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ABSTRACT

In this research, the optimal design of corrugated bulkheads
being used in ship structures is explored by means of the state-of-the-
art genetic algorithms.  The influences of genetic parameters, such as
population sizes, crossover probability and mutation probability, on
the optimal design of corrugated bulkheads are carefully examined.
An objective function defined for the cost of materials and labors is to
be minimized to attain the least cost of panel production.  The
obtained optimal values of each design variable must satisfy the pre-
described constraints and some restrictions on fabrication.  The
optimal values of minimum weight and minimum cost of a panel
production are obtained.  Finally, a comparison between the method
of genetic algorithm and the sequential linear programming optimiza-
tion algorithm is made to demonstrate the superiority of the proposed
genetic algorithms.  The numerical simulation results reveal that the
genetic algorithms can efficiently minimize panels’ weight and costs
in production.

INTRODUCTION

Genetic algorithm (GA) searching procedures are
fundamentally based on the mechanics of natural section,
the natural genetics and the Charles Darwin’s principle
of survival of the fittest.  Genetic algorithms, which
possess the merits of mathematics, biology and
engineering, are used to solve a wide range of practical
problems.  A simple genetic algorithm is composed of
three basic genetic operators, such as reproduction,
crossover and mutation, which are utilized to find the
global optimum of design variables in complex space.
Since the genetic algorithm can work on coded design
variables and search for a population of points
simultaneously, it is easy to use this method to obtain
the global optimum.  Besides, the GA method uses

probabilistic transition rules instead of the usual deter-
ministic ones to increase its manifold variety.
Furthermore, it can be applied in various fields, such as
applied science, engineering, economic science ... etc.
[1,2].

Because of the above advantages and superiority
of the genetic algorithm method, the genetic algorithm
approach is used in this study to search for the optimal
design values of corrugated bulkhead.  The results of
this investigation are then compared to those obtained
from the sequential linear programming (SLP) optimi-
zation method.  In the past, the SLP method was widely
used in optimal structural design of stiffened panels
with satisfactory results [3,4].  Thus, the GA method has
recently become a powerful alternative for cost optimi-
zation of basic ship structural elements [2,5,6]. For
example, Kuo and Wang used discrete optimization
method with genetic algorithm to obtain the optimiza-
tion of torsional strength of a container ship’s structure
[6].

In the present investigation, the optimization of
corrugated bulkhead forms using genetic algorithm is
studied, and a comparison between the genetic algo-
rithms and the sequential linear programming optimiza-
tion algorithm is also made under similar loading and
constraints for a corrugated plate.

GENETIC  ALGORITHMS  APPROACH

1. Fitness Function

Fitness function is a deterministic tool to evaluate
the fitness of each chromosome.  In order to establish
fitness function in the genetic algorithm, two basic rules
must be satisfied: (1) the calculated fitness value for
each individual or string should be positive, and (2) the
best individual should have the highest fitness value.
The fitness function is the connection between the physi-
cal problem being optimized and the genetic algorithm.
The fitness function F(x) can be defined as an objective
function f(x) in engineering applications.
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In general, the genetic algorithm is used to solve
the unconstrainted optimization problems.  As for the
constrainted optimization problems, a transformation
must be made.

An optimal design problem is to minimize the
objective function f(x) subjected to constraints that can
be described as follows:

min f(x)
hj(x) = 0         j = 1, 2, ..., p
gj(x) ≤ 0         j = p + 1, ..., m (3)

   x i
l ≤ x i ≤ x i

u     i = 1, ..., n

Where x = {x1, x2, ..., xn}T is a vector containing n
design variables;  x i

l  and  x i
u  denote the lower limit and

the upper limit, respectively; f(x) is the objective func-
tion to be minimized; hj(x) and gj(x) are the constraints.
In this study, the above constrained minimization prob-
lem can be transformed into an unconstrained one by
adding a penalty term, which can transform the con-
strained objective function f(x) to a pseudo objective
function Φ(x, r):

