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ABSTRACT 

This paper addresses the problem of designing robust pas-
sive fuzzy controller for uncertain nonlinear drum-boiler sys-
tem with multiplicative noise.  For this problem, the Ta-
kagi-Sugeno (T-S) fuzzy model is employed to represent the 
nonlinearities of boiler system to be an analyzed system.  
Based on the T-S fuzzy model, the sufficient stability condi-
tions are developed as the Linear Matrix Inequality (LMI) 
problem by Itô’s formula and Lyapunov function.  Besides, the 
strictly input passive theory is employed to discuss the exter-
nal disturbance effect on system and investigate attenuation 
performance for disturbance.  With applying the proposed con- 
troller design technique, the perturbed nonlinear boiler system 
with multiplicative noise can be guaranteed to be mean square 
stable and strict input passive. 

I. INTRODUCTION 

In the many factories, the steam is widely used for hearting 
and keeping temperature.  For this reason, the boiler becomes 
effective and essential steam generator to supply high quality 
steam.  Hence, the stability and stabilization problems of 
nonlinear drum-boiler system [2, 7, 13] are worth to be dis-
cussed and investigated.  According to the stability and stabi-
lization problems, the accurate model for describing the boiler 
systems must be proposed via valid method.  Hence, the 
identification approach [2, 13] plays important role for de-
scribing the behaviors of boiler system to develop useful 
controller design techniques.  Therefore, the Pellegrinetti and 
Bentsman [13] provided valid dynamic equation for repre-
senting the nonlinear drum-boiler system that derived by 

mathematical techniques with surveying many literatures.  
The proposed model of [7] was currently used in a real time 
simulator of a steam generation system for the purposes of 
evaluation of various control algorithms as well as for operator 
training.  On the other hand, the model can be used to develop 
and investigate the variety techniques of control design [9, 14] 
by researchers and engineers.  Unfortunately, the almost con-
trol design approaches [9, 14] were investigated by linear 
design method for representing local behaviors of nonlinear 
boiler system.  In order to describe the nonlinearities of boiler 
system, Wang et al. [4] and Abdeldjebar et al. [1] applied the 
T-S fuzzy and Madani fuzzy approach respectively, to ap-
proximate the trajectories and develop the nonlinear controller 
design technique for boiler system. 

Recently, the T-S fuzzy model approach [3, 5, 6, 19] pro-
vides a valid and useful tool to discuss the stability problems 
of nonlinear systems.  With the development of T-S fuzzy 
model [6, 16], the robust control has been applied for nonlin-
ear systems with internal perturbations.  In generally, the per-
turbation effects on system were assumed as time-varying but 
bounded.  Furthermore, the stochastic nonlinear systems have 
been described by T-S fuzzy model with multiplicative noise 
in [10, 17, 19].  The multiplicative noise term can be associ-
ated as the product of states and noises for describing the 
stochastic behaviors.  From the multiplicative noise term, the 
stochastic systems could be referred to [8] as the “bilinear 
stochastic systems” that is a special case of the vast class of 
bilinear systems.  With above illustrations, one can study sta- 
bility issues of the uncertain nonlinear boiler system with 
multiplicative noise via the T-S fuzzy model approach.  Be-
sides, the fuzzy controller design can be carried out by Parallel 
Distributed Compensation (PDC) control technique [5].  In 
addition, the effect of external disturbance on boiler system is 
also considered in this paper for achieving attenuation per-
formance. 

For years, the passivity theorem [5, 11, 12, 18] proposes 
handy and useful tool for analyzing and synthesizing the sta-
bility of disturbed system with energy concept.  The concept 
of passivity theorem in [12] can be associated as the energy 
change between the system and external disturbance.  The strictly 
input passive concept of [12] is employed to discuss the effect 
of disturbance on system for discussing the attenuation per-
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formance in this paper.  Besides, the relaxed concept of [5, 15] 
has been used to obtain new relaxed stability conditions for 
extending the stability region and relaxing the computational 
constraints.  The above relaxed method in Tanaka and Wang 
[15] can be described as the only fired partial rules of fuzzy 
model instead of all rules.  With applying the same relaxed 
concept as [15], the stability of disturbed nonlinear systems in 
[5] can be guaranteed in Lyapunov stable and strictly input 
passive.  Accordingly, the stability and stabilization problems 
of uncertain T-S fuzzy model with multiplicative noise are 
discussed with relaxed concept in this paper. 

The main contribution of this paper is to develop relaxed 
stability conditions for analyzing and synthesizing the stability 
of nonlinear drum-boiler system with uncertainties and multi-
plicative noise via the T-S fuzzy model approach.  For building 
the T-S fuzzy model, the Teizeira-Zak’s formula in [16] is 
employed to obtain the linear sub-systems and membership 
function with determined operation points.  Furthermore, the 
robust control and stochastic behaviors are taken account of 
modeling error, perturbation, operating varying and environ-
ment change.  Besides, the external disturbance is discussed 
by passivity theorem for attenuation performance.  Based on 
the derived stability conditions, the PDC-based fuzzy con-
troller can be obtained via combining feedback gains and 
membership function.  By using the proposed design method, 
the perturbed nonlinear drum-boiler system can achieve the 
desired targets.  Finally, the simulation results of boiler system 
with designed fuzzy controller are proposed to manifest the 
proposed design technique. 

