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ABSTRACT 

The study analyzed the fully developed laminar flow in a 
channel with longitudinal rectangular beams arrayed along the 
channel width.  The governing equations describing the fluid 
which flows along the direction of the beam length are ex-
pressed with double Poisson equations and are solved by ei-
genfunction-expansion and point-match method.  The effects 
of cross-sectional area and aspect ratio of the beams are in-
vestigated.  Dimensionless velocity profile, mean velocity, and 
friction factor multiplied by Reynolds number in the channel 
are presented for analysis.  Initially, a comparison of fRe for a 
special case is made.  It is found that the predicted fRe of this 
work tends to approach that of a parallel-plate channel case for 
smaller A and ar.  A further study shows that increasing the 
cross-sectional area of the beams will lead to a decrease both 
in the mean velocity and fRe values.  For a fixed cross-section 
area of the beam, as the beam height increases, an increase in 
the mean velocity and volumetric flow rate of the fluid but a 
decrease in the fRe is obtained. 

I. INTRODUCTION 

The channel flow plays an important role in the research 
and analysis of fluid mechanics.  Nowadays, more and more 
attention has been engrossed on flow in a channel with rec-
tangular beams.  Practical engineering applications can be 
found in galvanizing and coating process on the bars, de-
signing a lubrication system, and cooling elements in a me-
chanical device.  The pressure drop in this process can be 
obtained from the calculation of flow velocity and friction 
factor in the channel.  Consequently, many significant efforts 
directed towards researches with related fields.  Sparrow and 

Loeffler [8] investigated the laminar flow between cylinders 
arranged in regular array by using the eigenfunction-expansion 
and point-matched method.  Their analytical solution was 
obtained for the longitudinal fully developed laminar flow 
between cylinders arranged in triangular of square array.  
Cheng [3] also presented an analog solution of laminar heat 
transfer in noncircular ducts by point-matching.  The fully 
developed laminar flow characteristics in noncircular ducts 
and the steady temperature distribution in infinitely long 
prismatic bars can be obtained.  Later, neglecting inertia effect, 
Trogdon and Joseph [9] solved the problem of plane flow of a 
second-order fluid over a rectangular slot by matching bior-
thogonal eigenfucntion expansions in different regions of flow.  
Besides, some other efforts directed studies towards a channel 
with various cross section such as a complex shaped duct or 
channel, in which the complicated regions might be decom-
posed into contiguous simpler sub-regions.  In 1976, Zarling 
[12] proposed the semi-analytical method to solve the gov-
erning equation for fully developed laminar flow through 
bars of complex geometrical pattern.  Employing the Schwarz- 
Neumann alternating method along with least squares point 
matching, the flow velocity in a duct with one pair of opposing 
walls being parallel plates and the adjacent pair of walls 
semicircular arcs was obtained.  In addition, the method was 
applied to a complex shaped duct and the resulting velocity 
was used to calculate the flow rate and pressure drop.  Mean- 
while, Wang [10] analyzed the parallel flow between two fixed 
corrugated plates, and discussed the dependence of flow rate 
on effect of wavy surface.  In 1994, Wang [11] further studied 
the laminar, viscous flow between parallel plates with evenly 
spaced longitudinal ribs.  The flow in a channel with longitu-
dinal ribs was solved by an eigenfunction-expansion and 
point–match method.  It was found that both the wetted pe-
rimeter and the friction factor-Reynolds number product are 
unsuitable parameters for the flow through ducts of complex 
geometry.  For a circular cylinder subject to a parallel-plate 
channel, Chen et al. [2] investigated the steady flow past this 
cylinder lost stability as the Reynolds number was increased.  
Furthermore, Bahrami et al. [1] investigated the fully-developed 
laminar flow in smooth channels of arbitrary cross-sections.  
For some selected channels, the fRe values were computed 
using existing analytical solutions for fluid flow.  Recently,  
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Fig. 1.  (a) The overall view of the proposed model, (b) The X-Y cross-section of the channel with rectangular beams. 

