
Volume 18 Issue 2 Article 5 

ON DESIGN OF BROWSER-ORIENTED DATA EXTRACTION SYSTEM AND ON DESIGN OF BROWSER-ORIENTED DATA EXTRACTION SYSTEM AND 
THE PLUG-INS THE PLUG-INS 

Jui-Yuan Su 
Department of Information and Telecommunications Engineering, Ming Chuan University, Taiwan, R.O.C, 
rysu@mcu.edu.tw 

Der-Johng Sun 
Department of Computer Science, National Chiao Tung University, Taiwan, R.O.C 

I-Chen Wu 
Department of Computer Science, National Chiao Tung University, Taiwan, R.O.C 

Lung-Pin Chen 
Department of Computer Science and Information Engineering, Tunghai University, Taiwan, R.O.C. 

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Su, Jui-Yuan; Sun, Der-Johng; Wu, I-Chen; and Chen, Lung-Pin (2010) "ON DESIGN OF BROWSER-ORIENTED DATA 
EXTRACTION SYSTEM AND THE PLUG-INS," Journal of Marine Science and Technology: Vol. 18: Iss. 2, Article 5. 
DOI: 10.51400/2709-6998.2318 
Available at: https://jmstt.ntou.edu.tw/journal/vol18/iss2/5 

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been 
accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and 
Technology. 

https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/vol18
https://jmstt.ntou.edu.tw/journal/vol18/iss2
https://jmstt.ntou.edu.tw/journal/vol18/iss2/5
https://jmstt.ntou.edu.tw/journal?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol18%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol18%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jmstt.ntou.edu.tw/journal/vol18/iss2/5?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol18%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages


ON DESIGN OF BROWSER-ORIENTED DATA EXTRACTION SYSTEM AND THE ON DESIGN OF BROWSER-ORIENTED DATA EXTRACTION SYSTEM AND THE 
PLUG-INS PLUG-INS 

Acknowledgements Acknowledgements 
The authors would like to thank the National Science Council of the Republic of China, Taiwan for 
financially supporting this research under Contract Numbers, NSC 94-2213- E-009-028, and NSC 
95-2221-E-029-033. 

This research article is available in Journal of Marine Science and Technology: https://jmstt.ntou.edu.tw/journal/
vol18/iss2/5 

https://jmstt.ntou.edu.tw/journal/vol18/iss2/5
https://jmstt.ntou.edu.tw/journal/vol18/iss2/5


Journal of Marine Science and Technology, Vol. 18, No. 2, pp. 189-200 (2010) 189 

 

ON DESIGN OF BROWSER-ORIENTED DATA 
EXTRACTION SYSTEM AND THE PLUG-INS 

 
 

Jui-Yuan Su*, Der-Johng Sun**, I-Chen Wu**, and Lung-Pin Chen*** 

 
 

Key words: data extraction model, browser-oriented data extraction, 
URL-oriented data extraction, plug-ins, visualization 
tools. 

ABSTRACT 

Web data extraction systems currently not only extract data 
on web pages but also need to navigate to the target correctly.  
Most traditional web data extraction systems extract URLs 
directly from web pages, and then access next pages using the 
extracted URLs.  This data extraction approach is herein called 
the URL-oriented data extraction approach in this paper.  
However, currently, more and more web pages use script 
functions, such as JavaScript, to access next pages and may 
hide URLs inside these functions, making it difficult to extract 
URLs. 

In order to solve this problem, a new data extraction ap-
proach, named the browser-oriented data extraction (BODE) 
approach, is proposed to be built on top of browser objects 
access pages by simulating users’ operations on browsers to 
invoke script functions.  A data extraction system based on this 
approach is called the BODE system. 

Based on the BODE approach, this paper designed a BODE 
system with the following contributions: (a) Define a scripting 
language, named the BODED (Browser-Oriented Data Ex-
traction Description) language, which instructs the BODE 
system to extract data.  (b) Design a plug-ins that can be used 
to extend the functionalities of the BODE system.  (c) Design a 
visualization tool to support the data extraction in the BODE 
system.  (d) Illustrate the plug-in mechanism of the BODE 
system by automating the playing of the game Connect6 over 
an Internet game site. 

 

I. INTRODUCTION 

With the rapid growth of the World Wide Web (WWW), a 
huge amount of information has been published as Web pages.  
Hence, it is significant to collect needed information from web 
pages.  Users usually want to extract the specific data from 
web page, instead of retrieving the whole page.  A system to 
extract data is called a data extraction (DE) system.  For ex-
ample, extract the prices of products from online auction and 
shopping websites for price comparison.  

An example of extracting all article items from a simplified 
bibliography archive site with two-level category pages is 
shown as in Fig. 1.  The main-category page in Fig. 2 lists 
categories associated with hyperlinks to the corresponding 
sub-category pages.  The sub-category pages in Fig. 3 list 
subcategories associated with hyperlinks to the corresponding 
article-list pages.  An article-list page, as illustrated in Fig. 4, 
lists details of article references in the same subcategory.  At 
the end of the article-list page, a hyperlink is linked to the next 
article-list page for more references in the same subcategory. 

The traditional approach [2, 3, 6, 12, 16, 17, 20, 21] for data 
extraction extracts plain text or URLs directly from web pages, 
and uses these extracted URLs to retrieve next pages via the 
HTTP requests.  This approach is called the URL-oriented DE 
approach.  However, more and more web pages include script- 
ing languages, such as JavaScript [19], or use AJAX [9] to 
make the presentation and navigation of web pages more flexi- 
ble and friendly.  These pages usually use JavaScript functions 
to access other pages or make pages animated based on the 
DOM model [10]. 

If the needed URLs are hidden inside these script functions, 
it becomes much harder to extract URLs.  For example, if the 
article-list page in Fig. 4 is rewritten with a JavaScript func-
tion, as shown in Fig. 5, the URL of the next page is hidden 
inside the JavaScript program.  In these pages, the elements 
in the DOM may also be dynamically generated by the 
JavaScript functions according to user actions such as mouse 
clicking or keystroking.  It is hard for traditional DE systems 
to extract these dynamically generated data. 

Currently, a new approach for data extraction is to leverage 
browsers to solve the above JavaScript problems, such as 
WebVCR [1], Lixto [4], and iMacro [11].  This approach is 
called the browser-oriented DE approach.  Instead of extract-
ing text from HTML files, the systems in this approach can  

Paper submitted 01/16/09; revised 04/07/09; accepted 04/29/09.  Author for 
correspondence: Jui-Yuan Su (e-mail: rysu@mcu.edu.tw). 
*Department of Information and Telecommunications Engineering, Ming Chuan
University, Taiwan, R.O.C. 
**Department of Computer Science, National Chiao Tung University, Taiwan, 
R.O.C. 
***Department of Computer Science and Information Engineering, Tunghai 
University, Taiwan, R.O.C. 



190 Journal of Marine Science and Technology, Vol. 18, No. 2 (2010) 

 

Article list pages

Subcategory pages

Main category page ...

