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ABSTRACT 

This paper performs a global robust stability analysis of a 
particular class of hybrid bidirectional associative memory 
time-varying delayed neural network with norm-bounded time- 
varying parameter uncertainties.  The activation functions are 
assumed to be globally Lipschitz continuous.  Globally de-
lay-dependent robust stability criteria are derived in the form 
of linear matrix inequalities by introducing relaxation matrices 
which, when chosen properly, produce a less conservative 
result.  Two numerical examples are given to illustrate the 
significant improvement obtained in the conservativeness of 
the delay bound. 

I. INTRODUCTION 

Bidirectional associative memory (BAM) neural networks 
were originally introduced in [18-20] and have been success-
fully deployed in pattern recognition and artificial intelligence 
applications [9, 14, 21, 23, 25].  The principal feature of BAM 
neural networks is the generalization of the single-layer 
autoassociative Hebbian correlator as a two-layered pattern- 
matched heteroassociative circuit.  Accordingly, BAM neural 

networks have received significant attention in the literature [1, 
10, 17].  It is well known that time delays are frequently en-
countered in the electronic implementation of artificial neural 
networks due to the finite switching speeds of the amplifiers 
and the inherent time required for communication will intro-
duce time delays in the interaction between neurons [22].  
Time delays introduce oscillation and instability in BAM 
neural networks.  Therefore, the stability of time-delay BAM 
neural networks has been the subject of intensive theoretical 
and practical investigation [1, 7, 8, 12, 15, 16, 24, 27]. 

The studies cited above provide only pure-delay models.  
However, hybrid BAM neural networks with both instanta-
neous and delayed signaling have also been investigated.  For 
example, the convergence dynamics of hybrid BAM neural 
networks with distributed delays were considered in [22], and 
a sufficient condition for their solvability was presented.  
Adopting a similar approach, [2] presented a sufficient condi-
tion for the existence, uniqueness and global asymptotic sta-
bility of the equilibrium point for hybrid BAM neural net-
works with distributed time delays.  However, in both [22] and 
[2] the results are delay-independent, that is, they do not in-
clude any information relating to the magnitude of the dis-
tributed or discrete delays.  It is known that delay-dependent 
conditions are generally less conservative than delay-independent 
conditions; particularly when the magnitude of the delay is 
small.  Although delay-dependent results for BAM neural 
networks were developed in [15] and [24] using pure-delay 
models, the literature does not report on globally delay- 
dependent robust stability criteria for hybrid BAM neural 
networks with time-varying delays and parameter uncertain-
ties.  The objective of the present study is to address this per-
ceived gap in the literature. 

Accordingly, this paper addresses the problem of attaining 
globally robust stability in uncertain hybrid BAM neural 
networks with time-varying delays.  In the present analysis, 
the parameter uncertainties are assumed to be time-varying but 
norm-bounded.  Combining the Lyapunov-Krasovskii func-
tional with linear matrix inequality (LMI) techniques, globally 
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delay-dependent robust stability conditions for uncertain hy-
brid BAM neural networks with time-varying delays, ex-
pressed in terms of quadratic forms of state and LMI, are 
derived.  This study also introduce relaxation matrices which, 
when chosen properly, produce a less conservative result [13, 
26].  The maximum bound for the time delays which ensure 
that the hybrid uncertain BAM neural network with time- 
varying delays achieves a globally robust stability is obtained 
by solving a quasi-convex optimization problem.  Two nu-
merical examples are provided to demonstrate the effective-
ness of the method. 

Throughout this paper, the notation X ≥ Y (X > Y) for sym- 
metric matrices X and Y indicates that the matrix X – Y is 
positive and semi-definite (respectively, positive definite), 
ZT represents the transpose of matrix Z, and the vector 
norm ||.|| indicates the Euclidean vector norm, that is ||W|| = 

1
2 ( ),T

M
W Wλ  where λM(W) (respectively λm(W)) denotes the 

operation of taking the maximum (respectively, minimum) 
eigenvalue of W. 