 

 
Hsieh and Chen [6] investigated the emergence and devel-
opment of cylinder-attached recirculation regions in a fully 
developed flow past a circular cylinder which was symmetri-
cally confined between two flat plates. 

Although many researches about channel flow under dif-
ferent conditions were discussed, the channel flow with ar-
rayed beams of different aspect ratios and cross-sectional 
areas is also worth discussing particularly in the thermal and 
flow analysis of metallic bars under coating and galvanizing 
process.  The present paper, thus, investigates the laminar 
channel flow passing a complex geometric configuration, i. e. 
a channel including rectangular beams positioned along the 
X-direction with flow directing in Z-direction.  In addition, 
local dimensionless velocity, mean velocity and friction fac-
tor-Reynolds number product are obtained for various sizes of 
beams in a channel. 

II. ANALYSIS 

Consider a steady state, fully developed laminar channel 
flow between the upper and the lower plate.  The height of the 

channel is 2aH.  Assume both the left and the right sides of the 
channel extend to infinity.  Inside the channel, a series of 
beams were arrayed along the X-direction.  The height of beam 
is 2bH and the width of the beam is equal to 2(1-c)H.  The 
overall view of the physical model and cross-section of the 
channel are shown in the Figs. 1(a) and 1(b) respectively.  
Note that flow direction is normal to the paper and is in the 
positive Z-direction.  Since the flow velocity is very slow, 
negligible inertia force is assumed.  For a steady and fully 
developed laminar flow, Navier-Stoke’s equation describing a 

three-dimensional i.e. 
W

t

∂
∂

= 0, U = V = 0, 0,
W

Z

∂ =
∂

 amd 

2

2

W

Z

∂
∂

= 0, the flow can then be simplified as 

 
2 2

2 2
0 ( )z

dp W W
g

dZ X Y
ρ µ ∂ ∂= − + +

∂ ∂
 (1) 

Viewing Fig. 1(a), ρ gz vanishes because the gravity accel-
eration is in the negative y direction and the governing equa-
tion can be expressed as: 
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 2 1
( , )

dp
W X Y const

dZµ
∇ = =  (2) 

Further introduce the dimensionless parameter w = 
2

/
H dp

W
dZµ

 
−  

 
 into (2), and the governing equation can be 

rewritten in the dimensionless form of Poisson equation: 

 2 ( , ) 1w x y∇ = −  (3) 

Consider the domain with a period, 2H, and focused on the 
range from x = 0 to x = H, and y = 0 to y = aH, as shown in Fig. 
1(b).  The range is symmetric to y-axis in x = 0 and symmetric 
to x-axis in y = aH.  Due to symmetry, only one part of the 
channel, an L-Shaped region with two combined rectangles, as 
displayed in Fig. 2, is taken into account.  For convenience of 
reading and analysis, the L-shaped region in Fig. 1(b) is 
magnified into Fig. 2 with the height and width given in a 
dimensionless form.  The dimensionless governing equation 
for the left rectangle of the L-shaped domain is: 

 2
1( , ) 1w x y∇ = −  (4) 

and the corresponding boundary conditions are: 

 ( ) ( ) ( )1 1
1 , 0 0, , 0, 0, 0

w w
w x x a y

y x

∂ ∂
= = =

∂ ∂
 (5) 

Next, the flow equation of the right rectangle in the 
L-shaped domain can be expressed as: 

 2
2 ( , ) 1w x y∇ = −  (6) 

subject to the boundary conditions below: 

 ( ) ( )2
2 2,0 0, ( , ) 0, 1, 0

w
w x w x a b y

x

∂
= − = =

∂
 (7) 

With the boundary conditions of (5) and (7), Eqs. (4) and 
(6) can be solved and obtained as follows: 

( )( ) ( )
1( , ) sin( )

2
n nx c x c

n n
n

y
w x y y a A y e eα αα − − + = − + + 

 
∑  (8) 

( )( 2 ) ( )
2 ( , ) ( ) sin( )

2
m mx c x c

m m
m

y
w x y a b y B y e eβ ββ − + − −= − − + +∑   

  (9) 

where the eigenvalues respectively are: 

a
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Fig. 2. Enlarged view of the L-shape regions with dimensionless para- 

meters. 