...

...

Research Topics

Databases
» Data Extractions
» Data Minings

Research Topics
Algorithm

» Dynamic Programmings
» Greedy Algorithms
» Graphics

Bib. Archive

Computer Science
» Databases
» Algorithms

On the Web
Data Extraction
Model
A Web Data
Extraction
Description
Language ...

Title

I-C. Wu,
et al.

I-C. Wu,
J.-Y. Su,
et al.

Authors

SEKE 2005.

COMPSAC
2005

Publisher

next

WebOQL:
Restructuring
Documents, ...
Managing Web-
based data -
Databases ...

Title

G.
Arocena,
et al.

Atzeni,
et al.

Authors

ICDE

IEEE
Internet
Computing

Publisher

next

Data Extraction Data Extraction

 
Fig. 1. The structure of the simplified bibliography archive. 

 

 
 
<TABLE>
  <TR>
    <TD><A href="db.html">Databases</A></TD>
    <TD><A href="al.html">Algorithms</A></TD>
     . . .
  </TR>
</TABLE>

 
Fig. 2. A main category page. 

 

 
 
<TABLE>
  <TR>
    <TD><A href="de.html">Data Extraction</A></TD>
    <TD><A href="dm.html">Data Mining</A></TD>
    . . .
  </TR> 
</TABLE>

 
Fig. 3. An example of db.html.  This page contains two subcategory of 

the category 'Database'. 
 

 
 
<TABLE border=1 width="100%">
  <TR>
    <TD>On the Web Data Extraction Model </TD>
    <TD>I-C. Wu, J.-Y. Su, L.-B. Chen </TD>
    <TD>SEKE 2005. </TD>
  </TR>
  <TR>
    <TD>A Web Data Extraction Description Language
        and Its Implementation </TD>
    <TD> I-C. Wu, J.-Y. Su, L.-B. Chen </TD>
    <TD>COMPSAC 2005 </TD>
  </TR>
  . . .
</TABLE>
<A href=nextpage.html>next</A>

 
Fig. 4. An example of de.html.  This page contains list of articles of the 

subcategory 'Data Extraction'. 

 
 

extract text data or DOM elements from the browsers, and 
issue user actions such as mouse clicking or key stroking on 
the browsers to trigger JavaScript functions. 

<SCRIPT language=Javascript>
    function DirectToNext(name){
       window.open(name+".html")
    }
</SCRIPT>
<TABLE border="1" width="100%">
  . . . <!-- The same as those in Fig. 4. -->
</TABLE>
<A href="DirectToNext('nextpage')">next</A>

 
Fig. 5. An article list page, rewritten from Fig. 4. 

 

 
However, the DE systems in the browser-oriented DE ap-

proach usually encounter several page consistency issues caused 
by several factors, such as the changes of server content, the 
interferences of JavaScript functions.  In [27], Wu et al. pro-
posed a data extraction model, called the browser-oriented 
data extraction model to address and solve the consistency 
issues.  

To supporting the DE systems in the browser-oriented DE 
approach, this paper designs a BODE system with the fol-
lowing three contributions.  First, this paper introduces a de-
scription language based on XML [7] called browser-oriented 
data extraction description (BODED) language.  The BODED 
language supports the capability to locate DOM elements 
in browsers and issue actions on these elements to trigger 
JavaScript functions.  In BODED language, XPath [5], a W3C 
standard, is used to express the location of the elements.  The 
script written in BODED language is called a BODED script. 

Second, this paper designs a plug-in, so that more applica-
tions can be applied by adding plug-in code, called BODEDlet.  
For example, save the extracted data into databases, avoid ac- 
cessing redundant pages, and traverse web pages with specific 
rules.  In order to support plug-ins, the system has to hide the 
internal processing while avoiding consistency problems, as 
mentioned above.  To solve these problems, this paper design 
the system based on façade design pattern [22]. 

Third, this paper designs a visualization tool that can help 
users write BODED scripts.  The tool is a WYSIWYG tool 
that greatly reduces the time taken to develop BODED scripts. 

Section II in this paper reviews the BODE model including 
the consistency issues.  Section III introduces the BODED 
language.  Section IV describes the BODEDlet plug-in mecha- 
nism in our system.  Section V introduces the visual tools of 
our DE system.  Finally, Section VI illustrates the plug-in mech- 
anism of the BODE system by automating the playing of 
Connect6 [24] over a game site, Little Golem [14].  Section 
VII gives the concluding remarks. 

II. REVIEWS 

In this section, we review the BODE model and discuss the 
consistency issues.  Subsection II.1 introduce the BODE model.  
Subsection II.2 introduce the consistency problems that may 
occur in the BODE system. 



 J.-Y. Su et al.: On Design of Browser-Oriented Data Extraction System and the Plug-ins 191 

 

Browser Object Pool

Extracted 
Data Pool

(EDP)

Controller

Borwser-Oriented Data Extraction
(BODE) System

External
Environment
      (EE)

Browser
Object
(BO2)

Browser
Object
(BO1)

Network Module

. . .

Script

output
 

Fig. 6. The BODE model. 

 

1. BODE Model 

The architecture of a BODE model is depicted in Fig. 6.  A 
DE system following this model is called a browser-oriented 
DE system or a BODE system.  A BODE system inputs a DE 
script and outputs the extracted data after following the in-
structions in the DE scripts.  The BODE system retrieves 
documents from the Internet which is considered as an ex-
ternal environment.  Such retrieval operations are called page 
requests. 

A BODE system consists of the following modules: a con-
troller, a network module, an extracted data pool (abbr. EDP), 
and a set of browser objects.  The controller initially inputs a 
DE script, and then follows the instructions of the script to 
generate a sequence of DE actions on browser objects.  The 
DE actions are classified into the following three classes. 

 
1. Extraction actions. An extraction action extracts or locates 

the data from the designated browser object and places the 
extracted data into the EDP. 

2. URL actions. A URL action sends a page request through 
the network module to retrieve a document and then des-
ignates a browser object to hold the document. 

3. Page actions. A page action performs an operation on the 
designated browser object.  E.g., clicking on a hyperlink, 
fill text into a text field, moving backwards to the previous 
page, or moving forwards to the next page, etc. 
 
A set of browser objects holds HTML or XML documents 

to be extracted.  The data in these documents can be accessed 
or processed via the Document Object Model (DOM) [10], 
which is a W3C standard model.  

The network module is used to make all the page requests 
from the external environment.  The network module includes 
protocol handlers, such as HTTP [8] and FTP, and services, 
such as proxy and caching services.  

The EDP in the BODE system holds all the extracted data 
which may be either directly output or used to generate DE 
actions from the controller.  

2. Consistency Problems 

This section investigates two consistency problems for 
BODE systems: determinism and semantics consistency.  The 
issue of determinism is discussed in Subsection II.2.1, while 
the issue of semantics consistency is discussed in Subsection 
II.2.2. 