II. SYSTEM DESCRIPTION AND PROBLEM 
FORMULATION 

Consider the following hybrid BAM neural network with a 
time-varying delay described by non-linear differential equa-
tions of the form [2] 

1

1

( ) ( ( )) ( ) ( ( )) ( ( ))

( ( )) ( ( ( ))) ,

m

i i i i ij ij j j
j

m

ij ij j j i
j
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w w t g z t h t Iυ υ

=

=

= − + ∆ + + ∆

+ + ∆ − +

∑

∑

�

 

1,  2, ,  ,i n= �   (1) 

and 

1

1

( ) ( ( )) ( ) ( ( )) ( ( ))

( ( )) ( ( ( ))) ,  

n

j j j j ji ji i i
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n

ji ji i i j
j

z t b b t z t c c t g u t

c c t g u t t Jυ υ τ

=

=

= − + ∆ + + ∆

+ + ∆ − +

∑

∑
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1,  2, ,  ,j m= �   (2) 

with 

( ) ( ),i iu t tφ=  ( ) ( ),j jz t tϕ=  [ ]max{ ,  },  0 ,t h τ∈ −  

 1,  2, ,  ,i n= �   1,  2, ,  .j m= �  (3) 

In the above, ui(t) and zj(t) denote the state of the ith and jth 
neurons at time t, respectively; ai and bj are the rate at which 
the ith and jth units reset their potential to the resting state in 
isolation, i.e. when disconnected from the network and the 

external inputs at time t, respectively; and wij, ,ijwυ  cji and jicυ  

are synaptic connection strengths at the time t, ∆ai(t), ∆bj(t), 

∆wij(t), ( ),ijw tυ∆  ∆cji(t) and ( )jic tυ∆  denote unknown con-

stants representing time-varying parameter uncertainties.  
Furthermore, gi and gj are the activation functions of the ith 
and jth neurons, respectively; and Ii and Jj are the external 
biases on the ith and jth neurons at time t.  Finally, in (3), φ i(t) 
and ϕ j(t) denote the initial conditions of the ith and jth neurons, 
respectively; h(t) and τ(t) represent transmission delays which 
satisfy 

 
0 ( ) ,   ( )  

0 ( ) ,    ( ) .h

t t d

h t h h t d  

ττ τ τ≤ ≤ ≤


≤ ≤ ≤

�

�
 (4) 

Denote 

1 2 1 2( ) [ ( ),  ( ), ,  ( )] , ( ) [ ( ), ( ), , ( )] ,T T
n mu t u t u t u t z t z t z t z t= =� �   

 1 1 2 2( ( )) [ ( ( ),  ( ( )), ,  ( ( ))] ,T
n ng u t g u t g u t g u t= �  

 1 1 2 2( ( )) [ ( ( ),  ( ( )), ,  ( ( ))] ,T
m mg z t g z t g z t g z t= �  

 1 2 1 2[ ,  , ,  ] , [ ,  , ,  ] ,T T
n mI I I I J J J J= =� �  

 1 2 1 2( ) [ ( ),  ( ), ,  ( )] , ( ) [ ( ),  ( ), ,  ( )] .T T
n mt t t t t t t tφ φ φ φ ϕ ϕ ϕ ϕ= =� �  

Therefore, Eqs. (1) and (2) can be expressed as 

 ( ) ( ( )) ( ) ( ( )) ( ( ))u t A A t u t W W t g z t= − + ∆ + + ∆�  

( ( )) ( ( ( ))) ,W W t g z t h t Iυ υ+ + ∆ − +  (5) 

 ( ) ( ( )) ( ) ( ( )) ( ( ))z t B B t z t C C t g u t= − + ∆ + + ∆�  

( ( )) ( ( ( ))) ,C C t g u t t Jυ υ τ+ + ∆ − +  (6) 

with 

 [ ]( ) ( ), ( ) ( ), max{ , },  0 ,u t t z t t t hφ ϕ τ= = ∈ −  (7) 

where 

A = diag (a1, a2, …, an), B = diag (b1, b2, …, bm), W = [wij]n×m, 

[ ] ,ij n mW wυ υ
×=  C = [cji]m×n, and [ ] .ji m nC cυ υ

×=  

Assume that ∆A(t), ∆W(t), ∆W υ(t), ∆B(t), ∆C(t) and ∆C υ(t) 
are of the form 

 
1 2 3 4 5 6

[ ( ) ( ) ( ) ( ) ( ) ( )]

( )[      ],

A t W t W t B t C t C t

DF t E E E E E E

υ υ∆ ∆ ∆ ∆ ∆ ∆
=

 (8) 
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where D, E1, E2, E3, E4, E5 and E6 are known real constant 
matrices and F(t) is an unknown real-valued time-varying 
matrix satisfying 

 ( ) ( ) , .TF t F t I t≤ ∀  (9) 

Assume further that all the elements of F(t) are Lebesgue 
measurable.  ∆A(t), ∆W(t), ∆W υ(t), ∆B(t), ∆C(t) and ∆C υ(t) 
are said to be admissible if both (5) and (6) hold. 