 

 

 
(2 1)

2n

n

a

πα −=  and m

m

a b

πβ =
−

 (10) 

One more boundary condition for (4) is: 

 1( , ) 0;w c y a b y a= − ≤ ≤  (11) 

Substitute (11) into (8), and the following equation can be 
obtained: 

 ( )2sin( ) 1
2

nc i
n n i i

n

y
A y e y aαα −  + = − 

 
∑  (12) 

i = M + 1 to N 

It should be pointed out that the traditional direct integral 
methods fail to solve the proposed problem on account of 
being short of the boundary condition in the range of 0 ≤ y < 
a – b.  However, the point-matched method can tackle this 
problem without much difficulty.  Subsequently, the velocity 
and the shear stress of the two rectangle regions of the L- 
shaped domain can be matched along the common boundary 
by using the point-matched method [4, 7].  The common 
boundary conditions are given as: 

 1 2( , ) ( , ), 0w c y w c y y a b= ≤ < −  (13) 

 
( ) ( )1 2, ,

, 0
w c y w c y

y a b
x x

∂ ∂
= ≤ < −

∂ ∂
 (14) 

Substituting the boundary conditions (13) and (14) into (8) 
and (9), it yields: 
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Table 1.  The effects of ∆x on w(0, 1). 

 A = 0.15, b = 0.25, c = 0.4 

∆x 0.03 0.02 0.01 0.005 0.001 

w(0, 1) 0.3997 0.4146 0.4195 0.4195 0.4196 

 A = 0.2, b = 0.4, c = 0.5 

∆x 0.03 0.02 0.01 0.005 0.001 

w(0, 1) 0.1141 0.1157 0.1179 0.1179 0.1180 
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The mean value for w(x, y) is derived as: 
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Integrating (17), it gives: 
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The volumetric flow rate, q, of the fluid in the channel is 
defined as the mean value of w(x, y), wmean, multiplied the 
cross-sectional area of the flow. 

Furthermore, the f · Re can be expressed as the function of 
wmean as described in Wang [11] and is written below: 

 
2

2
Re

2
h

mean

D
f

w H
⋅ =  

or in a more detailed form, 

 
[ ]2

2

8 (1 )
Re

(2 ) mean

a b c
f

b c w

− −
⋅ =

+ −
 (19) 

where Dh is the hydraulic diameter. 

III. NUMERICAL METHOD 

Equations (8) and (9) can be used to estimate w1(x, y) 
and w2(x, y) by using Visual C++.  The detailed steps of nu-
merical methods are given as follows: 

 
(1) Specify the constant c, A, and N. 
(2) Set M = floor [(1-b/a)] + 1 and / .iy ia N=  
(3) Express (12), (15) and (16) in a linear system of (N + M) 

equations which can be used to solve coefficients An and 
Bm. 

(4) Substitute coefficients An and Bm into (8) and (9). 

(5) Set ,
a

y
N

∆ =  y =∆y × i, ∆x = 0.01, x = ∆x × j.  Note that for 

accuracy the effects of ∆x on the maximum velocity, w1(x, 
y), are listed in Table 1.  This calculating process is re-
peated at the next node position.  The nodes in the range 
for w1(x, y) are 0 ≤ y ≤ a, and 0 ≤ x ≤ 1 – c, and in the range 
for w2(x, y) are 0 ≤ y ≤ a – b, and 1 – c < x ≤ 1. 

(6) Map the L-shaped region on the entire channel. 
(7) Then, calculate the mean values of the velocity, q and f · Re. 