II. SYSTEM STATEMENTS AND PROBLEM 
FORMULATIONS 

In this section, the T-S fuzzy model of boiler system was 
proposed with multiplicative noise and time-varying parame-
ters to be the considered system.  In the Fig. 1, the main proc- 
ess of nonlinear drum-boiler system can be shown with inputs 
and outputs. 

From Fig. 1, the interesting measured outputs can be stated 
as measured drum pressure, excess oxygen level, drum water 
level and steam flow rate, to provide the available data for 
engineers.  In order to maintain the smooth outputs and safety 
of system, the control input can be considered as the fuel flow, 
air flow and feed water rates while sensing steam pressure, 
actual fuel rate, drum water level, actual feed water flow rate, 
steam flow rate, steam temperature, actual air flow rate and 
oxygen level in the flue gas.  Then, the dynamic equation of 
boiler system was presented as follows: 

 ( ) ( ) ( ) ( ) ( )9 /8
1 4 1 1 30.00478 0.28 0.01348w t w t w t p t p t= − + −�  

  (1a) 

Steam
Drum

Mud
Drum

Furnace

Burner

Induced Draft Fan

Forced Draft Fan  
Fig. 1.  Industrial Steam Boiler. 

 
 

( ) ( ) ( ) ( )(2 2 20.1540357 0.1 103.5462w t w t v t p t= + +�  

( ) ( ) ( ))1 1 2107.4835 1.9515 /p t p t w t− −  

( ) ( )( )2 129.04 1.824p t p t−  (1b) 

( ) ( ) ( ) ( )3 1 4 10.00533176 0.025195w t w t w t w t= − −�  

( )30.7317058 p t+   (1c) 

( ) ( ) ( )4 4 10.04 0.029988 0.018088w t w t p t= − + +�  (1d) 

 ( ) ( )1 114.214y t w t=  (2a) 

 ( ) ( )2 2y t w t=  (2b) 

( ) ( ) ( ) ( ) ( )3 1 3 4 10.1048569 0.15479 0.495y t w t w t w t w t= − + +  

( ) ( ) ( )( )3 1 10.2 1.272 324212.78 99556.25p t p t w t− + − +  

( )( ) ( ) ( )( )( )3 3 11 0.0012 1704.5 103.74w t w t w t× − − −   

  (2c) 

 ( ) ( )( ) ( )4 4 10.85663 0.18128y t w t w t= −  (2d) 

where w1(t) is the drum pressure state (kg f /cm2); w2(t) is the 
excess oxygen level (percent); w3(t) is the system fluid density 
(kg/m3); w4(t) is the exogenous variable related to the load 
disturbance intensity (0-1); y1(t), y2(t), y3(t) and y4(t) are the 
measured outputs for drum pressure (PSI), excess oxygen 
level (percent), drum water level (in) and steam flow rate 
(kg/s), respectively; p1(t), p2(t) and p3(t) are the fuel, air and 
feed water level rate inputs which take values between 0-1; v(t) 
is the external disturbance input.  Form [4], the equilibrium 
point of (1) can be obtained such as: 
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( ) ( ) ( ) ( )
( ) ( ) ( )

1 2 3 4

1 2 3 ep

w t w t w t w t

p t p t p t

 
 
  

  

22.5 2.5 621.17 0.8374

0.5138 0.5064 0.8127

 
=  
 

 (3) 

Based on the equilibrium points in (3), the new states and 
inputs can be obtained as follows: 

( ) ( ) ( ) ( )
( ) ( ) ( )

1 2 3 4

1 2 3

w t w t w t w t

p t p t p t

 
 
 

  

( ) ( )
( )

( ) ( )
( ) ( )

1 2 3 4

1 2 3

22.5 2.5 621.17 0.8374

0.5138 0.5064 0.8127

x t x t x t x t

u t u t u t

 + + + +
=  + + +  

 

  (4) 

Substituting (4) into (1), we have following new dynamic 
equation to represent the original boiler system (1). 

( ) ( )( ) ( )( ) ( )(9/8

1 4 1 10.00478 0.8374 22.5 0.28x t x t x t u t= − + + +�  

) ( )( )30.5138 0.01348 0.8127u t+ − +  (5a) 

( ) ( ) ( ) ( )((2 2 20.1540357 ( ) 2.5 0.1 103.5462x t x t v t u t= + + +�  

) ( )( ) ( )(1 10.5064 107.4835 0.5138 1.9515u t u t+ − + −  

) ( )( )) ( )( )(2 20.5138 2.5 29.04 2.5 1.824x t x t+ + + −  

( )( ))1 0.5138u t× +   (5b) 

( )( ) ( )( )3 1 4( ) 0.00533176 22.5 0.025195 0.8374x t x t x t= − + − +�  

( )( ) ( )( )1 322.5 0.7317058 0.8127x t u t× + + +  (5c) 

( )( ) ( )( )4 4 1( ) 0.04 0.8374 0.029988 0.5138x t x t u t= − + + +�  

0.018088+   (5d) 

Furthermore, by setting u1(t) = u2(t) = u3(t) = v(t) = 0, the 
Teixeira-Zak’s linearization technique in [16] was applied to 
obtain the linear sub-systems from (5) with following three 
operation points. 