Throughout this paper it is assumed that the activation 
functions satisfy the following assumption. 

Assumption 1 (Lipschitz condition) [2]. 

(A1) There exist positive constants αi and βj,  1,  2, ,  i n= �  
and  1,  2, ,  j m= �  such that 

1 2 1 2 1 2( ) ( ) , , 1,  , ,i i ig g i nζ ζ α ζ ζ ζ ζ− ≤ − ≠ = �  (10) 

1 2 1 2 1 2( ) ( ) , , 1,  , ,j i jg g j mξ ξ β ξ ξ ξ ξ− ≤ − ≠ = �  (11) 

for all ζ1, ζ2, ξ1 and 2 .Rξ ∈  
 
(A2) There exist positive constants Mi , i = 1, …, n and Li , j = 
1, …, m such that |gi(u)| ≤ Mi and |gj (z)| ≤ Lj for all u,  
z ∈ R.  Note that this assumption requires that the functions be 
bounded.  Under assumption (A2), the hybrid BAM neural 
network defined by (5) and (6) always has an equilibrium 
point which can be found from various fixed point theorems, 
e.g.  Brouwer’s fixed point theorem, Schauder’s fixed point 
theorem, or contraction mapping.  In the following, this study 
analyzes the global asymptotic stability of the equilibrium point, 
which in turn implies the uniqueness of the equilibrium point. 

 
To simplify the asymptotic stability analysis of (5) 

and (6), it is assumed that * * * *
1 2[ , ,  , ]T

nu u u u= �  and z* = 
* * *
1 2[ , , , ]T

mz z z� are the equilibrium points of the hybrid BAM 

neural network.  The equilibrium points u* and z* are then 
shifted to the origin by letting x(t) = u(t) – u*, y(t) = z(t) – z*, 
f(x(t)) = g(u(t)) – g(u*) and f(y(t)) = g(z(t)) – g(z*).  Conse-
quently, the system given in (5) and (6) can be expressed as 

 
( ) ( ( )) ( ) ( ( )) ( ( ))

( ( )) ( ( ( ))),

x t A A t x t W W t f y t

W W t f y t h tυ υ

= − + ∆ + + ∆

+ + ∆ −
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( ) ( ( )) ( ) ( ( )) ( ( ))

( ( )) ( ( ( ))),

y t B B t y t C C t f x t

C C t f x t tυ υ τ
= − + ∆ + + ∆

+ + ∆ −

�

 (13) 

with 

 [ ]( ) ( ), ( ) ( ), max{ , },0 ,u t t z t t t hφ ϕ τ= = ∈ −  (14) 

where 

1 2 1 2( ) [ ( ),  ( ), ,  ( )] , ( ) [ ( ),  ( ), ,  ( )] ,T T
n mx t x t x t x t y t y t y t y t= =� �  

 1 1 2 2( ( )) [ ( ( ),  ( ( )), ,  ( ( ))] ,T
n nf x t f x t f x t f x t= �  

 1 1 2 2( ( )) [ ( ( ),  ( ( )), ,  ( ( ))] .T
m mf y t f y t f y t f y t= �  

Hence, it is easily shown that 

 ( ) ,i i i if x xα≤ and (0) 0, 1,  , .if i n= = �  

 ( ) ,j j j jf y yβ≤  and (0) 0, 1,  , .jf j m= = �  

Definition 1 [5, 11].  The equilibrium point (trivial solution) 0 
is said to be globally asymptotically stable if it is locally stable 
in the Lyapunov sense and is globally  attractive, where global 
attractivity indicates that every trajectory tends to the equilib-
rium point as t → ∞. 