   Φ(x, r) = f(x) + r{Σ
j = 1

p

h j(x) + Σ
j = p + 1

m

max[0, g j(x)]}
(4)

Where r is a penalty coefficient.
The goal of optimization here is to find the mini-

mum of objective function; the objective function can
be expressed as:

fj(x) = Φmax(x, r) − Φj(x, r) (5)

Where
j is the number of individual and equal to popula-

tion size.
fj(x) is the jth objective function.
Φmax(x, r) denotes the maximum fitness value of

the entire population.  It is an explicit
value for a set of (x, r).

Φj(x, r) indicates the jth fitness value of individual
string after adding a penalty term.

2. Mechanism of Genetic Search

The mechanism of a genetic algorithm is very
simple and it involves nothing other than copying string
and swapping partial string.  Basically, this search
procedure utilizes three operators: reproduction, cross-
over and mutation to find the best solution.  Detailed
illustration of these operators can be found in references
[1,2,7].  Fig. 1 shows the flow chart of a simple genetic
algorithm optimizer.

Traditionally, the design variables are coded as

binary unsigned integers, which are finite-length strings.
However, in this study, real-valued type coding is used
to reduce the processing of coding and decoding during
manipulating the design variables. In this procedure,
the design variables can be treated as a chromosome
directly.

OPTIMIZATION  MODELS  OF  SHIP  STIFFENED
PANELS

In this investigation, a corrugated bulkhead model
representing the typical compartment of existing bulk
carriers is selected as an example to demonstrate the
feasibility of numerical calculations.

1. Design variables

Based on the theoretical and experimental studies
on the ultimate strength of corrugated bulkheads by
Paik et al. [8], a conclusion is made that a single central
corrugation may be taken as representative of the whole
corrugated bulkhead.  Therefore, four dimensions of a
single corrugation, including plate thickness tp, web

Fig. 1.  Flow chart of a simple genetic algorithm optimizer.
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width c, depth of corrugation d and number of corruga-
tions Nc, are selected as design variables, which are
shown in Fig. 2, where B = 4123 mm and a = 2000 mm
represent the breadth and the length of a panel,
respectively.  The number of corrugation Nc is modeled
as an integer variable.  The elastic modulus and the yield
stress of the material are 210000N/mm2 and 240N/mm2,
respectively.  The boundaries of the corrugated bulk-
head are assumed to be simply supported.

• Single corrugation

The variables defined in xc = {tp, d, c, Nc} represent
the design variables of a single corrugation, and the
geometrical constraints of these design variables are
shown as follows [3]:

5.00mm ≤ tp ≤ 45.00mm
100.00mm ≤ c ≤ 400.00mm
100.00mm ≤ d ≤ 400.00mm
0 ≤ Nc ≤ 20
50° ≤ θ ≤ 90°

The configuration of a single corrugation is shown
in Fig. 2 and the relation between B, P, b, c, θ and Nc is
described in below:

Nc = B / P, P = 2 × (b + c × cos(θ)) (7)

Besides, the above design variables must satisfy
the following constraints, which are based on some
design codes [9,10],

40 ≤ b / tp

c / tp ≤ 100

2. Objective function

(1) Minimum weight function

The total weight of a stiffened panel is a simple
algebraic sum of the weights on plates and stiffeners.
The weight functions of single corrugation is shown
below:

W(xc) = 2(b + c) × tp × Nc × a × g (8)

where γ = 7.85 ton/m3 is the specific weight of mild
steel.

(2) Minimum production cost function

Total production cost includes material cost and
labor cost.  The material cost is easy to be calculated but

the labor cost may be affected by many uncertain factors.
A simplified general total cost model including as many
production factors as possible is proposed by Rahmam
[3] and is expressed as follows:

Ctot(xc) = PaW(xc) + NcaPs(Cs1 + Cs2) (9)

Where Pa is the material price per unit material
weight, Nc is the total number of corrugations, a is the
span of the panel, Ps is the labor rate including overheads
(cost/hour), Cs1 is the labor hour required per meter
welding of stiffeners to plates and Cs2 is the labor
hour required per meter fabrication of corrugated
bulkhead.

