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ABSTRACT 

In this paper, a theoretical analysis of the effect of sur- 
face roughness on the lubrication characteristics of inclined 
stepped composite bearings with micropolar fluid is examined.  
A generalized form of surface roughness is mathematically 
modeled by a stochastic random variable with non-zero mean, 
variance and skewness.  The generalized average Reynolds 
type equation is derived for the rough inclined stepped com-
posite bearings with micropolar fluid.  The closed form ex-
pressions are obtained for the fluid film pressure, load carrying 
capacity, frictional force.  These expressions can be utilized to 
obtain the performance characteristics of four different types 
of bearing system viz; rough plane inclined slider, rough 
composite tapered land bearing, rough stepped bearing and 
rough composite tapered concave bearing.  The numerical com- 
putations of the results show that the negatively skewed sur-
face roughness pattern increases fluid film pressure, load 
carrying capacity and decreases the coefficient of friction 
whereas adverse effects were found for  the positively skewed 
surface roughness pattern.  Further, the rough inclined stepped 
slider bearing provides the largest load carrying capacity and 
the least coefficient of friction as compared to the other three 
geometries under consideration. 

I. INTRODUCTION 

In recent years, a considerable amount of tribology research 
has been devoted to the study of the effect of surface rough-
ness or geometric imperfections on hydrodynamic lubrication, 
mainly because, in practice, most of the bearing surfaces are 
rough.  The aspect ratio and the absolute height of the asper-

ities and valleys observed under microscope vary greatly, de- 
pending on material properties and on the method of surface 
preparation.  The surface roughness height may range from 
0.05 µm or less on polished surfaces to 10 µm on medium 
surfaces.  In general, the height of roughness asperities is of 
the same order as the mean separation in a lubricated contact. 

Several approaches have been proposed to study the effect 
of surface roughness on the performance characteristics of 
hydrodynamic bearings.  Davies [5] employed a saw-tooth 
curve to mathematically model the surface roughness.  The 
introduction of the stochastic concept to lubrication of rough 
bearing problems by Tzeng and Saibel [16] has fascinated 
many researchers and stimulated a fair amount of work in this 
field.  Christensen and Tonder [2] used the stochastic concept 
to analyze the influence of transverse and longitudinal 
roughness on the steady state behavior of journal bearings.  
While Elrod [6] employed the perturbation technique to study 
the surface roughness effects.  Recently Naduvinamani et al. 
[11] have studied the effect of surface roughness on hydro-
dynamic lubrication of slider bearings with couplestress fluids 
by assuming a generalized form of surface roughness charac-
terized by a stochastic random variable with non-zero mean, 
variance and skewness.  The lubrication behavior of different 
Newtonian and non-Newtonian fluids have been examined 
and analyzed by many researchers.  It is observed that in many 
appliances of modern industrial lubrication technology, the 
use of non-Newtonian fluids as lubricants is more important 
than that of Newtonian fluids.  The experimental results re-
viewed that the lubricants containing polymer additives ex-
hibit enhanced load carrying capacity [9].  The additives mini- 
mize the sensitivity of lubricant to the changes in shear rate 
and thus increase the load carrying capacity of the lubricant.  
The large sized polymer molecules from the microstructures 
within the lubricant performing individual motions supporting 
stress and body moments.  Such fluids with microstructures 
can be adequately represented by micropolar fluid model due 
to Eringen [7, 8]. 

Several investigators used the micropolar fluid theory for 
the study of several bearing systems.  The generalized Rey-
nolds equation for micropolar lubricants is derived by Shukla 
and Isa [15].  They found that the maximum load carrying 
capacity and corresponding frictional force increases with 
increase of the parameter characterizing the microstructure  
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Fig. 1. (a) Rough inclined stepped composite bearing, (b) rough plane slider bearing, (c) rough composite tapered land bearing, (d) rough stepped 

bearing, and (e) rough composite tapered concave bearing. 