 
The objective of the present analysis is to establish the de-

lay-dependent conditions which cause the hybrid uncertain 
BAM neural network with time-varying delays given in (12) 
and (13) to attain globally asymptotically robust stability.  
More specifically, for given scalars τ > 0 and h > 0, the main 
aim of this study is to determine whether the system in (12) 
and (13) has globally asymptotically robust stability for all 
delays in the range 0 ( )tτ τ≤ ≤  and 0 ( ) .h t h≤ ≤  

III. MATHEMATICAL FORMULATION OF THE 
PROPOSED APPROACH 

This section explores the globally robust stability for sys-
tem given in (12) and (13).  The analysis commences by using 
the LMI approach to develop some results which are essential 
to introduce the following Lemma 1 for the development of 
our main theorem. 

 
Lemma 1 [3].  Let A, D, S, F and P be real matrices of ap-
propriate dimensions with P > 0 and F satisfying FT(t)F(t) ≤ I.  
Then the following statements hold 
(a) For any ε > 0 and vectors x, y ∈ Rn 

 12  ,T T T T Tx DFSy x DD x y S S yε ε−≤ +  (15) 

(b) For vectors x, y ∈ Rn 

 12  .T T T T Tx DSy x DPD x y S P S y−≤ +  (16) 

For any matrices Zi, Si, Ni and Mi (i =1, 2, 3, 4, 5) of ap-
propriate dimensions, it follows from null equations that [13, 
26] 
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5
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T
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1 2 3 4

5

1 1

[ ( ) ( ( )) ( ( )) ( ( ( )))

( ) ] { ( ) ( ( )) ( ) ( ( )) ( ( ))

( ( )) ( ( ( )))} 0.

T T T T

T

y t N y t h t N f x t N f x t t N

y t N y t B B t x t C C t f x t

C C t f x t t

τ

τ
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� �  

  (20) 

To study the globally robust stable for the hybrid uncertain 
BAM neural network with time-varying delays, the following 
theorem reveals that such conditions can be expressed in terms 
of LMIs. 

 
Theorem 1.  Under the assumption 1 (A1), for any given τ > 0, 
h > 0, satisfying 0 ≤ τ(t) ≤ τ, 0 ≤ h(t) ≤ h, ( )t dττ ≤�  and 

( ) ,hh t d≤�  (12) and (13) are globally robust stable if there 
exist matrices P1 > 0, P2 > 0, Q1 > 0, Q2 > 0, R1 > 0, R2 > 0,  
T1 > 0, T2 > 0 and matrices Zi, Si, Ni and Mi (i = 1, 2, 3, 4, 5) of 
appropriate dimensions and positive scalars ε1 and ε2 such that 
the following linear matrix inequalities hold  
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2

2
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ε
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 (22) 

where 

 

11 12 13 14 15

12 22 23 24 25

13 23 33 34 35

14 24 34 44 45

15 25 35 45 55

,

T

T T

T T T

T T T T

Ω Ω Ω Ω Ω 
 Ω Ω Ω Ω Ω 
 Ω = Ω Ω Ω Ω Ω
 Ω Ω Ω Ω Ω 
 Ω Ω Ω Ω Ω 

 

11 1 1 1 1 1 ,T T TM A A M Q Z ZΩ = + + + +  

12 2 1 2 13 1 3 3, ,T T T TZ Z A M M W A M ZΩ = − + Ω = − + +  

14 4 1 1 4 15 1 1 5 5, ,T T T TZ M W A M P M A M ZΩ = − + Ω = + + +  

22 1 2 2 23 2 3(1 ) , ,Td Q Z Z M W ZτΩ = − − − − Ω = − −  

24 2 1 4 25 2 5 33 2 3 3, , ,T TM W Z M Z R M W W MΩ = − − Ω = − Ω = − −  

34 3 1 4 35 3 5, ,T T T TM W W M M W MΩ = − − Ω = −  

44 2 4 1 1 4 45 4 1 5(1 ) , ,T T T T
hd R M W W M M W MΩ = − − − − Ω = −  

55 5 5 1,TM M TτΩ = + +  

 

11 12 13 14 15

12 22 23 24 25

13 23 33 34 35

14 24 34 44 45

15 25 35 45 55
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T

T T

T T T

T T T T

Π Π Π Π Π 
 Π Π Π Π Π 
 Π = Π Π Π Π Π
 Π Π Π Π Π 
 Π Π Π Π Π 

 