In equation (9), by using appropriate values of Nc,
the values of Cs1, Cs2 and Ctot(xc) can be obtained for
corrugated bulkhead forms.  Besides, Cs1 and Cs2 are
different for different types of panel forms and are
varying in different shipyards and countries depending
on technical facilities and labor skills.  In order to
compare our results with those in reference [3], the
production condition of shipyard in Bangladesh is
considered.  The Cs1 is assumed to be 1.2hour/m and the
Cs2 can be represented as Cs2 = Cc + Cf, where Cc is the
labor hour required for per meter of plate cutting and Cf

is the forming time required per meter of corrugation.
The value of Cc = 0.25hour/m and the value of Cf = 0.55
are selected for the present study.

3. Constraints

The optimal designs of corrugated bulkhead must
be achieved to satisfy the following constraints: ulti-
mate failure constraints and serviceability failure con-
straints [3].  Detailed definitions of properties of corru-
gated section and evaluation of various constraint func-
tions are shown in Appendix A and Appendix B, respec-
tively as well as in reference [3].

Fig. 2.  Configuration of a single corrugation.
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(1) Ultimate failure constraints

Beam-column collapsed by plate compression,
(flange plate)

g1(xc) = σup − SFu × σa ≥ 0 (10)

Ultimate plate failures of flange plate,

g2(xc) = σufp − SFu − σa ≥ 0 (11)

Ultimate plate failures of web plate,

g3(xc) = σuwp − SFu − σa ≥ 0 (12)

(2) Serviceability failure constraints

Pre-mature plate buckling flange plate,

g4(xc) = σcrf − SFs × σf ≥ 0 (13)

Initial yielding of flange plate,

g5(xc) = σy − SFs × σf ≥ 0 (14)

Pre-mature web instability,

g6(xc) = σcrw − σa ≥ 0 (15)

Yielding due to transverse bending of plate,

g7(xc) = σy − SFs × σmax ≥ 0 (16)

Large permanent set of flange plate

g8(xc) = pcrf − SFs × p ≥ 0

Large permanent set of web plate

g9(xc) = pcrw − SFs × p ≥ 0 (17)

Where SFu and SFs are equal to 1.6 and 1.4, respectively.

RESULTS  AND  DISCUSSIONS

In this study, a genetic algorithm program, named
Evolver, which can handle the continuous and discrete
design variables, is used to find optimal corrugated
bulkheads.

There are many factors that affect the results of
genetic algorithms in finding optimal values. In this
investigation, the effects of population size (PS), prob-
ability of crossover (Pc) and probability of mutation
(Pm) are studied for corrugated bulkhead. The optimal

values of presented study are then compared with those
of Rahman’s study, which was done by the Sequential
Linear Programming (SLP) technique.

Based on the studies made by Goldberg [1] and by
Wu et al. [5], the higher probability of crossover and
lower probability of mutation are suggested.  Therefore,
Pc = 0.8 and Pm = 0.1 are selected as initial values in
this study.

1. Optimization on corrugated bulkhead

With Pc = 0.8, Pm = 0.1 and population sizes (PS)
ranging from 30 to 200, trials are made to investigate the
effects of generation sizes on the optimal solution.  The
optimal results are listed in Table 1 as well as in the
results of Rahman’s study [3].  Table 1 shows that the
final total cost values for PS = 60 to 170 become steady
and are almost the same.  It is found that the PS=130
case has the lowest total cost value and the PS=80 case
obtains the second lowest total cost value.