IV. RESULTS AND DISCUSSIONS 

For brevity, a square cross-section area is taken into account, 
i.e. a is assumed to be unity, throughout this section.  Table 2 
presents the calculated results of the maximum velocity under 
different N.  It shows that convergence is fairly fast for 10 ≤ N 
≤ 40, and the deviation under the four cases of N is very small.  
Note that the position of the maximum velocity falls on (0, 1) 
due to the largest space for flow.  It is shown the value of N = 
30 is accurate enough to be employed in this study.  In addition, 
for convenience of the verification for the prospective work, 
the coefficients An and Bm of w1(x, y) and w2(x, y) are provided 
in Table 3. 
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Table 2.  The influence of b on maximum velocity, w1(0, 1), for a = 1 and A = 0.25. 

b 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
N = 10 0.0502 0.0702 0.1183 0.1481 0.1709 0.1872 0.2004 0.2108 
N = 20 0.0503 0.0707 0.1175 0.1478 0.1703 0.1872 0.2004 0.2108 
N = 30 0.0503 0.0709 0.1174 0.1477 0.1703 0.1872 0.2004 0.2108 
N = 40 0.0503 0.0709 0.1174 0.1477 0.1703 0.1872 0.2004 0.2108 

 
 

Table 3.  The coefficients of An and Bm for A = 0.1, a = 1, b = 0.5. 

A1 ~ A40 

A1 = -0.78941 A2 = 0.31274 A3 = -0.26570 A4 = 0.21267 A5 = -0.16644 A6 = 0.11494 A7 = -0.08280 A8 = 0.07104 

A9 = -0.05644 A10 = 0.05253 A11 = -0.04609 A12 = 0.04465 A13 = -0.03371 A14 = 0.03555 A15 = -0.00367 A16 = 0.00799 

A17 = -0.00273 A18 = 0.00466 A19 = -0.00193 A20 = 0.00371 A21= -0.00067 A22 = 0.00259 A23 = -0.00041 A24 = 0.00182 

A25 = -0.00018 A26 = 0.00069 A27 = -0.00000 A28 = 0.00004 A29 = -0.00000 A30 = 0.00000 A31 = -0.00000 A32 =- 0.00000 

A33 = -0.00000 A34 = 0.00000 A35 = -0.00000 A36 = 0.00000 A37 = -0.00000 A38 = 0.00000 A39 = -0.00000 A40 = 0.00000 

B1 ~ B20 

B1 = -0.05870 B2 =0.00790 B3 = -0.00146 B4 = 0.00524 B5 = -0.00112 B6 = 0.00422 B7 = -0.00092 B8 = 0.00261 

B9 = -0.00003 B10 =0.00007 B11 = -0.00001 B12 = -0.00003 B13 = -0.00000 B14 = 0.00000 B15 = -0.00000 B16 = 0.00000 

B17 = -0.00000 B18 =0.00000 B19 = -0.00000 B20 = 0.00000     

 