11 1 1 2 1 1 12 2 1 2, ,T T T T TS S Q N B B N S S B NΠ = + + + + Π = − +  

13 1 3 3 14 4 1 1 4, ,T T T TN C B N S S N C B NΠ = − + + Π = − +  

15 2 1 5 5 22 2 2 2, (1 ) ,T T T
hP N B N S d Q S SΠ = + + + Π = − − − −  

23 2 3 24 2 1 4 25 2 5, , ,N C S N C S N SΠ = − − Π = − − Π = −  

33 1 3 3 34 3 1 4, ,T T T TR N C C N N C C NΠ = − − Π = − −  

35 3 5 44 1 4 1 1 4, (1 ) ,T T T TN C N d R N C C NτΠ = − Π = − − − −  

45 4 1 5 55 5 5 2, ,T T TN C N N N hTΠ = − Π = + +  

1 2 3 4 5[ ] ,T T T T T TM M M M M M=  

1 2 3 4 5 ,
TT T T T TZ Z Z Z Z Z =    
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1 2 3 4 5 6[    0        0], [    0       0],E E E E E E E E= − − = − −  

1 2 3 4 5[ ] ,T T T T T TN N N N N N=  

1 2 3 4 5[ ] .T T T T T TS S S S S S=  

Proof.  Consider the following Lyapunov-Krasovskii func-
tional for the system in (12) and (13) 

1 2 3 4 5 6 7 8( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),V t V t V t V t V t V t V t V t V t= + + + + + + +  

  (21) 

where 
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t t
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V t x T x d d
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t t

T

t h

V t y T y d d
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θ θ θ α
−

= ∫ ∫ � �  (29) 

Taking the derivative of V(t) with respect to t along the 
trajectories of (12) and (13) yields 

1 2 1( ) 2 ( ) ( ) 2 ( ) ( ) ( ) ( )T T TV t x t Px t y t P y t x t Q x t= + +� � �  

1 2(1 ( )) ( ( )) ( ( )) ( ) ( )T Tt x t t Q x t t y t Q y tτ τ τ− − − − +�  

2 1(1 ( )) ( ( )) ( ( )) ( ( )) ( ( ))T Th t y t t Q y t t f x t R f x tτ τ− − − − +�  

1(1 ( )) ( ( ( ))) ( ( ( )))Tt f x t t R f x t tτ τ τ− − − −�  
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t
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τ
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t

T T

t h
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Substituting (17)-(20) into (30) yields 

1 2 1( ) 2 ( ) ( ) 2 ( ) ( ) ( ) ( )T T TV t x t Px t y t P y t x t Q x t≤ + +� � �  

1 2(1 ) ( ( )) ( ( )) ( ) ( )T T
xd x t t Q x t t y t Q y tτ τ− − − − +  

2 1(1 ( )) ( ( )) ( ( )) ( ( )) ( ( ))T T
hd t y t t Q y t t f x t R f x tτ τ− − − − +  

1 2(1 ( )) ( ( ( ))) ( ( ( ))) ( ( )) ( ( ))T T
xd t f x t t R f x t t f y t R f y tτ τ− − − − +  

2(1 ( )) ( ( ( ))) ( ( ( )))T
hd t f y t h t R f y t h t− − − −

1 1 ( ) ( ) ( ) ( )
t

T T

t

x t T x t x T x d
τ

τ α α α
−

+ − ∫� � � �  

2 2( ) ( ) ( ) ( )
t

T T

t h

hy t T y t y T y dα α α
−

+ − ∫� � � �  

1 2 3 42[ ( ) ( ( )) ( ( )) ( ( ( )))T T T Tx t Z x t t Z f y t X f y t h t Zτ+ + − + + −  

5

( )

( ) ] [ ( ) ( ( )) ( ) ]
t

T

t t

x t Z x t x t t x d
τ

τ α α
−

+ × − − − ∫� �  

1 2 3 42[ ( ) ( ( )) ( ( )) ( ( ( )))T T T Ty t S y t h t S f x t S f x t t Sτ+ + − + + −  

5

( )

( ) ] [ ( ) ( ( )) ( ) ]
t

T

t h t

y t S y t y t h t y dα α
−

+ × − − − ∫� �  

1 2 3 42[ ( ) ( ( )) ( ( )) ( ( ( )))T T T Tx t M x t t M f x t M f x t t Mτ τ+ + − + + −  

5( ) ] { ( ) ( ( )) ( ) ( ( )) ( ( ))Tx t M x t A A t x t W W t f y t+ × + +∆ − +∆� �  