In the second step, seven trails with PS = 130, Pm
= 0.1 and Pc = 0.5-0.9 are carried out.  All of the results
shown in Table 2 are lower than those of Rahman’s
results.  The lowest total cost value is found in Pc = 0.
8 case.  Finally, trails are made for PS = 90, Pc = 0.8 and
Pm = 0.001 to 0.3 cases and for PS = 120, Pc = 0.9 and
Pm = 0.001 to 0.3 cases to find the influence of mutation.
The results are shown in Table 3.  It is found that with
too small mutation probabilities, the solution becomes
worse.  The best solution is found in the Pm = 0.1 case,
in which the lowest cost value is obtained as Ctot =
12161$ shown in Table 3.

2. Discussions

Based on above numerical study, it shows that a
trial with Ps = 130, Pm = 0.1, Pc = 0.8 gives the best
result.  The results listed in reference [6] also show that
a trial with Pc = 0.85 and Pm 0.1 gives better results than
a trial with Pc = 0.9 and Pm = 0.01.  It may be concluded
that in general the probability of crossover is much
higher than probability of mutation except the special
case in reference [11].

Reference [6] has concluded that the higher popu-
lation sizes (Ps) give the better results.  However, in
present study, the cases with population sizes higher
than 180 or lower than 40 do not give good results.
Different conclusions are drawn in evaluation of popu-
lation size between the present investigation and the
reference [6].  This may attributed to the fact that there
are 18 cases that are evaluated in the present study, but
only three cases (Ps = 20, 40, 60) were studied in
reference [6].

It is found that no matter how we choose the
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Table 1.  Optimum results between GA and SLP [3] for Pc = 0.8 and Pm = 0.1 fixed

[3] 6.67 301.73 341.83 267.14 51.4 4 0.54 15934

Ps tp b c d θ Nc Weight Min cost
Initial 15.00 300.00 300.00 229.81 50.00 6.87 1.9405 52715
value
30 5.62 363.08 236.9 181.77 50.11 4 0.42331 13031
40 5.62 362.89 236.85 181.55 50.04 4 0.42314 13027
50 5.53 359.63 241.56 185.16 50.04 4 0.41790 12896
60 5.29 351.78 255.67 196.79 50.33 4 0.40369 12540
70 5.25 350.48 258.53 199.43 50.48 4 0.40126 12480
80 5.2 347.39 260.93 199.98 50.03 4 0.39707 12375
90 5.52 359.47 242.13 185.58 50.03 4 0.41725 12879
100 5.75 367.66 229.93 176.51 50.14 4 0.43131 13213
110 5.45 357.26 246.15 188.97 50.15 4 0.41323 12779
120 5.34 353.16 252.57 193.91 50.15 4 0.40633 12606
130 5.06 342.22 269.63 207 50.15 4 0.38850 12161
140 5.05 282.35 201.8 154.65 50.03 4 0.38349 12647
150 5.42 355.92 248.26 190.6 50.15 4 0.41096 12722
160 5.43 356.6 247.32 189.94 50.17 4 0.41206 12750
170 5.19 322.86 300 230.4 50.17 4 0.40584 12594
180 5.58 354.4 239.75 186.55 51.09 4 0.42344 13034
190 5.75 371.18 230.44 180.06 51.38 4 0.43473 13316
200 5.77 368.39 230.64 178.05 50.53 4 0.43382 13294

Table 2.  Optimum results between GA and SLP [3] for PS = 130 and Pm = 0.1 fixed

[3] 6.67 301.73 341.83 267.14 51.4 4 0.54 15934

Pc tp b c d θ Nc Weight Min cost
Initial 15.00 300.00 300.00 300.00 90.00 6.87 1.9405 52715
value
0.5 5.06 343.85 270.09 208.95 50.68 4 0.39015 12202
0.55 5.23 348.64 259.29 198.88 50.09 4 0.39966 12423
0.6 5.75 367.72 229.97 176.63 50.18 4 0.43160 13238
0.65 5.55 362.06 241.38 186.75 50.68 4 0.42027 12955
0.7 5.55 360.66 240.44 184.36 50.06 4 0.41922 12929
0.75 5.21 348.71 260.66 200.72 50.36 4 0.39859 12413
0.8 5.06 342.22 269.63 207 50.15 4 0.38850 12161
0.85 5.02 283.37 200.61 153.94 50.12 4 0.38108 12587
0.9 5.66 369.65 235.79 185.66 51.94 4 0.43073 13216