[ ]T1 22.5 0 0 0 ,opx − = −  [ ]T2 0 0 0 0opx − =  and  

[ ]T3 22.5 0 0 0opx − =   (6) 

In which, the xop–2 is an equilibrium point of (5).  And then, 
the T-S fuzzy model can be obtained with three fuzzy rules, 
such as: 
 
Plant Rule1: IF ( )1x t  is 22.5−  THEN  

 ( ) ( ) ( ) ( )1 1 1x t x t u t v t= + +A B E�  (7a) 

Plant Rule1: IF ( )1x t  is 0  THEN  

 ( ) ( ) ( ) ( )2 2 2x t x t u t v t= + +A B E�  (7b) 

Plant Rule1: IF ( )1x t  is 22.5  THEN  

 ( ) ( ) ( ) ( )3 3 3x t x t u t v t= + +A B E�  (7c) 

where ( ) ( ) ( ) ( ) ( ) TT T T T
1 2 3 4 ,x t x t x t x t x t =     

( ) ( ) ( ) ( )T T T
1 2 3 ,u t u t u t u t =    

1 2 3

0.28 0 0.0135

8.2117 8.3317 0
,

0 0 0.7317

0.03 0 0

− 
 − = = =
 
 
 

B B B  

1 2 3

0

0.1
,

0

0

 
 
 = = =
 
 
 

E E E  1

0.0059 0 0 0

0 0.0812 0 0
,

0.0264 0 0 0

0 0 0 0.04

− 
 
 =
 −
 − 

A  

2

0.0066 0 0 0.1587

0 0.0812 0 0

0.0264 0 0 0.5669

0 0 0 0.04

− − 
 
 =
 − −
 − 

A  and  

3

0.007 0 0 0.3462

0 0.0812 0 0
.

0.0264 0 0 1.1338

0 0 0 0.04

− − 
 
 =
 − −
 − 

A  Besides, with the op- 

eration points, the three triangular functions were provided 
to structure the membership function that was presented in  
Fig. 2. 

In addition, we added the multiplicative noise and uncer-
tainty terms to represent the operating changing and modeling 
errors for simulating the real operating conditions.  And, the 
controlled output was added for achieving the disturbance 
attenuation performance, too.  With the above considering, the 
final output of overall T-S fuzzy model can be inferred as 
follows: 
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Fig. 2.  Membership function of x1(t). 

 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ){ }
3

1
1

i i i i i i
i

x t h x t f t f t g t g t tβ
=

= + ∆ + + ∆∑�  

  (8a) 

( ) ( )( ) ( ) ( ){ }
3

1
1

i i i
i

z t h x t x t v t
=

= +∑ C D  (8b) 

where 

( ) ( ) ( ) ( )i i i if t x t u t v t= + +A B E  and 

 ( ) ( ) ( ) ( ) ( )( ) ,i i i if t t x t u t v t∆ = ∆ + +B EH R R R  (9a) 

( ) ( ) ( ) ( )i i ig t x t u t v t= + +A B E  and 

 ( ) ( ) ( ) ( ) ( )( ) ,i i ig t t x t u t v t∆ = ∆ + +B EH R R R  (9b) 

for 1,  2, 3.i =   ( )( )
3

 1
1

1i
i

h x t
=

=∑  and ( )( ) 1 0ih x t ≥  which is 

the grade of membership function, z(t) is the controlled output, 
βi(t) are a scalar zero-mean Gaussian white noise process with 
unit covariance, ∆(t) and ( )t∆  are the time-varying function 

with ∆(t)∆(t) ≤ I and ( ) ( ) .t t∆ ∆ ≤ I   Besides, in the following, 

we let hi = hi (x1(t)) and hj = hj (x1(t)) to simplify unnecessary 
descriptions of this paper.  With using the PDC concept, the 
fuzzy controller can be carried out via the linear feedback gain 
with the same fuzzy sets of plant.  Hence, the PDC-based 
fuzzy controller was proposed as follows: 

 ( ) ( )( )
3

1
i i

i

u t h x t
=

=∑ F  (10) 

Substituting the (10) into (8a), one can find the closed-loop 
uncertain T-S fuzzy model with multiplicative noise, such as: 

( ) ( ) ( ) ( ){ }
3

1, 1
i j ij ij

i j

x t h h f t g t tβ
= =

= +∑�  

( ) ( ) ( ){ } ( ) ( ) ( ){ }
3 3

2

1 1, 

2i ii ii i j ij ij
i i j i

h f t g t t h h f t g t tβ β
= = <

= + + +∑ ∑  

  (11) 

where ( ) ( ) ( ) ( ) ( ) ( )( ) ,ii ii i ii if t x t v t t x t v t= + + ∆ + EG E H R R  