 
Figure 3 depicts the local velocity profile in the channel for 

a = 1.0, b = 0.5 and A = 0.25.  As can be clearly seen in the 
figures, the local velocities of the bottom and the top of the 
channel are all zero under the no-slip boundary conditions and 
the velocity gradually increases away from the fixed boundary.  
The maximum value of w falls on w1 and occurs at x = 0, y = a.  
In addition, the maximum w then gradually decreases to zero 
on the solid boundaries, i.e. the top and the bottom of the 
channel and the boundary of the beams.  At a fixed A, the local 
velocity between the two neighboring beams increases as the 
beam height increases.  This is due to the fact that spacing 
between beams becomes larger for a higher b.  Consequently, 
the boundary layer effect is smaller under this circumstance.  
To further explain this phenomenon, the local velocity distri-
bution in the channel for a = 1.0, b = 0.7 and A = 0.25 is given 
in Fig. 4.  Compared with Figs. 3 and 4, it is apparent that 
the maximum velocity for b = 0.7 is greater than that for b = 
0.5 at A = 0.25.  Also note that the velocity between the beam 
and the top or bottom plate is larger for a smaller beam height.  
This can be apprehended that the larger the spacing between 
beams is, the smaller the spacing between beam and top/ 
bottom plate of the channel will become at a fixed A.  For a 
larger b, the clearances between beams and plates are smaller 
and are almost completely subject to boundary layers which 
will reduce the flow velocity to a certain extent.  However, 
this phenomenon is alleviated for the beams with smaller b.  
This is because most of the fluid moves through the spacing 
between beams whereas smaller flow rate of the fluid passes 
the clearance between beam and top/bottom plate due to the 
fluid on different beam height and width under the same cross- 
sectional area of the beam. 
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Fig. 3.  Local velocity distribution for a = 1.0, b = 0.5 and A = 0.25. 
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Fig. 4.  Local velocity distribution for a = 1.0, b = 0.7 and A = 0.25. 

 

 
Figure 5 plots the effect of volumetric flow rate of the as-

pect ratio of the beam is defined as the ratio of height to width.  
To normalize the aspect ratio, a parameter of ar is obtained as:  
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ar = [ ]max

/(1 )

/(1 )

b c
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−
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 or, in a alternative form, 

 
/(1 )

1/r

b c
a

A

−=  (20) 

Note that [b/(1 – c)]max = 1/(1 – c) and b(1 – c) = 1(1 – c) = A 
since 0 < b ≤ 1.  Moreover, there is a close relationship be-
tween ar and A.  After some mathematical manipulation, it can 
be derived as: 

 0ra A≥ >  (21) 

Details of the derivation are given in the Appendix of the 
manuscript.  In this case, A must be positive and A < 0.316 
merely exists for ar = 0.1.  This is the reason why A = 0.01 and 
0.3 are selected for demonstration in this figure.  It is worth-
while to note that the volumetric flow rate of the flow ap-
proaches a constant value as A tends to zero.  This can be 
explained that the situation just like a channel flow without 
any beams for trivial A.  Under this circumstance, the volu-
metric flow rate is invariable despite the variation in ar.  Fur-
thermore, it is observed that q increases with ar at a fixed A.  
For ar < 0.6, the increasing rate of the volumetric flow rate of 
fluid is higher for a larger A whereas a smaller increase in q is 
obtained for a smaller A.  As for ar > 0.6, with an increase in ar, 
the raise in q is insignificant particularly for a smaller A.  This 
is because an increase in the cross-sectional area of the beam 
will lead to a decrease in the flow area, and then consequently 
bring about a reduction in q.  In addition, a further explana- 
tion of this phenomenon is given in Figs. 6(a) and 6(b).  It is  
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Fig. 6. (a) Local velocity distribution for a = 1.0, b = 0.5 and A = 0.05.  
(b) Local velocity distribution for a = 1.0, b = 0.7 and A = 0.05.  
(c) The cross-sectional view of w1(x, y) at y = 1.  (d) The cross- 
sectional view of w2(x, y) at x = -1. 
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Fig. 7.  Effects of ar on fRe for various A’s. 
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Fig. 8.  Dependence of fRe on ar for smaller A. 

 
 

obtained that (w1)max = 0.265 for b = 0.5 and (w1)max = 0.273 
for b = 0.7 under the conditions of A = 0.05 and a = 1.  A closer 
look of the comparison in (w1)max is illustrated in Fig. 6(c).  
Also, with the observations of Figs. 3 and 4, as b increases 
from 0.5 to 0.7, the maximum w1 varies from 0.117 to 0.170 
for A = 0.25 and a = 1.  Apparently, a larger cross-sectional 
area of the beam causes a decrease in w1 and then a smaller 
volumetric flow rate of the fluid is obtained.  In addition, an 
increase in the aspect ratio (i. e. increasing the height of beam, 
b) will cause an increase in w1 and a decrease in w2.  This is 
clearly seen in Fig. 6(d) that (w2)max = 0.036 for b = 0.5 and 
(w2)max = 0.012 for b = 0.7 under the conditions of A = 0.05 and 
a = 1.  Viewing the increase in (w1)max and the decrease in 
(w2)max on increasing ar, it is understood that the influence of 

w2 is quite insignificant.  Apparently, w1 is decisive in deter-
mining wmean and q; and in consequence an increase in ar will 
bring out an increase in both wmean and q. 