1 1( ( )) ( ( ( )))}W W t f y t h t− +∆ −  

1 2 3 42[ ( ) ( ( )) ( ( )) ( ( ( )))T T T Ty t N y t h t N f x t N f x t t Nτ+ + − + + −  

5( ) ] { ( ) ( ( )) ( ) ( ( )) ( ( ))Ty t N y t B B t y t C C t f x t+ × + +∆ − +∆� �  

1 1( ( )) ( ( ( )))}.C C t f x t tτ− +∆ −  (31) 
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From Lemma 1, it can be shown that 

 
1 2 3

4 5

( )

2[ ( ) ( ( )) ( ( ))

( ( ( ))) ( ) ] ( )

T T T

t
T T

t t

x t Z x t t Z f y t Z

f y t h t Z x t Z x d
τ

τ

α α
−

− + − +

+ − + ∫� �
 

1
1 1 1 1

( )

( ) ( ) ( ) ( ) ,
t

T T T

t t

q t ZT Z q t x T x d
τ

τ α α α−

−

≤ + ∫ � �  (32) 

 
1 2 3

4 5

( )

2[ ( ) ( ( )) ( ( ))

( ( ( ))) ( ) ] ( )

T T T

t
T T

t h t

y t S y t h t S f x t S

f x t t S y t S y dτ α α
−

− + − +

+ − + ∫� �
 

1
2 2 2 2

( )

( ) ( ) ( ) ( ) ,
t

T T T

t h t

hq t ST S q t y T y dα α α−

−

≤ + ∫ � �  (33) 

1 2 3 4

5

1 1 1

1
1 1 1 1 1

2[ ( ) ( ( )) ( ( )) ( ( ( )))

( ) ] { ( ) ( ( )) ( ) ( ( )) ( ( ))

( ( )) ( ( ( )))} 2 ( ) ( ( ) )

2 ( ) ( ) ( ) ( )

T T T T

T

T

T T T T

x t M x t t M f x t M f x t t M

x t M x t A A t x t W W t f y t

W W t f y t h t q t M A DF t E

q t MAq t q t MDD M q t

τ τ

ε −

+ − + + −

+ × + + ∆ − + ∆

− + ∆ − ≤ +

≤ +

� �

 

1 1 1( ) ( ),T Tq t E Eq tε+   (34) 

1 2 3 4

5

1 1 2

1
2 2 2 2 2

2[ ( ) ( ( )) ( ( )) ( ( ( )))

( ) ] { ( ) ( ( )) ( ) ( ( )) ( ( ))

( ( )) ( ( ( )))} 2 ( ) ( ( ) )

2 ( ) ( ) ( ) ( )

T T T T

T

T

T T T T

y t N y t h t N f x t N f x t t N

y t N y t B B t y t C C t f x t

C C t f x t t q t N B DF t E

q t NBq t q t NDD N q t

τ

τ

ε −

+ − + + −

+ × + + ∆ − + ∆

− + ∆ − ≤ +

≤ +

� �

 

2 2 2( ) ( ),T Tq t E Eq tε+   (35) 

where 

1( ) [ ( )   ( ( ))    ( ( ))    ( ( ( )))  ( )] ,T T T T T Tq t x t x t t f y t f y t h t x tτ= − − �  

2 ( ) [ ( )   ( ( ))    ( ( ))    ( ( ( )))   ( )] ,T T T T T Tq t y t y t h t f x t f x t t y tτ= − − �  

1 2 3 4 5 1 2 3 4 5[ ] , [ ] ,T T T T T T T T T T T TZ Z Z Z Z Z S S S S S S= =  

1 2 3 4 5[ ] ,T T T T T TM M M M M M=  

1 2 3 4 5[ ] ,T T T T T TN N N N N N=  

1 1[    0         ], [    0          ],A A W W I B B C C I= − − = − −  

1 2 3 4 5 6[    0         0], [    0         0].E E E E E E E E= − − = − −  

Combining Eqs. (31)-(35) yields 

 1 1 1 2 1 2( ) ( ) ( ) ( ) ( ),T TV t q t q t q t q t≤ Ω + Π�  (36) 

where 

 1 1
1 1 1 1 ,T T T TZT Z MDD M E Eτ ε ε− −Ω = Ω + + +  

 1 1
1 2 2 2 .T T T ThST S NDD N E Eε ε− −Π = Π + + +  

From (18) and (19) and using the well-known Schur com-
plement [5], it can be shown that ( ) 0.V t <�   Therefore, it can 
be concluded from the Lyapunov-Krasovskii functional that 
the hybrid uncertain BAM neural network expressed in (12)- 
(13) attains globally asymptotically robust stability.  This 
completes the proof of Theorem 1. 