Table 3.  Optimum results between GA and SLP [3] for Ps = 130 and Pc = 0.8 fixed

[3] 6.67 301.73 341.83 267.14 51.4 4 0.54 15934

Pm  tp b c d θ Nc Weight Min cost
Initial 15.00 300.00 300.00 300.00 90.00 6.87 1.9405 52715
value
0.01 5.07 281.96 202.7 155.5 50.09 5 0.38560 12700
0.05 5.15 279.89 205.91 157.95 50.09 5 0.39262 12876
0.1 5.06 342.22 269.63 207 50.14 4 0.38850 12161
0.15 5.28 351.74 256.22 197.47 50.42 4 0.40345 12534
0.2 5.72 369.55 232.32 181.15 51.24 4 0.43211 13251
0.25 5.1 281.14 203.86 156.32 50.07 5 0.38807 12762
0.3 5.09 281.79 203.68 156.63 50.26 5 0.38811 12763
0.4 5.71 366.65 231.93 178.28 50.24 4 0.42931 13181
0.5 5.44 359.7 247.92 193.24 51.21 4 0.41531 12831
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population sizes, the value of crossover or mutation, the
results obtained by genetic algorithms are better than
those obtained from the SLP method.  This may attribute
to the fact that the results obtained by the GA method
satisfy all the constraints shown in Eqs. (10) to (17), and
the values are close to the bounds of the constraints,
while the results obtained from the SLP method are
usually much higher than the boundary requirements of
those constraints though they also meet those constraints,
which are shown in Table 4.  In Table 4, all the results
of present study are lower than those made in reference
[3].  It is also found that the optimal result of the
minimum cost value does not necessitate having the
minimum weight.

As stated in the beginning, the genetic algorithm
searches for a population of points at a time, not for a
single point.  Although, in some cases, the genetic
algorithm method searches for more than hundred points
at a time, it takes time less than one minute to finish a
search job in this study.  The results of the SLP method
are mainly dependent on the selection of initial values.
If a lot of continuous and discrete design variables are
involved in an optimization searching problem, the SLP
method may fall in finding the local optimum.

CONCLUSIONS

Based on the above numerical investigation, the
following observations or conclusions are made:

• The GA searching technique provides an alterna-
tive method for structural optimization.  With appropri-
ate population size, crossover probability and mutation
probability, the GA searching procedure yields fine
results.

• It is found that both plate thickness tp and total
number of corrugation Nc have strong influence on the
material weight function W(xc) in the optimization pro-
cess while the number of corrugation Nc and the corru-
gation angle θ have considerable contribution on the
total production cost Ctot(xc).

• Based on the results shown in Table 2 and Table
3, it is found that the effects of crossover and mutation
are much less than what we expected.  The difference
percentage between the best result (Ctot(xc) = 12161, Pc
= 0.8) and the worst result in both Table 2 and Table 3
is less than 9%.
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Appendix A: Properties of corrugated sections [3]:

  Z = 1
3

t pd(3b + c) : is the elastic section modulus (d is
the height of corrugation; tp, b and c
are shown in Fig.2)

  Z p = 1
2

t pd(2b + c) : is the plastic section modulus.

Table 4. The constrained results of present study and reference [3]

Constraints g1 g2 g3 g4 g5 g6 g7 g8 g9

Present study 287.14 34.37 77.40 100.64 101.64 80.51 26.65 0.09 0.20
Reference [3] 1055.40 98.78 83.16 108.16 109.15 84.21 108.15 0.33 0.24
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  I = 1
6

t pd 2(3b + c) : is the moment of inertia about neu-
tral axis.