Figure 7 depicts the product of the friction factor and 
Reynolds number for different aspect ratios of beams with the 
same cross-sectional area.  It is shown that fRe decreases as 
the aspect ratio of the beam increases at a specified A.  Besides, 
an increase in the cross-sectional area of the beams will result 
in a decrease in the fRe at a given ar, as expected.  Note that 
there is an abrupt increase in fRe as ar approaches the critical 
ar for corresponding A, as pointed out in (21).  A locally 
maximum fRe occurs on the critical value ar.  Apparently, the 
maximum fRe is dependent of A.  For very small A and ar, the 
situation is just like the case of flow in a parallel-plate channel 
without any beams. 

Figure 8 shows the dependence of fRe on ar for smaller A.  
It is noted that the predicted fRe of the present study ap-
proaches the theoretical results obtained from a parallel-plate 
channel [5] for a smaller A as ar, tends to zero. 

V. CONCLUSION 

The following conclusions can be drawn from the foregoing 
results of this study: 

 
(1) In addition to fRe values, an increase in the beams’ 

cross-sectional area will lead to a decrease in the mean 
velocities and volumetric flow rates of the fluid in the 
channel. 

(2) For a fixed cross-sectional area of the beam, an increase in 
the height, b, will bring out an increase in the mean ve-
locity and volumetric flow rate of the fluid, but a decrease 
in the fRe. 

(3) The coefficients An and Bm in velocities w1(x, y) and w2(x, 
y)of the semi-analytical solution in this study can be more 
easily computed by the point match methods than that by 
the direct integral methods. 

(4) The predicted fRe of present study approaches the theo-
retical results obtained from a parallel-plate channel for 
smaller A and ar. 

NOMENCLATURE 

a dimensionless half height of channel 

ar aspect ratio parameter [
/(1 )

1/

b c

A

−= ] 

A dimensionless area of cross section of a beam 
 [= b(1-c)] 
An coefficient of the function (Eq. (8)) 
b dimensionless half height of the beam  
Bm coefficient of the function (Eq. (9)) 
c dimensionless half spacing between width of the beams 

Dh hydraulic diameter, 
4[ (1 )]

2

a b c H

b c

− −=
+ −

 (m) 
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f · Re friction factor-Reynolds number product 
H half span of the selected domain, (m) 
P pressure, (N/m2) 
Re Reynolds number [= / ]z hW D ν  
Wz velocity in the Z-direction, (m/s) 
w dimensionless velocity in the z-direction [= –Wzµdz/ 

H 2dp] 
wmean dimensionless mean velocity of the flow 
x dimensionless horizontal axis [= X/H] 
X horizontal axis (m) 
y dimensionless vertical axis [= Y/H]  
Y vertical axis (m) 
z dimensionless axis normal to the paper 
Z normal axis (m) 
µ viscosity (N-s/m2) 

APPENDIX 

From (19) and the definition A = b(1-c), it can be easily 
derived as  

 2
ra b=  (A1) 

So, the dimensionless cross-sectional area of beams can be 
rewritten as 

 (1 )rA a c= −  (A2) 

After some manipulation, Eq. (A2) turns to 

 1
r

A
c

a
= −  (A3) 

Since the dimensionless half spacing between width of the 
beams, c, must always be positive, the range of A is obtained 

as 

 0ra A≥ >  (A4) 
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