1) Determinism 

A BODE system can be distinguished as deterministic and 
non-deterministic.  If a BODE system described in above 
always produces the same output results for the same DE 
script, even when running at different times, then it is said to 
be deterministic.  Otherwise, the system is non-deterministic. 

In fact, a BODE system is very likely to be non-deterministic.  
Consider the following cases. 

 
1. Externally, for the same given URLs, the web servers may 

generate different documents at different times. 
2. Internally, the DE system may use time-related functions or 

use multi-threads, which may produce different results at 
different times. 
 
The first case above is almost inevitable.  Fortunately, cach- 

ing documents for all page requests can solve this problem.  
Thus, in order to simplify our discussion about DE systems, 
we assume that for the same given URLs, the web servers 
always generate the same documents, even at different times 
during the period of data extraction.  

The second case above that causes non-determinism (as de-
scribed above) is mainly related to the design of DE systems. 

Determinism is important in a BODE system because if the 
web pages are changed during data extraction, the behavior of 
the system may be unpredictable.  If the system is designed in 
single thread and does not use time related functions such as 
timer or random number, then the system will be deterministic. 

2) Semantics Consistency 

This subsection addresses another consistent issue, called 
semantic consistency, which may occur when navigating to 
multiple destined pages.  Navigating to multiple destined pages 
is called multi-way navigation in this paper.  For example, a 
DE system needs to navigate from the main category page (in 
Fig. 2) to all the subcategory pages (in Fig. 3).  An example 
with the problem of semantics consistency is illustrated as 
follows. 

 
1. Locate the hyperlink DOM nodes (linked to the subcate-

gory pages) in the browser object.  Designate the first node. 
2. Issue a mouse click event on the designated node. 
3. Load the corresponding subcategory page into the same  
 browser object. 



192 Journal of Marine Science and Technology, Vol. 18, No. 2 (2010) 

 

?
L1

Algorithms 
Disappears

4. Extract data
    from the page 

2. Issue a
    mouse
    click
    event

B1

5. Go back 
    to the
    main page.

1. Locate
    nodes

Located
nodes.

A pointer to an element

Issue an action on an element

Navigate to another page

3. Load corresponding
    subcategory page
    in the same browser

Bib. Archive

Bib. Archive

Research Topics

Computer Sciemce
• Internet Comuptings
• Databases
• Artificial Intelligences

Computer Science
• Databases
• Algorithms

Databases
• Data Extractions
• Data Minings

 
Fig. 7. Data extraction on two pages with one browser only. 

 

 

4. Extract data from the page. 
5. Go back to the main category page in the same browser 

object. 
6. Designate the next node and repeat Steps 2-5 for the next 

node, until all nodes are processed. 
 
However, after Step 5 is executed, the browser object could 

contain a page with different category hyperlinks (or even with 
hyperlinks missing), if the operation at Step 2 triggers 
JavaScript functions to make the change on the page.  Thus, all 
the hyperlinks are either dislocated or gone.  For example, in 
Fig. 7, the hyperlink to the next subcategory page al.html 
disappears and the hyperlink to db.html appears in a dif-
ferent place.  Thus, subsequent data extraction becomes unpre- 
dictable.  This violates the semantics of multi-way navigation 
that requires clicking on the original two hyperlinks, not the 
unpredicted new ones.  Such a phenomenon is called semantic 
inconsistency, defined in Definition 1.  The above demon-
strates the following problem.  Even if the whole system is 
deterministic, data extraction may still have unpredictable as 
in Fig. 7. 

 
Definition 1. Consider the extracted data in the EDP con-
taining locations of some DOM nodes of a page in a browser 
object at some time t.  Assume that these DOM nodes are 
changed due to some events issued to the page after time t.  A 
DE system with access to the locations of the changed DOM 
nodes is semantic inconsistent.  Otherwise, the DE system is 
semantic consistent. 

B2

2. Replicate

B1

3. Issue an 
    external
    event

B3

1. Locate
    nodes

5. Process
    the page

4. Load db. html
    in the same
    browser

Bib. Archive Bib. Archive

Bib. Archive
Research Topics

Computer Science
• Databases
• Algorithms

Computer Science
• Databases
• Algorithms

Computer Science
• Databases
• Algorithms

Databases
• Data Extractions
• Data Minings

 
Fig. 8. Data extraction with browser replication. 

 
 
The cause of semantic consistency problems in Fig. 7 is that 

if the BODE system issues page actions to the browser object, 
the content in the browser may be changed due to operations 
by Javascript functions.  

A solution proposed by [27] is to keep snapshots of a 
browser objects during data extraction.  When a page action 
will be issued to the browser object, BODE system replicates 
the original browser object to a new one and issue the page 
action on the new one.  Thus the states of original browser 
object are kept.  This technique is called browser replication.  

Based on the technique of browser replication, the opera-
tions in Fig. 7 are performed as shown in Fig. 8 with the fol-
lowing steps. 

 
1. Locate the hyperlink DOM nodes (linked to the subcate-

gory pages) in browser object B1.  Designate the first node. 
2. Allocate a new browser object B2, replicate the browser B1 

to the browser object B2, and mark the designated node in 
B2, instead. 

3. Issue a mouse click event on the designated node. 
4. Load the corresponding subcategory page into B2. 
5. Extract data from the page in B2. 
6. Go back to the main category page in B1. 
7. Repeat Steps 2~0 for the next node, until all nodes are 

processed. 
 
In this example, the BODE system correctly accesses the 

subcategory pages. 
In practice implementation, the BODE system usually lev-

erages current open browser controls, such as Webbrowser 
objects [18] and Mozilla controls [15].  Since these browser 
controls only support the replication of the whole DOM 
structure inside the browser, but not the replication of the 
whole browser object, because the JavaScript variables are 
difficult to replicate.  A technique, called indirect browser 
replication, is proposed for the browser replication in [27]. 

III. BODED LANGUAGE 

In the BODE system, an XML-based script is used to in-
structs the controllers to generate a sequence of actions in the 
system, as described in [27].  The primitives of the language 



 J.-Y. Su et al.: On Design of Browser-Oriented Data Extraction System and the Plug-ins 193 

 

are introduced in Subsection III.1.  The features of multi-way 
navigation are described in Subsection III.2.  The issues of 
consistency are discussed in Subsection III.3. 

1. Basics in BODED Language 

The BODED language is an XML based language.  The 
script written in BODED language is called a BODED script.  
The XML elements in the BODED script are called script 
elements.  The element BODED is the outermost element that 
encloses the entire BODED script.  This element contains two 
types of elements, INIT and PAGE.  The INIT element 
specifies the initial document located at a given URL, which is 
specified in the attribute URL.  The PAGE elements specify 
page scripts, which instruct the DE system to process the 
associated pages.  The child elements of the PAGE elements 
are executed sequentially, one at a time. 

Consider a simple example of a BODED script shown in 
Fig. 9.  The script is to extract the title, the author and the 
publication of each article in article list pages as shown in 
Fig. 4.  The INIT element indicates to allocate a new browser, 
and complete the following tasks: (1) perform a URL action 
to retrieve the initial web page located at the URL, 
http://bode.csie.nctu.edu.tw/de.html, and (2) 
process the retrieved web page by following the instructions of 
the page script named PaperList specified in the attribute 
page. 