 

 
imparted to the lubricant by the presence of additive.  The 
squeeze film and externally pressurized bearings lubricated 
with micropolar fluid is studied by Agrwal et al. [1].  The 
dynamically loaded micropolar fluid squeeze film lubrication 
in journal bearing under fluctuating loads is studied by Prawal 
Sinha [13].  Maiti [10] studied the composite and step slider 
bearings in micropolar fluid.  The effect of additives in the 
lubricant of a composite bearing with an inclined stepped 
surface is presented by Sinha and Singh [14].  The dynamic 
Reynolds equation for micropolar fluid lubrication of plane 
inclined slider bearings with squeezing effect is analyzed by 
Naduvinamani et al. [12].  Das et al. [3, 4] presented the sta-

bility characteristics of hydrodynamic journal bearings lubri-
cated with micropolar fluids. 

In this paper, an attempt has been made to study the effect 
of surface roughness on the lubrication characteristics of in-
clined stepped composite bearings with micropolar fluid by 
considering the generalized form of surface roughness char-
acterized by a stochastic random variable with non-zero mean, 
variance and skewness. 

II. DERIVATION 

The geometry under consideration is  shown in Fig. 1(a).  
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The bearing configuration consists of two surfaces separated 
by a lubricant film.  The x-axis is taken along the lower plane 
across its length, while the y-axis is taken across the lubricant 
film.  The lower surface is moving with a velocity U in its own 
plane. 

To represent the surface roughness, the mathematical ex-
pression for film thickness is considered to be consisting of 
two parts 

 ( ) ( ) sH x h x h= +  (1) 

where h(x) is the mean film thickness and hs is a randomly 
varying quantity measured from the mean level and thus 
characterizes the surface roughness.  Further, stochastic part hs 
is considered to have the probability density function f(hs) 
defined over the domain −c ≤ hs ≤ c, where c is the maximum 
deviation from the mean film thickness.  

With reference to the Fig. 1(a) the film thickness, h(x), is 
defined by 

 

1 1

1 2
1 1 1 2

2 1

2 2

0

( ) ( )
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h h
h x h l x for l x l
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h for l x

 ≤ ≤
 −= + − ≤ ≤ −
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 (2) 

where h1 is the inlet film thickness and h2 is the outlet film 
thickness. 

The mean α*, the standard deviation σ* and the parameter ε*, 
which is the measure of symmetry of the random variable hs, 
are defined as  

 * ( )sE hα = , (3) 

 
2* * 2( )sE hσ α = −  , (4) 

 * * 3( )sE hε α = −  , (5) 

where E is an expectancy operator defined by  

 ( ) ( ) ( ) ,s sE f h dh
∞

−∞

⋅ = ⋅∫  (6) 

where the parameters α*, σ* and ε* are all independent of x.  
The mean α* and the parameter ε* can assume both positive 
and negative values, whereas σ* always assumes positive 
values.  The particular case of ε* = 0 refers to the symmetric 
distribution, ε* < 0 refers to the negatively skewed surface 
roughness and ε* > 0 refers to the positively skewed surface 
roughness.  

The lubricant in the film region is assumed to be micropolar 
fluid.  It is also assumed that, the body forces and body couples 
are absent and the characteristic coefficients across the film of 

the micropolar fluid are constant.  Taking the velocity vector 
( , ,0)V u v=

�

 and the microrotation vector (0,0, )ν ν=�

, the 
equations of motion of the fluid reduce to  

 
2 2

3
2 22

vDu p u u

Dt x yx y

χρ µ χ  ∂∂ ∂ ∂ = − + + + +  ∂ ∂∂ ∂  
, (7) 
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3
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Dt y xx y
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, (8) 
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3 3 3 3
3 2 2

2
Dv v v vu

j v
Dt x y x y

ρ χ χ γ
 ∂ ∂ ∂ ∂= − − + +  ∂ ∂ ∂ ∂   

, (9) 

 0.
u v

x y

∂ ∂+ =
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 (10) 

Where ρ is the density, p is the pressure and µ is the shear 
viscosity, χ and γ are the new material constants peculiar to  

micropolar fluids, j is the moment of micro inertia and D
Dt   

is the material derivative. 
The following usual assumptions of hydrodynamic lubri-

cation of thin films [17] are made in the derivation of modified 
Reynolds equation: 

 
1. The fluid film thickness h is very much small than the 

length of the bearing. 
2. The inertia terms are negligible in comparison with viscous 

terms. 
3. The variation of pressure across the fluid film is negligible, 

i.e. 0;p
y

∂ =∂ and  

4. The x- derivatives of u and v are much smaller than the 
corresponding y derivatives. 

 
Under these assumptions Eqs. (7)-(10) simplify to  
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3