  (12a) 

( ) ( ) ( ) ( ) ( ) ( )( ) ,ii ii i ii ig t x t v t t x t v t= + + ∆ + EG E H R R  (12b) 

( ) ( ) ( ) ( ) ( ) ( ) ( )(ij ij ji ij ij jif t x t v t t x t= + + + ∆ +G G E H R R  

( )) ,ijv t+ ER   (12c) 

( ) ( ) ( ) ( ) ( ) ( ) ( )(ij ij ji ij ij jig t x t v t t x t= + + + ∆ +G G E H R R  

( )) ,ijv t+ ER   (12d) 

and ,ii i i i= +G A B F  ,ii i i i= + BR R R F  ,ii i i i= +G A B F  

,ii i i i= + BR R R F  ,
2

i i j
ij

+
=

A B F
G  ,

2
i j

ij

+
=

E E
E  

,
2

i j
ij

+
= E E

E

R R
R  ,

2
i i j

ij

+
= BR R F

R  ,
2

i i j
ij

+
=

A B F
G  

,
2

i j
ij

+
=

E E
E  ,

2
i j

ij

+
= E E

E

R R
R  

2
i i j

ij

+
= BR R F

R  (13) 

With the energy concept, the passivity theory provides a 
useful and effective tool to design the controller to achieve the 
energy constraints for the closed-loop systems.  In order to 
constrain the disturbance energy, we choose the strict input 
passive of the passive theory in this paper.  And, the strict input 
passivity can be introduced as following definition. 

 
Definition 1 [5] 

If there exists γ > 0 for satisfying following inequality, then 
the system is called the strictly input passive with the distur-
bance v(t) and output z(t) such as: 

 ( ) ( ){ } ( ) ( ){ }T T

0 0
2   

t t
E z t v t dt E v t v t dtγ≥∫ ∫  (14) 

for all terminal time of control t > 0.  In which, E{•} denotes 
the expected value of •.               # 
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Furthermore, the following mathematical techniques were 
introduced for developing the sufficient stability conditions in 
this paper. 

 
Lemma 1 [10, 19] 

Given real compatible dimensions matrices A, H and R for 
any matrix X > 0, ε > 0, ∆(t) with ∆T(t)∆(t) ≤ I, one can find the 
two results as follows: 

a). ( ) ( )T T T T 1 Tt t ε ε −∆ + ∆ ≤ +H R R H HH R R  (15a) 

b). If ( ) ( ) 0Tt tε− ∆ ∆ ≥X  hold, then 

( )( ) ( )( )T 1t t−+ ∆ + ∆A H R X A H R  

( ) 1T 1 TTε ε
− −≤ − +A X HH A R R  (15b) 

Lemma 2 [5, 15] 
Based on the rules fired criterion, the following inequality 

can be obtained when the number of fired rule is less or equal 
to s, where 1 < s ≤ r and r is number of fuzzy rule, for all t. 

 
r r

2
i i j

i 1 i 1, i j

1
2 0

1
h h h

s= = <

− ≥
−∑ ∑  (16) 

where hi ≥ 0 and 
r

i
i 1

1h
=

=∑  for all t.           # 

The results of Lemma 2 follows directly from Tanaka and 
Wang [15].  By using the above definition and lemmas, the 
relaxed stability conditions of closed-loop uncertain T-S fuzzy 
model with multiplicative noise (11) were developed by the 
Itô’s formula and Lyapunov function in the following theorem. 

III. DEVELOPMENT OF RELAXED STABILITY 
CONDITIONS 

In this section, the stability and stabilization problems of 
uncertain T-S fuzzy model with multiplicative term were dis-
cussed for guaranteeing the stability of nonlinear drum-boiler 
system.  According to the relaxed concept of Lemma 2, the 
region of feasible solutions can be extended to satisfy the 
stability condition and design the fuzzy controller easily. 

 
Theorem 1 

Given dissipative rate γ > 0 and number of fired rule s > 1, if 
there exits P = PT > 0, Q = QT > 0, εii > 0, εij > 0 and feedback 
gain Fi to satisfy the following relaxed stability conditions, 
then the uncertain T-S fuzzy model with multiplicative noise is 
mean square stable and strictly input passive. 

( ) T
11 12

T
22

1
0,

*
i

i i

s

γ
 + − −

≡ ≤ + − − 

Λ Q Λ C
Λ

Λ I D D
  i j=  (17a) 

( )
( )

T

11 12

TT T
22

2
0,

* 2

i j

i i j jγ

 − − +
 ≡ ≤ 

+ − + + +  

Λ Q Λ C C
Λ

Λ I D D D D

� �

�

�

  

i j≠   (17b) 

where * means the transposed elements of matrices for sym-
metric position, I denotes compatible dimension identity ma-
trix and 

T T 1 T T
11 2ii ii ii ii ii ii ii iiε −= + + + +Λ G P PG PHH P R R G T G , 

1 T ,ii ii iiε −+ R R   (18a) 

T 1 T
12 i ii ii i ii ii iε −= + + EΛ PE G T E R R , (18b) 