In a page script, VAR elements are used to perform extrac-
tion actions that extract data inside the browsers.  In the page 
script PaperList in Fig. 9, the first three VAR elements are 
used to extract the titles, the authors, and the publications of all 
papers into the variables, named Title, Author, and 
Publication, respectively.  These variables are stored in 
the EDP. 

For expressing data extraction rules, the MBODE system 
uses standards XPath language [5], a W3C standard.  An 
XPath expression can be used to locate some DOM elements 
in the HTML documents or extract the content of these ele-
ments.  In a BODE system, it is very important to locate DOM 
elements, since this allows the BODE system to perform page 
actions on the located elements subsequently, e.g., issuing a 
mouse click event. 

In BODED language, the extraction rules are specified in 
the attribute xpath of the VAR element.  According to XPath, 
the three variables in Fig. 9 contain pointers to the extracted 
data or elements.  The three variables are saved into database 
via a plug-in mechanism named BODEDLET, which is de-
scribed in more detail in Section IV. 

In addition to the extraction action, using the EVENT ele-
ments specifies the other two actions, URL actions and page 
actions.  For example, the page script AccessNext in Fig. 
10 can be used to navigate a web page referenced by the last 
URL in Fig. 4.  The VAR element extracts the hyperlink to the 
next bibliography page into the variable NextLink.  Then, in 
the EVENT element, the attribute type with the value URL 
indicates to issue a URL action with a URL contained in the  

<BODED>
  <INIT page="PaperList"
        url="http://bode.csie.nctu.edu.tw/de.html" />
  <PAGE name="PaperList"/>
    <VAR name="Title" xpath="//TABLE[1]/TR/TD[1]" /> 
    <VAR name="Author" xpath="//TABLE[1]/TR/TD[2]" />
    <VAR name="Publication" xpath="//TABLE[1]/TR/TD[3]" />
    <BODEDLET code="BODEDlet.SaveIntoDB"
              archive="C:\BODEDLETLIB.dll">
      <PARAM name=TableName value=PaperItem />
    </BODEDLET>
  </PAGE>
</BODED>

 
Fig. 9. A BODED script to extract data from the HTML file in Fig. 4. 

 
 
<PAGE name="AccessNext">
  <VAR name="NextLink" xpath="//A[1]/@href" />
  <EVENT onvar="NextLink" page="Next" type="URL" /> 
</PAGE>

 
Fig. 10.  The page script AccessNext. 

 
 
<PAGE name="AccessNext">
  <EVENT xpath="//A[1]/@href" page="Next" type="URL" />
</PAGE>

 
Fig. 11.  The simplified page script AccessNext. 

 
 
<PAGE name="AccessNext">
  <EVENT xpath="//A[1]" page="Next" type="ONCLICK" />
</PAGE>

 
Fig. 12.  The PAGE AccessNext with a click event. 

 
 
variable NextLink, specified in the attribute onvar, and the 
attribute page indicates to use the page script Next to pro- 
cess the next page.  The operations in both VAR and EVENT 
elements can be combined into a single EVENT element as in 
Fig. 11. 

The BODED language supports the recursion of page in-
vocations.  If the value of page attribute in the EVENT ele-
ment is changed from Next to AccessNext in Fig. 10, then 
the system repeatedly invokes the next pages until none are 
extracted in the event. 

Now, suppose that the reference to the next article list page 
is a JavaScript function as shown in Fig. 5, instead of a URL.  
The value of the attribute type in Fig. 11 is simply modified 
to other external events, such as ONCLICK, as shown in Fig. 
12. 

In addition to ONCLICK and URL, the BODED language 
also includes the following event types, ONMOUSEUP, 
ONMOUSEDOWN, ONDBCLICK, ONKEYDOWN, ONKEYUP, 
ONKEYPRESS and FILL.  For simplicity, in BODED script, if 
the resulting data extracted by an XPath expression is a string, 
then the value of the attribute type is, by default, URL;  



194 Journal of Marine Science and Technology, Vol. 18, No. 2 (2010) 

 

<PAGE name="SearchList">
<EVENT xpath="//FORM[1]/INPUT[1]"     

type="Fill" value="Extraction" />
<EVENT xpath="//FORM[1]/INPUT[2]" 

page="AccessNext" 
type=“ONCLICK"/>

</PAGE>
<PAGE name=“AccessNext”>

...
</PAGE>

(a) A BODED script to fill up a form in (b) 

<FORM name="Form1" action="query.php" 

Extract Go

Computer Science

Search Papers

method="POST">
<B>Search Papers</B>
<INPUT type="Text" name="query" value="">
<INPUT type="Submit" name="Go">

</FORM>
. . .

(b) A HTML query page with the tag FORM. 

» Databases
» Algorithms

 
Fig. 13.  A BODED script to fill up a query page with the tag FORM. 

 
 
<PAGE name="MainCategory">
  <VAR name="Subcat" xpath="//TABLE[1]/TR[1]/TD/A" />
  <FOREACH name="SubCatLink" onvar="Subcat">
    <EVENT page="SubCategory" xpath="." />
  </FOREACH>
</PAGE>

 
Fig. 14.  The page script MainCategory 

 
 

otherwise, the value is, by default, ONCLICK for the located 
element.  

In a page with a FORM element as shown in Fig. 13 (b), it 
allows users to type query strings and then to click in the 
button named "Go" to submit a page request to find papers 
containing the query strings.  

For the above example, the BODED script can be written as 
shown in Fig. 13 (a) to simulate the user’s operation.  In this 
script, the first EVENT element indicates to issue an external 
event Fill that is to fill the query field with the value 
"Extraction".  Then, the second EVENT element indicates 
to issue a click event to submit the form to access the next 
page.  The attribute page indicates to use the page script 
AccessNext to process the next page. 

2. Multi-way Data Extraction 

The BODED language supports a feature, called multi-way 
navigation.  In page scripts, FOREACH elements are used to 
specify FOREACH scripts that allow the BODE system to 
perform multi-way navigation.  