2
,2

u p

y xy
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 0,
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2

3
32

2 0,
u

yy

νγ χ χν∂ ∂− − =
∂∂

 (13) 

 0.
u v

x y

∂ ∂+ =
∂ ∂

 (14) 

The relevant boundary conditions for the velocity and mi-
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cro rotational velocity components are 
 

(i) at the upper surface (y = H) 

 u = 0, ν3 = 0, v = 0 (15a) 

(ii) at the lower surface (y = 0)  

 u = U, ν3 = 0, v = 0 (15b) 

The solution of (11) and (13) subject to the boundary con-
ditions (15a) and (15b) are 

( )

( )
( )( )
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2
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2
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The modified Reynolds type equation for the pressure in the 
film region is obtained by using (16) for u in the continuity 
equation (14) and then integrating over the film thickness and 
also using the boundary conditions for v given in (15a) and 
(15b) as 

 ( ){ }, , 6
d dp dH

f N L H U
dx dx dx

µ  = 
 

 (18) 

where 

 3 2 2( , , ) 12 6 coth
2

NH
f N L H H L H N L H

L
 = + −  
 

 

Multiplying both sides of (18) by f(hs) and integrating with 
respect to hs from −c to c and using (3)-(5), Eq. (18) takes the 
form 

 ( ){ }* * *, , , , , 6
d dp dh

f N L h U
dx dx dx

ε α σ µ  = 
 

 (19) 

where E(H) = h; ( ( ))p E p=  is the expected value of the film 
pressure p, 
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and 
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2
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4 2
coth 1 ( )

2 4

Nh N
F

L L
α σ  = − +  

  
. 

Once integration of (19) with respect to x gives 

 ( )
0

* * *
6

, , , , ,

h hdp
U

dx f N L h
µ

ε α σ

 −
 =
 
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 (20) 

where h0 is the film thickness at which 0
dp

dx
= . 

Introducing the non-dimensional quantities 

 
2

2
*2 1 1
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22
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ph h lh x L
P h h x L L
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l
L

l hh h
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into (20) one can obtain the nondimensional mean pressure 
gradient in the form 

 ( )
0

*
6

, , , , ,

h hdP

dx f N L h ε α σ

 −
 =
 
 

 (21) 

The relevant boundary conditions for the pressure field are 
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 0 0,1P at x= =  (22) 

and the pressure is continuous  at 1x L=  and 2.x L=  

Integration of (21) and the use of boundary conditions (22) 
gives 
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where Pc is the dimensionless pressure at 1x L=  and is given 
by 
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The mean load carrying capacity w per unit width is given by  

 
0

l

w p dx= ∫  (24) 

The non-dimensional load carrying capacity is obtained in 
the form 

( ) ( )
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The frictional force F per unit width on the bearing surface 
is given by 

 ( )21 0
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l

y
F t dx

=
= ∫  (26) 

where 
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The dimensionless frictional force is obtained in the form 
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The coefficient of friction is given by 

 
F

C
W

=  (28) 

III. PARTICULAR CASES 

Equations (23), (25) and (27) can be used respectively to 
determine the pressure distribution, load carrying capacity and 
frictional force for the following cases: 

 
1. The rough plane inclined bearing (Fig. 1(b)) when L1 = 0 

and L2 = 1. 
2. The rough composite tapered land bearing (Fig. 1(c)) when 

L1 = 0. 
3. The rough stepped bearing (Fig. 1(d)) when L1 = L2. 
4. The rough composite tapered concave bearing (Fig. 1(e)) 

when L1 = 1. 

IV. RESULTS AND DISCUSSION 

This paper predicts the effect of surface roughness on the 
performance characteristics of inclined stepped composite bear- 
ing lubricated with micropolar fluid.  The micropolar fluid is 
characterized by two dimensionless parameters N and L*.  The 
coupling number N characterizes the coupling of the linear and 
rotational motion arising from the micromotion of the fluid 
molecules or the additive molecules.  Thus the coupling num- 
ber N(0 ≤ N ≤ L) signifies the coupling between the Newtonian 
and rotational viscosity.  As χ tends to zero, N also tends to 
zero, and the expressions for the bearing characteristics reduce 
to their counterparts in Newtonian theory. 