1 T T 1 T
22 ii i i i ii i ii i iε ε− −= + +E E E EΛ R R E T E R R  (18c) 

( ) ( )T T 1 T
11 4ij ji ij ji ij ij ijε −= + + + + +Λ G G P P G G PHH P Y Y�  

T 1 T ,ij ij ij ij ij ijε −+ +M T M Y Y   (19a) 

 T 1 T
21 ,ij ij ij ij ij ij ijε −= + +E EΛ PE M T M Y Y�  (19b) 

 1 T T 1 T
22 2 ,ij ij ij ij ij ij ij ij ijε ε− −= + +E E E E E EΛ Y Y M T M Y Y�  (19c) 

and T T T ,ij ij ji
 =  M G G  T T T ,ij ij ji

 =  Y R R  T T T ,ij ij ji
 =  Y R R  

T T T2 2 ,ij i j
 =  EM E E  T T T2 2 ,ij i j

 =  E E EY R R  

T T T2 2 ,ij i j
 =  E E EY R R  ( ) 11 T

1ii iiε
−−= −T P HH  and  

( ) ( ){ }1 11 T 1 T,  .ij ij ijdiag ε ε
− −− −= − −T P HH P HH  (20) 

in which diag{•} denotes diagonal matrix with element •. 
 
Proof: 

Let choose the Lyapunov function V(x(t)) = xT(t)Px(t).  And 
then, the differentiation of V(x(t)) along the trajectories of (11) 
can be obtained by the Itô’s formula in Eli et al. [17], such as: 

( )( ) ( )( ) ( ) ( ){ }
3

T
1

1, 1

2 i j ij i
i j

d
V x t LV x t h h x t g t

dt
β

= =

= + ∑ P �  (21) 

in which, 
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( )( ) ( ) ( ) ( ) ( ){
3

2 T T

1
i ii ii

i

LV x t h f t x t x t f t
=

= +∑ P P  

( ) ( )( )} ( ) ( ){
3

T T T

1,
ii ii i j ij

i j i

g t g t h h f t x t
= <

+ + ∑P P  

( ) ( ) ( ) ( )( )}T T T T
ij ij ijx t f t g t g t+ +P P  (22) 

Applying the Lemma 1, the uncertain matrices of (22) can 
be converted as follows: 

( ) ( ) ( ) ( )T T T T T 1 T2 2ii ii ii ii iit x t x t x tε ε −
∆∆ ≤ +Hφ H P PHH P φ φ  (23a) 

( ) ( ) ( ) ( )T T T T T 1 T2 4ij ij ij ij ijt x t x t x tε ε −
∆∆ ≤ +HHφ H P PHH P φ φ  

  (23b) 

( )( ) ( )( )TT
ii ii ii iix t t x+ ∆ + ∆ψ H φ P ψ H φ  

( )T T 1 T
ii ii ii ii ii iix xε −≤ +ψ T ψ φ φ  (23c) 

( )( ) ( )( )TT
ij ij ij ijx t t x∆ ∆+ ∆ + ∆H P Hψ H φ P ψ H φ  

( )T T 1 T
ij ij ij ij ij ijx xε −≤ +ψ T ψ φ φ  (23d) 

where ( ) ( ) ( ){ }, ,t diag t t∆∆ = ∆ ∆  ( ) ( ) ( ){ }, ,t diag t t∆∆ = ∆ ∆  

( ) ( )T T T ,x x t v t =    ,ii ii i
 =  ψ G E  

,ij ij ij
 =  Eψ M M  ( ) ( )T T T T T ,ii ii ix t v t =  Eφ R R  

( ) ( )T T T T T ,ij ij ijx t v t =  Eφ Y Y  ,ii ii i
 =  Eφ R R  

,ij ij ij
 =  Eφ Y Y  [ ],=HH H H  , =  HH H H   

[ ],=HH H HH H H  PP = diag{P, P} and ,ijM  ,ijY  Yij, ,ijEM  

YEij, ijEY , Tii and Tij are defined as (20).  According to the 

(23), the (22) can be rewritten as follows: 

( )( )
TT3 3

11 21T 2 11 21

1 1,21 22 21 22

2i i j
i i j i

LV x t x h h h x
= = <

   
 ≤ +         
∑ ∑

Λ ΛΛ Λ

Λ Λ Λ Λ

� �

� �
 

  (24) 

Integrating both side of (24) form 0  to t, ∀t > 0 and then 
taking expectation with zero initial conditions, one has: 

( )( ){ }
T3 3

2 T 11 21

0
1 1,21 22

2
t

i i j
i i j i

E V x t E h x x h h
= = <

   ≤ +  
  

∑ ∑∫
Λ Λ

Λ Λ
  

T
11 21T

21 22

 x x dt
  

×   
     

Λ Λ

Λ Λ

� �

� �
  (25) 

Defining the following performance function for nonzero 
external disturbance i.e., v(t) ≠ 0. 