Consider the page script MainCategory in Fig. 14.  The 
BODE system uses MainCategory to traverse all the 
categories listed in the main category page in Fig. 2.  In 
MainCategory, the VAR element extracts a set of hyper-
links to the subcategory pages and actually put these hyper-
links into the variable Subcat.  The FOREACH script (inside 
the page script MainCategory) is executed once for each 
hyperlink stored in the variable Subcat.  The variable named 
SubCatLink is created which contains the hyperlink.  The 
EVENT element in the FOREACH script indicates to issue a 
click event on the hyperlink in the variable SubCatLink.  
The attribute page of the EVENT element indicates to allocate 
a new browser for loading the subcategory page specified by 
the hyperlink and use the page script Subcategory to  

<BODED>
  <INIT url="http://bode.csie.nctu.edu.tw/bib/"
        page="MainCategory" />
  <PAGE name="MainCategory">
    <VAR name="Subcat" xpath="//TABLE[1]/TR[1]/TD/A" />
    <FOREACH name="SubCatLink" onvar="Subcat">
      <EVENT page="SubCategory" xpath="." />
    </FOREACH>
  </PAGE>
  <PAGE name="SubCategory">
    <VAR name="Link" xpath="//TABLE[1]/TR[1]/TD/A" />
    <FOREACH name="PaperListLink" onvar="Link">
      <EVENT page="PaperList" xpath="." />
    </FOREACH>
  </PAGE>
  <PAGE name="PaperList">
    <VAR name="Title" xpath="//TABLE[1]/TR/TD[1]" />
    <VAR name="Author" xpath="//TABLE[1]/TR/TD[2]" />
    <VAR name="Publication" xpath="//TABLE[1]/TR/TD[3]" />
    <BODEDLET code="BODEDlet.SaveIntoDB"
              archive="C:\BODEDLETLIB.dll">
      <PARAM name=TableName value=PaperItem />
    </BODEDLET>
  </PAGE>
</BODED>

 
Fig. 15.  A BODED script to extract all the articles. 

 
 
<PAGE name="MainCategory2">
  <VAR name="Subcat" xpath="//TABLE[1]/TR[1]/TD/A[2]" />
  <FOREACH name="SubCatLink" onvar="Subcat">
    <VAR name="SubCatName" xpath="./@href />"
    <EVENT page="SubCategory" onvar="SubCat"  />
  </FOREACH>
  <VAR name=AllSubCatName onvar=Subcat path="./text()"/>
</PAGE>

 
Fig. 16.  Another page script MainCategory2. 

 

 
process the subcategory page.  Note that the value of xpath 
"." in the EVENT element indicates to apply the XPath rule to 
the DOM subtree rooted at the DOM node stored in the vari-
able SubCatLink.  

Based on the above description, the whole bibliography 
web site including two-level category pages, as shown in Fig. 
3 and 4 can be extracted via the BODED script in Fig. 15. 

All elements inside FOREACH scripts are executed se-
quentially, like page scripts.  For example, in Fig. 16, the VAR 
element inside the FOREACH script extracts the URL (a hy-
perlink to a subcategory page), and the EVENT element then 
uses the URL (in the variable SubCat) to issue an URL event.  
The last element AllSubCatName is executed after the 
FOREACH script is finished.  

Besides, BODED language adopts forward referencing and 
uses nested scoping for accessing variables.  For example, in 
the page script in Fig. 16, the VAR element SubCatName and 
the EVENT element can forward reference to Subcat or 



 J.-Y. Su et al.: On Design of Browser-Oriented Data Extraction System and the Plug-ins 195 

 

SubCatLink, but not to AllSubCatName. 
In nested scoping, the last VAR element AllSubCatName 

can access the variable Subcat, but cannot access Sub-
CatLink or SubCatName.  Note that if the name of the 
variable SubCatName (inside the FOREACH element) is 
changed to SubCat, both variables of SubCat are different 
variables. 

3. Consistency Issues in BODED 

In the multi-way navigation operation in Fig. 14, the 
FOREACH element iterates through the extracted hyperlinks.  
When the EVENT elements are executed, the BODE system 
replicates browser objects as described in Fig. 8. 

Browser replication can also be performed at the beginning 
of executing a FOREACH script.  Consider the above page 
script MainCategory in Fig. 14.  When starting to run the 
FOREACH script, the browser is replicated to a browser for 
each extracted element in the variable Subcat.  Thus, no 
browser replications are required for the first events inside the 
FOREACH script. 

IV. A PLUG-IN FOR BODE SYSTEM 

This paper designs a plug-in in the BODE system, so that 
more applications can be applied by adding plug-in code, 
called BODEDlet.  For example, save the extracted data into 
databases, avoid accessing redundant pages, and traverse web 
pages with specific rules.  

In the following subsections, Subsection IV.1 describes the 
system architecture for supporting the BODEDlet.  Subsection 
IV.2 describes the BODEDlets.  Subsection IV.3 discusses the 
implementation for avoiding consistency issues.  Subsection 
IV.4 describes the applications of BODEDlets. 

1. System Architecture for BODEDlets 

The architecture of our system is depicted in Fig. 17.  The 
major differences from Fig. 6 are in the controller.  The con-
troller consists of the core controller, BODED interpreter, and 
BODEDlets.  

The BODED script interpreter in our system initially inputs 
a DE script and then follows the instructions of the script to 
generate a sequence of messages to the core controller.  The 
core controller receives the messages and generates a se-
quence of DE actions.  During the execution of the DE script, 
the core controller may load and execute user defined 
BODEDlet [13].  The BODEDlet may also generate a se-
quence of messages to the controller for accessing the system. 

The key idea of the controller is: For all script elements 
except FOREACH described in Subsection III.2, the core con-
troller supports the corresponding API functions.  Thus, the 
BODED interpreter simply translates script elements into the 
corresponding API functions and then invokes them.  BOD-
EDlets coded by programmers are allowed to access these API 
functions.  

The design of the core controller follows the façade design  

Core
Controller

BODED
Interpreter

BODEDlet

BODEDlet

Script

. . .

Browser
Object
(BO1)

Browser
Object
(BO2)

Extracted
Data Pool

(EDP) 

. . .

Controller

 
Fig. 17.  The architecture of the BODEDlet. 

 

 
<PAGE name="MainCategory">
  <VAR name="Subcat" xpath="//TABLE[1]/TR[1]/TD/A" />
  <FOREACH name="SubCatLink" from="Subcat">
    <EVENT page="SubCategory" xpath="." />
    <BODEDLET code=BODEDlet.Log archive=BODEDLETLIB.dll>
       <PARAM name="PageScript" value="MainCategory" />
    </BODEDLET>
  </FOREACH>
</PAGE>

 
Fig. 18.  A page script using BODEDlet for logging. 

 

 

pattern [22] by isolating both browser objects and data pool 
from both the BODED script interpreter and BODEDlets.  An 
important reason is to maintain the consistency, as described in 
Subsection IV.3. 

2. BODEDlet 

BODEDlets are small programs that can be invoked by the 
core controller.  Figure 18 illustrates an example of a page 
script using a BODEDlet, BODEDlet.Log, to log the op-
erations in the page script MainCategory.  Our system was 
implemented in C# in the .NET environment, since Web-
browser objects were supported in C#.  BODEDlet programs 
are written as classes and their executables are DLL files.  
Note that the system default library "BODEDLETLIB.dll" 
has some more useful BODEDlets.  For example, save the 
extracted data into XML files (or databases), and remove 
redundant URL events. 

The element BODEDLET in the page script contains at 
least the following two attributes. 

 
● archive: Specify the DLL file path of BODEDlets. 
● code: Specify the class name of the BODEDlet object. 
 
BODEDLET elements in the BODED script may specify 

parameters through PARAM elements.  The element PARAM in 
the page script contains at least the following two attributes. 