 
Remark 1.  Theorem 1 provides a sufficient condition for the 
globally asymptotically robust stability for system given in 
(12)-(13) and proposes a delay-dependent stability criterion.  
Recently the results have been studied in [2, 22] and are de-
lay-independent stability criteria.  Since, it is less conservative 
than a delay-independent condition in [2, 22].  Moreover, 
parameter uncertainties have also not been fully investigated 
in [2, 22].  Also, the present results in [15] ignore some useful 
terms.  This may bring conservativeness.  In Theorem 1, all 
terms are reserved, which can reduce conservativeness to keep 
the stability of systems.  In [15], the system is pure-delay 
model with constant time delay.  Therefore, the results ob-
tained in Theorem 1 for uncertain hybrid BAM neural net-
works with time-varying delays are more general than that 
presented in the literature [15]. 
 
Remark 2: In many cases, the derivative of time-varying 
delay h(t) and τ(t) is known and may be small.  Relaxation 
matrices are introduced into Theorem 1, so, dh and d

τ
 can be 

any value or unknown due to 22 2 2 2(1 ) ,T
hd Q S SΠ = − − − −  

22 1 2 2(1 ) ,Td Q Z ZτΩ = − − − −  where Z2, S2 are relaxation ma-

trices with appropriate dimensions.  The traditional assump-
tion that  derivatives of the delays are less than 1 is no longer 
required in our analysis.  Therefore, Theorem 1 is applicable to 
more general and practical than the one investigated in [2] and 
[22]. 

Two numerical examples are now presented to demonstrate 
the usefulness of the proposed approach. 

IV. NUMERICAL EXAMPLES 

Example 1: Consider the following hybrid uncertain BAM 
delayed neural network 
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 ( ) ( ( )) ( ) ( ( )) ( ( ))u t A A t u t W W t g z t= − + ∆ + + ∆�  

( ( )) ( ( ( ))) ,W W t g z t h t Iυ υ+ + ∆ − +  (37) 

 ( ) ( ( )) ( ) ( ( )) ( ( ))z t B B t z t C C t g u t= − + ∆ + + ∆�  

( ( )) ( ( ( ))) ,C C t g u t t Jυ υ τ+ + ∆ − +  (38) 

where 

1

2 0 1 0 0.9 1.2
, , ,

0 0.9 0.5 1 0.05 0.9
A W W

− −     
= = =     − − −     

 

0.1 0 1.2 0
, ,

0 0.3 0 1.1
D B

   
= =   
   

 

1

0.3 0.2 0.7 0.7
, ,

0.5 0.4 0.5 1.3
C C

   
= =   
   

 

1 2 3

0.02 0.02 0.07 0.3 0.02 0.02
, , ,

0.1 0.2 0.01 0.2 0.1 0.1
E E E

− −     
= = =     − − −     

 

4 5 6

0.01 0.02 0.04 0.2 0.01 0.02
, , .

0.1 0.3 0.01 0.1 0.2 0.1
E E E

− −     
= = =     − − −     

 

Utilizing Theorem 1 and FT(t)F(t) ≤ I, it is found that LMI 
equations (21) and (22) are feasible for any arbitrarily large τ 
and h for different d

τ
 and dh (provided that the numerical 

computation is reliable).  Therefore, in view of Theorem 1, the 
current hybrid uncertain BAM neural network attains globally 
robust stability in the sense of Definition 1. 
 
Example 2: Consider the following uncertain BAM delayed 
neural network 

 ( ) ( ( )) ( ) ( ( )) ( ( ( ))) ,u t A A t u t W W t g z t h t Iυ υ= − + ∆ + + ∆ − +�   

  (39) 

 ( ) ( ( )) ( ) ( ( )) ( ( ( ))) ,z t B B t z t C C t g u t t Jυ υ τ= − + ∆ + + ∆ − +�  

  (40) 

1 0 0 4 0 0 0.05 0.25 0.05

0 1 0 , 0 4 0 , 0.10 0.05 0.15 ,

0 0 1 0 0 4 0.15 0.15 0.05

A B W υ
     
     = = =     
          

 

0.75 0.75 0.95 0.1 0 0.1

0 0.50 0.75 , 0 0.3 0.1 ,

0.15 0.95 0.95 0 0.1 0.2

C Dυ
   
   = =   
      

 

1 3

0.02 0.02 0 0.02 0.02 0

0.1 0.1 0.1 , 0.1 0.1 0 ,

0.1 0 0.1 0.1 0 0.1

E E

−   
   = − = −   
      

 

4 6

0.01 0.02 0 0.01 0.02 0

0.1 0.3 0.1 , 0.2 0.1 0 .

