 2 0 0 10.9989 - 5.58163 - - 

3 69  6 13 11 0 6.0427 10.3463 6.1662 9.2793 - 

6 90  49 24 37 6 3.5138 5.846 5.7331 7.8439 18.707 

9 96  71 30 51 10 3.0254 3.6073 5.151 6.6368 17.4478 

 
 
Monte Carlo simulations of a scenario where three sources 
cross at different time instants were performed.  The signal-to- 
noise ratio is defined as SNR = 10log 2s / )nσ(  in dB, where s is 
the signal power. 

Figure 1 depicts the mean trajectories and variance profiles 
that are obtained by averaging over all respective successful 
tracking results out of 100 independent runs using the pro-
posed EKPF algorithm (with N = 20) for three equipowered 
sources based on a single snapshot of data at SNR = 9 dB.  A 
success state is declared if the angle estimated is deviated from 
the true angle by less than 5°, which corresponds to about a 
half 3-dB beam width.  The proposed EKPF algorithm can 
accurately track each target trajectory at this level of SNR.  As 
expected, there is a tendency that larger variance exhibits 
when targets are mutually closed. 

Tables 1 and 2, respectively, exhibit the tracking perform-
ances of the three moving targets at varying SNRs for K = 1 
and K = 25 snapshots of sensor data.  The proposed EKPF 
algorithm using a smaller number of particles (N = 20), can 
significantly increase the percentage of tracking success as 
compared to the particle filter with N = 200, Kong’s (EKF) 
algorithm, and other KF-based algorithms.  It should be noted 
that only the proposed, particle filter, and Kong’s algorithms 
can successfully track target trajectories with a single snapshot 
of data.  In computing the mean square error (MSE), only the 
successful tracking results are taken into account.  While com- 
peting with the Kong’s algorithm in accuracy, the proposed 
algorithm exhibits much lower MSE values than the other 
algorithms in comparison. 
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Fig. 2. The averaged tracking trajectories and variance profiles, using the proposed RKF algorithm, for three equipowered moving sources based on 

25 snapshots at SNR = 6 dB. 
 Left: averaged tracking trajectories; Right: variance profiles. 

 

 
Table 3.  Tracking performance at varying SNRs, K = 25. 

Tracking success rate (%) MSE (deg2) 
SNR 
(dB) Proposed 

RKF 
Javier’s with the  

decision mechanism Javier’s Proposed 
RKF 

Javier’s with the  
decision mechanism Javier’s 

-3 55 41 1 7.3622 6.1263 4.1111 

0 72 70 15 5.1599 3.7915 2.3723 

3 93 90 51 4.2002 2.6361 1.9561 

6 99 98 93 3.6297 2.4073 1.7203 

 

 
Figure 2 depicts the mean trajectories and variance profiles 

that are obtained by averaging over all respective successful 
tracking results out of 100 independent runs using the pro-
posed RKF algorithm for three equipowered sources based on 
25 snapshots of data at SNR = 6 dB.  Similarly, the proposed 
RKF algorithm can accurately track each target trajectory at 
this level of SNR.  As expected, there is a tendency that larger 
variance exhibits when targets are mutually closed. 

Table 3 exhibits the tracking performances of the three 
moving targets at varying SNRs for K = 25 snapshots of sensor 
data.  It is evident that Javier’s algorithm with the proposed 
decision mechanism incorporated and the proposed RKF al-
gorithm can significantly increase the tracking success rate at 
the price of a degraded level of accuracy.  Moreover, the 
proposed RKF algorithm has the best tracking success rate 
among all algorithms under comparison. 

V. CONCLUSIONS 

We have presented two novel tracking algorithms using a 
single snapshot and multiple snapshots of data measured from 
a sensor array.  The RKF algorithm is suitable only for the case 
of multiple snapshots of data, whereas the EKPF algorithm is 
capable for the case of a single snapshot of data within a time 
increment.  The EKPF algorithm allows us to improve the 
tracking success rate over the particle filter and the EKF.  As 

illustrated in the simulation results, the proposed EKPF algo-
rithm offers the best tracking success rate as compared with 
other methods at both single and multiple snapshots of data.  
While competing with the Kong’s algorithm in accuracy, the 
proposed algorithm exhibits much lower MSE values than the 
other algorithms in comparison. 

For the case of  multiple snapshots within a time increment, 
a robust decision mechanism is presented and used in con-
junction with the Kalman filter, leading to a novel algorithm 
for tracking the angles-of-arrival of multiple moving sources.  
The proposed RKF algorithm utilizes the angles-of-arrival 
obtained from the MUSIC algorithm as the measurement data 
for the Kalman filter.  Prior to updating the estimated angles- 
of-arrival, these angle estimates are sifted via the proposed 
robust decision mechanism to prevent large error propagation.  
As illustrated in the simulation results, the proposed RKF 
algorithm offers the best tracking success rate at the price of  
larger MSE value, as compared with Javier’s algorithm espe-
cially at low SNRs. 
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