196 Journal of Marine Science and Technology, Vol. 18, No. 2 (2010) 

 

using BODED;

namespace BODEDletLib {
   abstract class BODEDLET {
      public BODED.PageContext pageContext;
      abstract public int Execute(); 
   }
}

 
Fig. 19.  The abstract class BODEDLET exported by BODE system. 

 
 
using BODEDScript;

class PageContext
{
public Collection params;
public Variable GetVariable(String varName);
public Variables GetVariables();
public object Extract(String xpath, String base);
public void SetVariable(String varName, object value);
public void SetVariable(String varName, String xpath, 
                           String base);
public void IssueURLEvent(String url,
                        String pageScriptName);
public void IssueEvent(String varName, String type,
                          String pageScriptName, 
                          String value /* for filling*/);
...
}

 
Fig. 20.  A segment of signatures of the class PageContext. 

 

 
● name: Specify the name of the parameter.  This attribute is 

similar to the declared formal parameters of a function call 
in java language. 

● value: Specify the value of the parameter. 
 
During the runtime of the BODE system, the BODEDlets in 

DLL files are loaded and executed.  The classes must inherit a 
system defined base class BODEDLET as shown in Fig. 19.  
The base class BODEDLET defines an abstract method Exe-
cute and a field pageContext.  The BODEDlet imple-
menters should override and implement their own Execute 
method.  The field pageContext provides accesses to the 
contexts of the pages with which the BODEDlets are associ-
ated.  BODEDlets can use the field to access or perform script 
operations supported in the BODED language, such as VAR or 
EVENT.  

Specifically, when a BODEDlet was invoked, the core 
controller loads the BODEDlet and creates a PageContext 
object associated the current extracted page.  Then, the 
BODEDlet can access or operate BODED operations on the 
page via fields and methods the PageContext object, as 
listed in Fig. 20. 

These fields and methods are classified into three groups.  
The first group is related to parameters of the BODEDLET 
element.  params is a collection which contains the name- 

value pairs of the PARAM elements in a BODED script.  For 
example, in Fig. 18, params include only one pair for 
PageScript.  The second group is related to variables.  The 
methods GetVariable and GetVariables can obtain 
the variables, which contain the data extracted in a BODED 
script.  The methods SetVariable issue the extraction 
actions, which set variables to the newly extracted data.  The 
third group is related to events.  The methods IssueUR-
LEvent and IssueEvent can issue URL or page actions.  
The details of these methods are described in Appendix A. 

3. Consistency Issues 

The consistency issues in the web data extraction include 
determinism and semantic consistency.  To guarantee the de-
terminism, the browser objects and the system itself should be 
deterministic.  Our system is designed to avoid most of the 
determinism problem.  First, a cache is included to ensure the 
determinism of the web pages retrieved from web servers.  
Second, the browser objects should be determinism.  The time 
related functions and the synchronization of XMLHttpRe-
quests that are used in AJAX should be noticed.  We follow 
the guideline in [27] to implement the browser objects.  Third, 
the page actions cannot be issued directly from outside the 
system.  The controller controls all the page actions in our 
system.  

To guarantee the semantic consistency, the BODEDlet is 
designed to prevent from modifying the extracted data in 
variables.  Specifically, since the system does not allow vari-
ables with the same names, the methods SetVariable are 
always to create new variables, not to modify variables.   

Moreover, the methods IssueEvent and IssueUR-
LEvent in the BODEDlet will automatically perform 
browser replications to avoid semantic consistency problem. 

4. Applications 

The capability for user defined functions to interact with 
web pages allows our BODE system to provide web automa-
tion applications.  

The BODEDlet program for BODEDlet.Log, illustrated 
in Fig. 21, is a class extending the base class BODEDLET.  
Using pageContext, the above BODEDlet can access pa-
rameters params and global data such as logFile.  The 
data params is a collection of parameters with type Pa-
rameter, whose name and value can be accessed via 
methods GetName and GetValue, respectively.  

In fact, the BODEDlet system can support most of func-
tionalities supported in BODED scripts, such as those for VAR 
and EVENT elements.  The page script in Fig. 22 uses the 
BODEDlet SetVariable to set a variable, exactly like the 
element VAR.  The BODEDlet program for SetVariable is 
shown in Fig. 23. 

Similarly, the page script in Fig. 24 uses the BODEDlet 
UniqueUrlEvent to issue an event, instead of using the 
element EVENT, in Fig. 14.  The UniqueUrlEvent can also 
prevent from issuing the same URL events.  The code of  



 J.-Y. Su et al.: On Design of Browser-Oriented Data Extraction System and the Plug-ins 197 

 

// The following "using" lines will be omitted 
// in the rest of examples in this paper. 
using System;
using BODED;
using BODEDletLib;

namespace BODEDlet {
   public class Log: BODEDLET {
      override public int Execute() {
         // pageContext.logFile is a global log file.
         StreamWriter f = pageContext.logFile;

         // Log each PARAM. 
         foreach(Parameter p in pageContext.params) {
            f.WriteLine("Log: " + p.GetName() + 
                        "=" +p.GetValue());
         }
         return 0;   // the method is done correctly. 
      }
   }
}

 
Fig. 21.  The program of the BODEDlet Log. 

 
 
<PAGE name="MainCategory">
  <!-- VAR name="Subcat" xpath="//TABLE[1]/TR[1]/TD/A" />
  <BODEDLET code=BODEDlet.SetVariable 
            archive=BODEDLETLIB.dll>
    <PARAM name="name" value="Subcat" />
    <PARAM name="xpath" value="//TABLE[1]/TR[1]/TD/A"/>
  </BODEDLET>
  ...
</PAGE>

 
Fig. 22.  The page script using the BODEDlet SetVariable. 

 

 
 
namespace BODEDlet {
   public class SetVariable : BODEDLET {
      override public void Execute() {
         // Get value of PARAM named XPath.
         Collection params = pageContext.params;
         String name = params.GetValue("name");
         String xpath = params.GetValue("xpath");
         
         // Extract a URL of sub category page
         pageContext.setVariable(name, xpath, ""); 
      }
   }
}

 
Fig. 23.  The BODEDlet program for SetVariable. 

 

 
BODEDlet for UniqueUrlEvent is shown in Fig. 25.  If 
the value of the parameter type is URL, the method Is-
sueURLEvent (in pageContext) issues a URL event.  If a 
URL event has been issued before, this event is skipped.  As 
for the element FOREACH, the BODEDlet program can simply 
use for primitive in C# or other C-like languages. 

<PAGE name="MainCategory">
  <VAR name="Subcat" xpath="//TABLE[1]/TR[1]/TD/A" />
  <FOREACH name="SubCatLink" from="Subcat">
    <BODEDLET code=BODEDlet.UniqueUrlEvent 
archive=BODEDLETLIB.dll>
      <PARAM name="PageScript" value="SubCategory" />
      <PARAM name="xpath" value="." />
      <PARAM name="type" value="URL" />
    </BODEDLET>
  </FOREACH>
</PAGE>

 
Fig. 24. The page script using the BODEDlet Event, instead of an EVENT 

element. 