The parameter L has the dimensions of length and can be 
identified with some property which depends on the size of the 
molecules, say the chain length of the polar additive molecule 
in a non-polar lubricant.  Thus L can be considered as a char-
acterization of the interaction of the fluid with the bearing 
geometry.  Micropolar effects are expected to be important 
either when the characteristic material length is small, i.e. the 
additive has a long chain length, or when the clearance width  
h2 is large.  As L* → 0 the expressions for the bearing char- 
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Fig. 2. Variation of nondimensional pressure P with dimensionless x 

coordinate for different values of N with L* = 0.2, α = 0.05, ε = 0.05, 
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Fig. 3. Variation of nondimensional pressure P with dimensionless x 

coordinate for different values of L* with N = 0.7, α = 0.05, ε = 0.05, 
σ = 0.1. 

 
 

acteristics reduce to their equivalents in Newtonian theory  

with µ replaced every where by 
1

2
µ χ + 

 
. 

The effect of surface roughness characterized by the pa-
rameter α, σ and ε.  The range of values for α and ε are so 
chosen that, the coressoponding hydrodynamic film shapes are 
feasible.  Bearing characteristics were obtained for the rough 
inclined stepped bearing with L1 = 0.3, L2 = 0.7 and 1 2.0h = . 

V. PRESSURE DISTRIBUTION 

The effect of micropolarity on the variations of non- 
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Fig. 4. Variation of nondimensional pressure P with dimensionless x 

coordinate for different values of α with N = 0.7, L* = 0.2, ε = 0.05, 
σ = 0.1. 
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Fig. 5. Variation of nondimensional pressure P with dimensionless x 

coordinate for different values of ε with N = 0.7, L* = 0.2, α = 0.05, 
σ = 0.1. 

 
 

dimensional mean film pressure P with x  for different values 
of N and L* is depicted in the Figs. 2 and 3.  It is observed that 
P increases for increasing values of N and L* as compared to 
the corresponding Newtonian case.  The effect of roughness 
parameters α and ε on the variations of non-dimensional 
pressure P with x  is shown in Figs. 4-5. 

It is observed that P increases for negatively increasing 
values of α and ε whereas reverse trend is observed for posi- 
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Fig. 6. Variation of nondimensional pressure P with dimensionless x 

coordinate for different types of bearings with L* = 0.2, α = 0.05, ε 
= 0.05, σ = 0.1. 
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Fig. 7. Variation of dimensionless load W with N for different values of L* 

with α= 0.05, ε = 0.05, σ = 0.1. 

 

 
tively increasing values of α and ε.  The effect of coupling 
number N on the variations of P with x  is presented in the Fig. 
6 for different bearing geometries.  It is observed that, the 
rough inclined stepped bearing generates more pressure as 
compared to all other bearing geometries. 

VI. LOAD CARRYING CAPACITY 

The variation of dimensionless load carrying capacity W 
with N for different values of L* is depicted in the Fig. 7.  

Compared with the Newtonian lubricant case the effect of  
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Fig. 8. Variation of dimensionless load W with N for different values of α 

with L* = 0.2, ε = 0.05, σ = 0.1. 

 
 

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

W

N

 ε = -0.1
 ε = -0.05
 ε =  0.0
 ε =  0.05
 ε =  0.1

 
Fig. 9. Variation of dimensionless load W with N for different values of ε 

with L* = 0.2, α = 0.05, σ = 0.1. 

 
 

micropolar fluid increases the load carrying capacity  for in-
creasing values of L*.  Figures 8-9 depicts the variations of 
dimensionless load carrying capacity W with N for different 
values of surface roughness parameters α and ε respectively.  It 
is observed that, the negatively increasing values of α and ε 
increases the load carrying capacity and positively increasing 
values of α and ε decreases the load carrying capacity. 

The variation of load carrying capacity, W with Nis de- 
picted in the Fig. 10 for different values of L* for all the 
bearing geometries under consideration.  It is observed that the 
load carrying capacity of the rough inclined stepped slider  
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Fig. 10. Variation of dimensionless load W with N for different types of 

bearings with α = 0.05, ε = 0.05, σ = 0.1. 
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Fig. 11. Variation of coefficient of friction C with L* for different values 

of N with α = 0.05, ε = 0.05, σ = 0.1. 