0.1 0 0.2 0.1 0.2 0.1

E E

−   
   = − = −   
      

 

All uncertain terms are zero in (39) and (40), it can be 
verified that Theorem 1 in [24] is feasible for all delays 0 ≤ σ ≤ 
0.5 and 0 ≤ τ ≤ 0.78, Corollary 2 in [13] is feasible for all 
delays 0 ≤ τ ≤ 1 and 0 ≤ σ ≤ 0.5.  Also, Theorem 3.1 in [8] does 
not satisfy globally delay-dependent conditions for all delays 
τ and δ when N and M are zero.  Theorem 1 in this paper is 
feasible for all delays 0 ≤ τ(t) ≤ 3.78 and 0 ≤ h(t) ≤ 3.78.  
Therefore, Theorem 1 in this paper is less conservative than 
those in [8, 15, 24] for delayed BAM neural network.  More- 
over, it can be checked that the delay-dependent robust sta-
bility conditions in [1, 2, 22] is not satisfied.  Therefore, they 
fail to conclude that uncertain hybrid BAM neural network 
with time-varying delays is globally delay-dependent robust 
stability.  By resorting to Theorem 1 in this paper, it is found 
that LMIs in (21) and (22) are feasible for all delays satisfying 
0 ≤ τ(t) ≤ 10.58 and 0 ≤ h(t) ≤ 10.58.  The solutions of Theorem 
1 are as follows 

1

2.3061 0.2657 0.4443

0.2657 2.5420 0.3180 ,

0.4443 0.3180 2.4346

P

− − 
 = − − 
 − − 

 

2

1.4861 0.4376 0.9482

0.4376 2.6898 1.0997 ,

0.9482 1.0997 1.9763

P

− − 
 = − − 
 − − 

 

1

1.5769 0.1885 0.3018

0.1885 1.7086 0.2005 ,

0.3018 0.2005 1.6656

Q

− − 
 = − − 
 − − 

 

2

1.6066 0.4482 0.7091

0.4482 1.9974 0.4595 ,

0.7091 0.4595 1.6406

Q

− − 
 = − − 
 − − 

 

1

2.6751 0.0527 0.0321

0.0527 2.4971 0.5400 ,

0.0321 0.5400 2.3424

R

− 
 = − 
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2

2.5036 0.3361 0.4186

0.3361 2.9811 0.2920 ,

0.4186 0.2920 2.3636

R

 
 =  
  

 

1

0.1745 0.0219 0.0403

0.0219 0.1960 0.0334 ,

0.0403 0.0334 0.1843

T

− − 
 = − − 
 − − 

 

2

0.0261 0.0055 0.0203

0.0055 0.0659 0.0341 ,

0.0203 0.0341 0.0453

T

− − 
 = − − 
 − − 

 

1 21.5575, 1.4104.ε ε= =  

Thus, by Theorem 1, Eqs. (39) and (40) attains globally delay- 
dependent robust stability.  This shows that the condition given 
in Theorem 1 is less conservative than those in [1, 2, 22] when 
checking the globally delay-dependent robust stability 
for a given uncertain hybrid BAM neural network with time- 
varying delays. 

V. CONCLUSIONS 

This study has investigated the problem of globally de-
lay-dependent robust stability for a particular class of uncer-
tain hybrid BAM neural network with time-varying delays.  A 
sufficient condition for the solvability of this problem, which 
depends on the magnitude of the time delay, has been derived 
using the Lyapunov-Krasovskii functional and the LMI ap-
proach.  It has been shown that the hybrid uncertain BAM with 
time-varying delays attains globally delay-dependent robust 
stability can be obtained by solving a quasi-convex optimiza-
tion problem.  Two numerical examples have been presented 
to demonstrate the effectiveness of the proposed approach. 
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