 
 
namespace BODEDlet {
   public class UniqueUrlEvent : BODEDLET {
      static Hashtable urlTable = new Hashtable();
      override public void Execute() {
         // Get value of PARAM named XPath.
         Collection params = pageContext.params;
         String ps = params.GetValue("PageScript ");
         String xpath = params.GetValue("xpath");
         String type = params.GetValue("type");
         // Extract a URL of sub category page
         Object url = pageContext.Extract(xpath, "");
         if (type == NULL) {
           ... // use default way to trigger the event.
         } else if (type == "URL") {
if (!urlTable.Contains((String) url)) {
               urlTable.Add((String) url, targetURL);
               pageContext.IssueURLEvent((String)url, ps);
         } else {
           ... // Issue an event according to the type.
         }   
      }
   }
}

 
Fig. 25.  The BODEDlet program for Event. 

 

V. VISUALIZATION TOOL 

Although our system allows users to write the BODED 
scripts, the BODED scripts may still be difficult to write di-
rectly.  Therefore, the BODE system also provides users with a 
WYSIWYG visualization tool to reduce the time taken to 
develop BODED scripts.  

Figure 26 shows the visualization tool of the BODE system.  
This tool contains five regions.  The web page region displays 
the web pages.  The XPath region displays the XPath rules 
used.  The BODED script region displays elements of the 
BODED script hierarchically.  The DOM tree region displays 
the DOM tree representing the web page displayed in the 
current web page region.  Finally, the properties region: dis-
plays the attribute properties of the element selected in the 
BODED script region. 

The visualization tool of our system has two modes, the 
editing mode and the execution mode.  In the editing mode,  



198 Journal of Marine Science and Technology, Vol. 18, No. 2 (2010) 

 

BODE Script Region

DOM Tree Region

Properties Region

Web Page Region

XPath Region

 
Fig. 26.  The visualization tool of the BODE system. 

 

 
users edit BODED scripts using a WYSIWYG interface.  

For data extraction, users can directly click on the data item 
displayed in the web page region.  The DOM element corre-
sponding to the clicked item is highlighted and its XPath is 
then displayed in the XPath region.  Then the XPath can be 
saved into a VAR element.  

When starting to perform data extraction, users simply 
switch to the execution mode.  The edited BODED script is 
executed, and the extracted data are output to a new window. 

According to our experiments, one BODED script could be 
written within 30 minutes with the help of the visualization 
tool, but takes about 360 minutes without the help of the 
visualization tool. 

VI. EXPERIMENTS 

In this section, we illustrate the plug-in mechanism of the 
BODE system by automating the playing of Connect6 [24] in 
Little Golem [14].  Connect6 is a kind of six-in-a-row game 
introduced by Wu [25] in 2005.  Little Golem, a web-based 
game system, is one of popular game sites for Connect6.  

The team led by Wu also developed a Connect6 program, 
named NCTU6, winning the gold in the 11th and 13th computer 
Olympiad [26, 28].  In order to compare the strength of 
NCTU6 with those of human players, they collaborated with 
us based on the BODE system by using the BODE system to 
play their program with other players automatically in Little 
Golem. 

Without the BODE system, playing games in Little Golem 
is operated as follows. 

 
1. In the login page, login with user name and password.  
2. Go to the page that shows the list of the current games.  The 

game list is shown in the table of “Games where it is your 
turn”, as illustrated in Fig. 27. 

 
Fig. 27.  "My games" page in Little Golem. 

 
 

3. For each game in the game list, access the page corre-
sponding to the game, as shown in Fig. 28, and then do the 
next step.  

4. Place a move in the board (in Block 2).  In case of NCTU6, 
we let NCTU6 make a move by inputting the game history 
(in Block 1). 
 
In order to let the BODE system play automatically, we first 

make use of the visualization tool (described in Section V) to 
create a BODED script by following the above four steps, 
except for that we randomly pick one move at Step 4.  The 
element <Page> corresponding to Step 4 is shown in Fig. 
29(a). 

Then, in order to plug-in the program NCTU6 to play, we 
modify this <Page> as shown in Fig. 29(b).  The element 
<BODEDLET> indicates to invoke a BODEDLet LGPlugin.dll 
which parses the game history from the variables at History 
and BoardRange, then execute the NCTU6 program by 
inputting the history data, and finally make a click operation  



 J.-Y. Su et al.: On Design of Browser-Oriented Data Extraction System and the Plug-ins 199 

 

connect6 game #806658 (game finished)

2. 1.
 

Fig. 28.  The web page of one game in Little Golem. 

 
 
<Page Name="One Game Page"
  <VAR name="History" path="//HTML[0]/.../TD[1]/..." />
  <VAR name="BoardRange" xpath="//HTML[0]/.../TD[0]/..." />
  <Event name="Connect6Play" xpath="..(don’t care).."
from="Click Each Game" type="ONCLICK" />
</Page>

<Page Name="One Game Page"
  <VAR name="History" path="//HTML[0]/.../TD[1]/..." />
  <VAR name="BoardRange" xpath="//HTML[0]/.../TD[0]/..." />
  <BODEDLET name="LGPlugin" archive="LGPlugin.dll" 
            code="LGPlugin.NCTU6" />
</Page>

(a)

(b)  
Fig.  29. Connect6.xml. 

 
 

on BoardRange.  The details of the BODEDLet program 
and the BODED script are in [23]. 

For this experiment, we created an account, “bode_connect6” 
in Little Golem, and used the BODE system described above 
to play Connect6.  Since May 2007, bode_connect6 has played 
over 450 games, including at least 300 won, 143 lost and 7 
drawn.  Currently, the program is ranked around 1800.  In 
addition, we also use the BODE system to extract the game 
histories of players that scored above 1800 in Little Golem 
every two weeks.  The corresponding script and BODEDlet 
are also in [23]. 

VII. SUMMARY 

A design of the BODE system was proposed which includes 
a simple script language, a plug-in, and a visualization tool.  
The contributions of this paper are summarized as follows: 

 
● The scripting language, named the BODED (Browser- 

Oriented Data Extraction Description), is defined to instruct 
the BODE system to extract data. 

● A plug-in, called BODEDlet is presented to extend the 
functionality of the data extraction system.  At the same time, 
the consistency issues of BODE systems are also solved. 

● A visualization tool is implemented to facilitate data ex-
traction in BODE.  In practice, we spent 30 minutes in de-
signing data extraction for Yahoo! Web site, but 360 min-
utes without this tool. 
 
An illustration of automating the playing of Connect6 [24] 

in Little Golem [14] is experimented to demonstrate the 
plug-in mechanism of the BODE system. 

ACKNOWLEDGMENTS 

The authors would like to thank the National Science 
Council of the Republic of China, Taiwan for financially sup- 
porting this research under Contract Numbers, NSC 94-2213- 
E-009-028, and NSC 95-2221-E-029-033. 