 
 

bearing is larger as compared to all other geometries under 
consideration.  

VII. COEFFICIENT OF FRICTION 

Figure 11 shows the effect of micropolar fluid on the 
variations of the coefficient of friction with L* for different 
values of N. 

The most interesting aspect of these curves is the fact that 
the coefficient of friction tends to decrease as N increases.  The 
effect of roughness parameters α and ε on the variation of C  
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Fig. 12. Variation of coefficient of friction C with L* for different values 

of α with N = 0.4, ε = 0.05, σ = 0.1. 
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Fig. 13. Variation of coefficient of friction C with L* for different values 

of ε with N = 0.4, α = 0.05, σ = 0.1. 

 

 
with L* is depicted in Figs. 12-13. 

It is observed that negatively increasing values of α and ε 
decreases C whereas reverse trend is observed for the posi-
tively increasing values of α and ε. 

The variation of coefficient of friction C with L* is depicted 
in Fig. 14 for different values of N for all the bearing geome-
tries under consideration.  It is observed that, the rough com- 
posite tapered concave slider bearing results in a least coeffi-
cient of friction as compared to all other geometries. 
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Fig. 14. Variation of coefficient of friction C with L* for different types of 

bearings with α = 0.05, ε = 0.05, σ = 0.1. 

 
 

VIII. CONCLUSIONS 
 

On the basis of Eringen’s [7] micropolar fluid theory and 
general stochastic method for the study of surface roughness, 
this paper predicts the effect of surface roughness on the in-
clined stepped composite bearing with micropolar fluid.  On 
the basis of numerical computations of the results obtained, 
the following conclusions are drawn. 

 
1. The presence of microstructure additives in the lubricant 

provides an enhancement in the fluid film pressure and the 
load carrying capacity and decreases the coefficient of fric- 
tion as compared to the corresponding Newtonian case. 

2. The negatively skewed surface roughness increases the 
fluid film pressure, load carrying capacity and decreases the 
coefficient of friction. 

3. The performance of the bearing suffers on account of posi-
tively skewed surface roughness pattern. 

4. The rough inclined stepped composite bearing has the 
largest load carrying capacity and the smallest coefficient 
of friction as compared to the rough plane slider and rough 
composite tapered land slider bearings. 
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NOMENCLATURE 

C coefficient of friction 
c maximum deviation from the mean film thickness  
E expectancy operator 
F frictional force 

F   non-dimensional frictional force 2Fh

Ulµ
 = 
 

 

H(x) film thickness ( ( ) )sh x h= +  
h(x) mean film thickness 
h1 inlet film thickness 

h0(x) film thickness when ( ) 0dp
dx =  

1( )h x  dimensionless inlet film thickness 1

2

h
h

 = 
 

 

h2 minimum film thickness 

0 ( )h x   dimensionless film thickness when ( ) 0dp
dx =  

hs stochastic film thickness measured from the nominal 
mean levels of the bearing surfaces 

L material length, ( )1
2

4
γ

µ  

L1 non-dimensional length of leading parallel portion 

1l
l

 = 
 

 

L2 sum of the non-dimensional length of the leading 

parallel portion and the inclined portion 2l
l

 = 
 

 

l total length of the sliding surface along the direction 
of motion 

l1 length of leading parallel portion 
l2 sum of the length of the leading parallel portion and 

the inclined portion 

N coupling number, ( )1
2

2
χ

µ χ+  

p lubricant film pressure 
p   expected value of the lubricant film pressure (= E(p)) 

P dimensionless film pressure
2
2ph

Ulµ
 

= 
 

 

w load carrying capacity 

W non-dimensional load carrying capacity 
2
2

2

wh

Ulµ
 

= 
 

 

x, y cartesian coordinates 

x   dimensionless form of x ( )x
l=  

α
* mean of the stochastic film thickness 

σ
* standard deviation of the film thickness 
ε

* measure of symmetry of the stochastic random vari-
able 

α non-dimensional form of 
**

2h
αα  = 

 
 

ε non-dimensional form of 
**

3
2h

εε  = 
 

 

σ non-dimensional form of 
**

2h
σσ  = 

 
 

γ, χ viscosity coefficients for micropolar fluids 
µ classical viscosity coefficient 

REFERENCES 

1. Agrwal, V. K., Ganju, K. L., and Jethi, S. C., “Squeeze film and externally 
pressurized bearings with micropolar fluids,” Wear, Vol. 19, pp. 259-265 
(1972). 