( ) ( ) ( ) ( ) ( )( ){ } T T

 0
2  

t
t E v t v t z t v t dtγΓ = −∫   

( ) ( ) ( ) ( ) ( )( )( ) ( )( ){ }T T

0
2  

t
E v t v t z t v t LV x t dt V x tγ= − + −∫  

( ) ( ) ( ) ( ) ( )( )( ){ }T T

0
2  

t
E v t v t z t v t LV x t dtγ≤ − +∫  

( ){ }0
 

t
E t dt≤ Ψ∫   (26) 

where 

 ( ) ( ) ( ) ( ) ( ) ( )( )T T2t v t v t z t v t LV x tγΨ = − +  (27) 

Substituting the (24) and (8b) into (27), one has: 

( )
T3 3

T 2 11 12
T

1 1,22

2
*

i
i i j

i i j ii i

t x h h h
γ= = <

  −
Ψ ≤ +   + − − 

∑ ∑
Λ Λ C

Λ I D D
 

( )
( )

T

11 12

TT T
22

2

* 2

i j

i i j j

x
γ

 − +  ×  
+ − + + +    

Λ Λ C C

Λ I D D D D

� �

�

 (28) 

If the condition (17b) is held then the (28) can be rewritten 
as follows: 

( )
T T3

T 2 11 21
T

1 21 22

i
i

i i i i

t x h
γ=

  −
Ψ ≤    − + − − 

∑
Λ Λ C

Λ C Λ I D D
 

3

1,

2 i j
i j i

h h x
= <


+ 


∑ Q   (29) 

From the relaxed concept of Lemma 2, one has: 

 ( )
3

2 T

1
i

i

t h x x
=

Ψ ≤∑ Λ  (30) 

Obviously, if the stability condition (17a) hold then the (30) 
is semi-negative i.e., Ψ(t) ≤ 0.  According to (26), we have 
follows: 

 ( ) 0tΓ ≤  (31) 

or 
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 ( ) ( ){ } ( ) ( ){ }T T

0 0
2   

t t
E z t v t dt E v t v t dtγ≥∫ ∫  (32) 

Since (32) is equivalent to (14) of Definition 1, one can find 
that the uncertain T-S fuzzy model with multiplicative noise 
(11) is strictly input passive with external disturbance input 
and controlled output.  Next, we will show the system is mean 
square stable which is necessary requirement performance.  
Based on the (30), if the condition (17a) of Theorem 1 is held, 
thus Ψ(t) ≤ 0.  By assuming the external disturbance v(t) = 0, 
we can find Γ(t) ≤ 0 from (26) due to Ψ(t) ≤ 0.  And then, one 
has 

 ( )( ) 0LV x t ≤  (33) 

Thus, the closed-loop uncertain T-S fuzzy model with multi- 
plicative noise driven by the fuzzy controller (10) is mean 
square stable.  The proof of this theorem is complement. # 

Noting that (17) not belongs to LMI problem, one cannot 
apply with convex optimization algorithm to solve it.  For 
obtaining feasible solutions of Theorem 1, the LMI stability 
condition of next theorem was developed by some conversion 
techniques from (17). 

 
Theorem 2 

Given dissipative tare γ > 0 and number of fired rule s > 1, if 
there exits P = PT > 0, Q = QT > 0, εii > 0, εij > 0 and feedback 
gain Fi to satisfy the following LMI relaxed stability condi-
tions, then the uncertain T-S fuzzy model with multiplicative 
noise is mean square stable and strictly input passive. 

( )TT
11 1 15

T T
25

33

0

* 0
0,* * 0 0

* * * 0

* * * *

i i i Bi i

i i i

ii

ii

γ
ε

ε

 − +
 

− − 
 ≡ ≤−
 
 −
 
 

E

Π E XC R X R K Π

I D D R Π

Π I

I

Π

 

  for i = j  (34a) 

( )
( )

T T
11 13 15

T T T
25

33

44

55

2 0

* 2 0
0,* * 0 0

* * * 0

* * * *

ij i j

i i j j ijγ

 − +
 
 − + + +
 ≡ ≤ 
 
 
 
 

E

Π E X C C Π Π

I D D D D Y Π

Π
Π

Π

Π

� � �

�

�
�

�

�

 

  for i ≠ j   ∀j < i  (34b) 

where 

( ) ( ) ( )T
11

ˆ2 1i i i i i i ii sε= + + + + + −T
Π A X B K A X B K HH Q   

  (35a) 

 ( ) ( )T T

15 1 1i i i i Bi i
 = + +
  

Π A X B K R X R K  (35b) 

 T T
25 i i

 =  EΠ E R  (35c) 

 { }T
33 , ii iidiag ε ε= − −Π HH X I  (35d) 

( ) (11 2i i j j j i i i j= + + + + +
T

Π A X B K A X B K A X B K�  

) T ˆ2 4j j i ijε+ + + −A X B K HH Q  (36a) 

( ) ( )T T

13 2 2i Bi j j Bj i
 = + +
  

Π R X R K R X R K�  (36b) 

( ) ( )T T

15 2 2i i j j j i
= + +


Π A X B K A X B K�  

( ) ( )T T
2 2i Bi j j Bj i

+ +


R X R K R X R K  (36c) 

 T T
25 ij i

 =  E EΠ M Y�  (36d) 

 { }33 44 , ij ijdiag ε ε= = − −Π Π I I� �  (36e) 

 ( ) ( ){ }T T
55 1 1, , , ij ij ij ijdiag ε ε ε ε= − − − −Π HH X HH X I I�  

  (36f) 

and 1,−=X P  1 1ˆ ,− −=Q P QP  1
i i

−=K F P  (37) 

Proof: 
First, multiplying the both side of Λ (17a) by diag{P–1, I}, 

we have the following inequalities. 