APPENDIX A. 

The methods of PageContext in Fig. 20 are summarized 
as follows. 

 
● GetVariables(): This method gets all the variables 

that are accessible in the current page script. 
● GetVariable(varName): This method gets the vari-

able with name specified in varName. 
● Extract(xpath,base): This method extracts data 

from the DOM tree rooted at the node pointed by a variable 
named base, and return the extracted data back.  Currently, 
we only support XPath as the extraction rule.  

● SetVariable(varName,object): This method stores 
the object object into the variable with the name 
specified by varName.  

● SetVariable(varName,xpath,base): This method 
uses Extract method to extract data and then Set-
Variable(varName,object) to store the extracted 
data into the variable.  

● IssueUrlEvent(url,pageScriptName): This 
method issues a URL event (with the URL specified in url) 
in the current page context named pageScriptName.  

● IssueEvent(varName,type,pageScriptName,  

value): This method issues an external event in the cur-
rent page context named pageScriptName.  The event 
is issued on the DOM node in the variable whose name is 
specified by varName.  The event type is specified in 
type.  The value is used for the events that require pa-
rameters.  For example, for the fill event, the filling string is 
specified in this parameter. 

REFERENCES 

1. Anupam, V., Freire, J., Kumar, B., and Lieuwen, D., “Automating web 
navigation with the WebVCR,” Computer Networks: the International 
Journal of Computer and Telecommunications Networking, Vol. 33, No. 
1-6, pp. 503-517 (2000). 

2. Arasu, A. and Garcia-Molina, H., “Extracting structured data from web 
pages,” Proceedings of the 2003 ACM SIGMOD International Confer-



200 Journal of Marine Science and Technology, Vol. 18, No. 2 (2010) 

 

ence on Management of Data, pp. 337-348 (2003). 
3. Arocena, G. O. and Mendelzon A. O., “WebOQL: Restructuring docu-

ments, databases, and webs,” Theory and Practice of Object Systems, Vol. 
5, No. 3, pp. 127-141 (1999). 

4. Baumgartner, R., Ceresna, M., and Ledermuller, G., “Deep web naviga-
tion in web data extraction,” Proceedings of the International Conference 
on Computational Intelligence for Modelling, Control and Automation 
and International Conference on Intelligent Agents, Web Technologies 
and Internet Commerce (CIMCA-IAWTIC), Vol. 2, pp. 698-703 (2005) 

5. Berglund, A., Boag, S., Chamberlin, D., Fernández, M. F., Kay, M., Robie, 
J., and Siméon, J., XML Path Language (XPath) 2.0, W3C Working 
Draft, W3C Consortium (2004). 

6. Boag, S., Chamberlin, D., Fernández, M. F., Florescu, D., Robie, J., and 
Siméon, J., XQuery 1.0: An XML Query Language, W3C Recommenda-
tion, W3C Consortium (2007). 

7. Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and Yergeau, F., 
Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C Recom-
mendation, W3C Consortium (2008). 

8. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and 
Berners-Lee, T., Hypertext Transfer Protocol – HTTP/1.1, RFC 2616, 
IETF (1999). 

9. Garrett, J. J., Ajax: A New Approach to Web Applications, Adaptive Path 
(2005). 

10. Hors, A. L., Hégaret, P. L., Wood, L., Nicol, G., Robie, J., Champion, M., 
and Byrne, S., Document Object Model (DOM) Level 3 Core Specifica-
tion Version 1.0, W3C Recommendation, W3C Consortium (2004). 

11. iOpus Software, iMacros Online User Manual, iOpus Software (2009).  
http://wiki.imacros.net/Main_Page. 

12. Konopnicki, D. and Shmueli, O., “Information gathering in the World- 
Wide Web: the W3QL query language and the W3QS system,” ACM 
Transactions on Database Systems (TODS), Vol. 23, No. 4, pp. 369-410 
(1998). 

13. Lidin, S., Inside Microsoft .NET IL Assembler, Microsoft Press (2002). 
ISBN 0-7356-1547-0. 

14. Little Golem, “Little Golem – online board games,” http://www. 
littlegolem.net/. 

15. Lock, A., “Mozilla ActiveX project,” (2005). http://www.iol.ie/~locka/ 
mozilla/mozilla.htm. 

16. Merialdo, P., Atzeni, P., and Mecca, G., “Design and development of 
data-intensive web sites: The ARANEUS approach,” ACM Transactions 
on Internet Technology (TOIT), Vol. 3, No. 1, pp. 49-92 (2003). 

17. Merrick, P. and Allen, C., Web Interface Definition Language (WIDL), 
W3C Note, W3C Consortium (1997). 

18. Microsoft Corporation, WebBrowser Control, Programming and Reusing 
the Browser, MSDN Library (2004). 

19. Netscape devedge, “JavaScript central,” (2003) http://devedge-temp. 
mozilla.org/central/javascript/index_en.html. 

20. Robie, J., Lapp, J., and Schach, D., “XML query language (XQL),” The 
Query Languages 1998 Conference (QL’98) (1998). 

21. Sahuguet, A. and Azavant, F., “Building light-weight wrappers for legacy 
web data-sources using W4F,” Proceedings of 25th International 
Conference on Very Large Database, pp. 738-741 (1999). 

22. Shalloway, A. and Trott, J., Design Pattern Explained: A New Perspective 
on Object-Oriented Design, Addison-Wesley Professional (2002). ISBN 
0201715945. 

23. Sun, D.-J. and Wu, I-C., “BODEDLet for playing NCTU6 in Little Go-
lem,” http://java.csie.nctu.edu.tw/~derjohng/200803BODE/. 

24. Taiwan Connect6 Association, “Connect6 homepage,” http://www. 
connect6.org/. 

25. Wu, I.-C., Huang, D.-Y., and Chang, H.-C., “Connect6,” Journal of 
International Computer Games Association (ICGA), Vol. 28, No. 4, pp. 
235-242 (2005). 

26. Wu, I.-C. and Lin, P.-H., “NCTU6-Lite wins Connect6 tournament,” 
Journal of International Computer Games Association (ICGA), Vol. 31, 
No. 4, pp. 240-242, (2008). 

27. Wu, I.-C., Su, J.-Y., and Chen, L.-B., “On the web data extraction model,” 
Proceedings of 17th International Conference on Software Engineering 
and Knowledge Engineering (SEKE’05), pp. 330-335 (2005). 

28. Wu, I.-C. and Yen, S.-J., “NCTU6 wins Connect6 tournament,” Journal 
of International Computer Games Association (ICGA), Vol. 29, No. 3, pp. 
157-158 (2006). 

 


	ON DESIGN OF BROWSER-ORIENTED DATA EXTRACTION SYSTEM AND THE PLUG-INS
	Recommended Citation

	ON DESIGN OF BROWSER-ORIENTED DATA EXTRACTION SYSTEM AND THE PLUG-INS
	Acknowledgements

	tmp.1629300604.pdf.2FW1L