2. Christensen, H. and Tonder, K., “The hydrodynamic lubrication of rough 
journal bearings,” ASME Journal of Lubrication Technology, pp. 166-171 
(1973). 

3. Das, S., Guha, S. K., and Chattopadhyay, A. K., “Linear stability analysis 
of hydrodynamic journal bearings under micropolar lubrication,” Tri-
bology International, Vol. 38, pp. 500-507 (2005). 

4. Das, S., Guha, S. K., and Chattopadhyay, A. K., “On the conical whirl 
instability of hydrodynamic journal bearings lubricated with micropolar 
fluids,” Proceedings of Institution of Mechanical Engineers, Part J: 
Journal of Engineering Tribology, Vol. 215, pp. 431-439 (2001). 

5. Davies, M. G., “The generation of pressure between rough fluid lubricated, 
moving deformable surfaces,” Lubrication Engineering, Vol. 19, pp. 246 
(1963). 

6. Elrod, H. G., A General Theory for Laminar Lubrication with Reynolds 
Roughness, Report for Department of Machine Design, Technical Uni-
versity of Denmark (1977). 

7. Eringen, A. C., “Theory of micropolar fluids,” Journal of Mathematics 
and Mechanics, Vol. 16, pp. 1-18 (1966).  

8. Eringen, A. C., “Simple microfluids,” International Journal of Engi-
neering Science, Vol. 2, pp. 205-217 (1964). 

9. Larson, C. M. and Larson, R., “Lubricant additives,” in: O′Connor, J. J. 
and Boyd, J. (eds.), Standard Handbook of Lubrication Engineering, 
McGraw Hill, New York (1968). 

10. Maiti, G., “Composite and step slider bearings in micropolar fluid,” 
Japanese Journal of Applied Physics, Vol. 12, No. 7, pp. 1058-1064 
(1973). 

11. Naduvinamani, N. B., Fathima, S. T., and Hiremath, P. S., “Hydrody-
namic lubrication of rough slider bearing with couple stress fluids,” 
Tribology International, Vol. 36, pp. 949-959 (2003). 

12. Naduvinamani, N. B. and Marali, G. B., “Dynamic Reynolds equation for 
micropolar fluids and the analysis of plane inclined slider bearings with 
squeezing effect,” Proceedings of Institution of Mechanical Engineers, 
Part J: Journal of Engineering Tribology, Vol. 215, No. J7, pp. 823-829 
(2007). 

13. Prawal S., “Dynamically loaded micropolar fluid lubricated journal 
bearings with special reference to squeeze films under fluctuating loads,” 
Wear, Vol. 45, pp. 279-292 (1977). 

14. Prawal, S. and Chandan, S. “The effect of additives in the lubricant of a 
composite bearing with an inclined stepped surface,” Wear, Vol. 66, pp. 
17-26 (1981). 

15. Shukla, J. B. and Isa, M., “Generalized Reynolds equation for micropolar 
lubricants and its application to one dimensional slider bearings: effects 
of solid particle additives in solution,” Journal of Mechanical Engi-
neering Science, Vol. 17, No. 5, pp. 280-284 (1975). 

16. Tzeng, S. T. and Saibel, E., “Surface roughness effect on slider bearing 
lubrication,” ASLE Transactions, Vol. 10, pp. 334 (1967). 

17. Zaheeruddin, K. H. and Isa, M., “Micropolar fluid lubrication of 
one-dimensional journal bearing,” Wear, Vol. 50, pp. 211-220 (1978). 

 


	ON THE PERFORMANCE OF ROUGH INCLINED STEPPED COMPOSITE BEARINGS WITH MICROPOLAR FLUID
	Recommended Citation

	ON THE PERFORMANCE OF ROUGH INCLINED STEPPED COMPOSITE BEARINGS WITH MICROPOLAR FLUID
	Acknowledgements

	tmp.1629300604.pdf.kC4dK