 11 12

22

0
*

 
= ≤ 
 

Ξ Ξ
Ξ

Ξ
 (38) 

where 

( ) ( )T1 1 1 1 T 1
11 2i i i i i i iiε− − − − −= + + + + +Ξ A P B F P A P B F P HH  

( ) ( )T1 1 1 1
i i i i i i

− − − −× + +B BR P R F P R P R F P  

( ) ( )T1 1 1 1
i i i ii i i i

− − − −+ + +A P B F P T A P B F P  

( ) ( )T1 1 1 1 1
ii i i i i i iε − − − − −+ + +B BR P R F P R P R F P  

( ) 1 11s − −+ − P QP   (39a) 
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( )T1 T 1 1
12 i i i i i ii i

− − −= − + +Ξ E P C A P B F P T E   

( )T1 1 1
ii i i i iε − − −+ + B ER P R F P R  (39b) 

1 T T 1 T T
22 ii i i i ii i ii i i i iε ε γ− −= + + + − −E E E EΞ R R E T E R R I D D  (39c) 

By setting the X = P–1, 1 1ˆ − −=Q P QP  and Ki = FiP
–1 and 

applying the Schur complement in Tanaka and Wang [15], the 
inequality (38) can be converted into the same as LMI relaxed 
stability condition (34a) i.e.  0≤Π  for i = j.  Besides, the 

proof of condition (34b) 0≤Π�  for i ≠ j can be found with the 
same process of condition (34a).  Hence, we have omitted the 
proof of condition (34b) here and the proof was complement.# 

Obviously, if the LMI-based relaxed stability conditions 

(34) can be satisfied by suitable solutions as X, Q̂  and Mi, 
then we can find the feasible solutions for satisfying relaxed 

stability conditions (17) by P = X–1, ˆ=Q PQP  and .i i=F K P   

Based on the feasible solutions, one can find that the uncertain 
T-S fuzzy model with multiplicative noise can be achieved 
mean square stable and strictly input passive by designed 
fuzzy controller.  Accordingly, the proposed design technique 
can be applied to design the fuzzy controller for stabilizing the 
nonlinear drum-boiler system under perturbed and disturbed.  
In the next section, the simulation results were presented to 
manifest the effectively and applications of the proposed con-
troller design technique. 

IV. FUZZY CONTROLLER DESIGN AND 
SIMULATION RESULTS 

With the T-S fuzzy model (7) of nonlinear drum-boiler 
system (5), the proposed fuzzy controller design technique of 
this paper was applied in this section.  The uncertainties and 
stochastic behaviors of nonlinear drum-boiler system (5) are 
assumed as follows: 

 

Uncertainty Parameters: 

{ }0,  0.1,  0,  0 ,i diag= =A A  0,i =B  0.1 ,i i= =E E E  

0.1 ,=H I  0.001=H H  and ( ) ( ) ( )sin 5i it t t∆ = ∆ =  (40a) 

 
Multiplicative Noise Parameters: 
Ri are chosen as the first and second rows be 1% multiples the 
corresponding elements of Ai, RBi = 0, REi = 0.1Ei, i =R  

3

1

0.1 3,i
i=

= ∑R R  0i =BR  and 
3

1

0.1 3.i i
i=

= = ∑E E ER R R  

  (40b) 

Besides, the matrices of output z(t) are chosen as Ci =  
[0  1  0  0] and Di = 1 to achieve the passivity definition of 

Definition 1.  In addition, the number of fired rule is chosen 
as s = 2 due to the membership function, and the dissipative 
rate γ = 1 is chosen for determining the level of attenuation 
performance.  According to the above matrices, the final 
uncertain T-S fuzzy model is thus described as follows: 

 
Plant Part: 

 ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ){ }
3

1
1

i i i
i

x t h x t f t f t g t g t tβ
=

= + ∆ + + ∆∑�  

  (41a) 

 ( ) ( )( ) ( ) ( ){ }
3

1
1

i i i
i

z t h x t x t v t
=

= +∑ C D  (41b) 

where  

 ( ) ( ) ( ) ( )i i i if t x t u t v t= + +A B E  and  

 ( ) ( ) ( ) ( )( ) ,i i if t t x t v t∆ = ∆ + EH R R  (42a) 

( ) ( ) ( )g t x t v t= +A E  and ( ) ( ) ( ) ( )( ) ,g t t x t v t∆ = ∆ + EH R R  

  (42b) 

for i = 1, 2, 3.  Based on the fuzzy model (41), the proposed 
design technique is applied to find the feasible solutions 
via LMI-based stability conditions (34).  By using the LMI 
Toolbox of MATLAB, the feasible solutions of (34) can be 
obtained as follows: 

0.0125 0 0 0.0049

0 0.1153 0 0
,

0 0 0.0133 0

0.0049 0 0 0.0063

 
 
 =
 
 
 

P  

0.0097 0.0001 0.0002 0.0042

0.0001 0.9912 0 0
,

0.0002 0 0.0131 0.0001

0.0042 0 0.0001 0.0018

− − 
 − =
 − −
 − 

Q  

1

3.0007 0.337 0.0409 1.3142

2.9584 1.2537 0.0403 1.2957 ,

0.0456 0.0008 1.3643 0.0041

− − − 
 = − − − − 
 − 

F  

2

2.9663 0.2659 0.1747 0.6918

2.9242 1.3238 0.1713 0.6821

0.0989 0.0802 1.3642 0.8009

− − − 
 = − − − − 
 − − 

F  and 
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3

2.8935 0.182 0.3103 0.0625

2.8521 1.3982 0.3041 0.0615 ,

0.1538 0.1689 1.3537 1.5995

− − 
 = − − − 
 − − 

F  

 ε11 = 74.7542, ε22 = 74.2927, and ε33 = 16.2104. (43) 

According to Theorem 2, the solutions of (43) can also 
satisfy the stability conditions (17) that mean the systems can 
achieve mean square stable and strictly input passive via 
fuzzy controller (44).  Via the concept of PDC in Tanaka and 
Wang [15], the following PDC-based fuzzy controller can 
be designed with feedback gains Fi for i = 1, 2, 3 defined in 
(43). 

 
Controller Part: 

 ( ) ( )( )
3

1
i i

i

u t h x t
=

=∑ F  (44) 

The responses of system can be simulated by SimuLink 
Toolbox of MATLAB for verifying the effectiveness and ap-
plication of proposed design approach.  By using the designed 
fuzzy controller (44), the uncertain stochastic T-S fuzzy sys-
tem (8) with multiplicative noise can be stabilized as the of-
fered Figs. 3-6 with initial condition x(0) = [20  2.75  550  1]T. 

Besides, the external disturbance v(t) is chosen as a zero- 
mean white noise with variance 0.1.  In Figs. 3-4, one can find 
that the drum pressure y1(t) and excess oxygen level y2(t) are 
kept on 320 PSI and near 2.5 percent, respectively, to maintain 
the operating conditions of boiler.  The Figs. 3-4 also show the 
good accuracy of drum pressure and excess oxygen level both 
in short term and long term characteristics.  In Fig. 4, there 
appears some vibrations in simulation process that caused by 
the external disturbance v(t).  According to the fuzzy control-
ler (44), the effect of external disturbance on system is con-
strained by passivity property (14) for maintaining the system 
stability.  Besides, the Figs. 5 and 6 show a long time re- 
sponse for convergence.  The drum water level and steam flow 
rate are also controlled on the argument points in simulation 
time.  Thus, according to the simulation results, one can find 
that the nonlinear drum-boiler system (1) with uncertainties 
and multiplicative noise (43) can be stabilized in argument 
points via the designed fuzzy controller (44).  Moreover, in 
order to check the achievement of strict input passivity of (14), 
the value of following ratio can be obtained from simulation 
results. 

 
( ) ( ){ }

( ) ( ){ }
T

0

T

0

2  
1.998

 

t

t

E z t v t dt

E v t v t dt
=

∫

∫
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Fig. 3.  Responses of Measured Drum Pressure y1(t). 
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Fig. 4.  Responses of Excess Oxygen Level y2(t). 

 

 
8

6

4

2

0

-2

-4
500 150

Time (second)
250100 200 300

D
ru

m
 W

at
er

 L
ev

el
 (i

n)

 
Fig. 5.  Responses of Drum Water Level y3(t). 

 
 
Obviously, the ratio value of (45) is bigger than dissipative 

rate γ = 1 that satisfies the Definition 1.  The considered sys-
tem is thus strictly input passive driven by the designed fuzzy 
controller (44).  Therefore, the considered system (41) con-
trolled by the fuzzy controller (44) is mean square stable and 
strictly input passive. 
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Fig. 6.  Responses of Steam Flow Rate y4(t). 

 

V. CONCLUSIONS 

In this paper, we investigated the stability and stabilization 
problems of perturbed nonlinear drum-boiler system with 
multiplicative noises via T-S fuzzy model approach.  We also 
considered the uncertainties and stochastic behaviors for 
simulating the varying of operating environment.  The pas-
sivity theory was employed to discuss the effect of external 
disturbance on considered system for investigating the at-
tenuation performance.  Besides, the relaxed concept was 
employed to extend the region of feasible solutions for de-
signing the fuzzy controller.  According to the convex opti-
mization algorithm, the relaxed stability and stabilization 
conditions can be converted into LMI forms.  From the simu-
lation results, one can find that the measured outputs were 
maintained with valid level for keeping the smooth working of 
boiler system.  By employing the derivations of propose ap-
proach, one can extend the results of this paper into more 
complex systems in further discussions, for example time- 
delay or observer-based control systems. 
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