As = 2(b + c)tp: is the cross-sectional area of one
corrugation.

  y f = d
2 : is the distance of flange from neutral axis.

Appendix B: Constraints of corrugated sections

• Ultimate failure constraints[3]

(1) Beam-column collapse by flange plate failure:

g1(xc) = σup − SFu × σa ≥ 0

   σ up= σ ue
Ae

A   be = b × T

   
T =

Es

E
= 0.25 2 + ξ – ξ2 – 10.4

β2     ξ = 1 + 2.75
β2

   β = b
t p

×
σ y

E          ∆p = h × As × 1
As

– 1
A

σa: the axial stresses, in N/mm2.
SFu, SFs: the safety factors against ultimate and

serviceability failures, respectively.  Their
respective values, which have been used for
designs presented in this paper, are 1.6 and
1.4.

Ae, Ie: effective area and effective moment of inertia
h: the distance between the mid-thickness of the plate

flange and the centroidal axis of the cross-section
As: cross sectional area of stiffener

   σ F =
σ Y(T – 0.1)

T
,  σue = σF × R     

   µ =
M0yp

Ieσ F

   
R = ζ

2
– ζ 2

4
–

1 – µ
(1 + ηp) λ2         ηp =

∆pyp

ρe
2

   ζ =
1 – µ

1 + ηp
+

1 – ηp + η
(1 + ηp) λ2       

   η =
(δ0 + ∆) yp

ρe
2

   λ = a
πρe

σ F

E

yp The distance between the mid-thickness of the
plate flange and the centroidal axis of the effective
cross-section

  
M0 =

pba 2

8      
   δ0 =

5pba 4

384EI         ∆ = a
750

(2) Ultimate failure of flange and web plates:

g2(xc) = σufp − SFs × σa ≥ 0,  g3(xc) = σuwp − SFs × σa ≥
0

   

σ upl =

σ y ⋅ 2.5
β – 1.5625

β2
⋅ Rr , β ≥ 1.25

σ y ⋅ Rr , 0 ≤ β < 1.25

   β = b
t p

⋅
σ y

E

   

Rr =
1 –

σ r
σ y

⋅ Et

E
⋅ β

2.5β – 1.5625
, β ≥ 1.25

1 –
σ r
σ y

⋅ Et

E
, 0 ≤ β < 1.25

   

E t

E
=

6.31β2

39.8 + Pr ⋅ (1 – Pr) ⋅ β2

2

, 0 ≤ β ≤ 2.51
Pr

1.0 , β > 2.51
Pr

   σ r =
2η ⋅ σ y

b
t p

– 2η
;   η = 4.5 ~ 6      Pr = 0.5

• Serviceability failure constraints:

(1) Local buckling and initial yielding of flange
plate:

g4(xc) = σcrf − SFs × σf ≥ 0,  g5(xc) = σy − SFs × σf

≥ 0

   
σ cref =

k minπ 2E

12(1 – v 2)

t p

b

2

        σ f = σ a +
M0y f

I

   

k min =

– 2 c
b

+ 6 , 0 ≤ c
b

≤ 1

– 3 c
b

+ 7 , 1 < c
b

≤ 1.75

– c
b

+ 3.5 , c
b

> 1.75

(2) Local instability of web plate:

g6(xc) = σcrw − σa ≥ 0

   

k min =

– 2 c
b

+ 6 , 0 ≤ c
b

≤ 1

– 3 c
b

+ 7 , 1 < c
b

≤ 1.75

– c
b

+ 3.5 , c
b

> 1.75

   

k b =

13.5 b
c , 0 ≤ b

c ≤ 0.5

1.5 b
c + 6 , 0.5 < b

c ≤ 1.0

0.1 b
c + 7.4 , b

c > 1.0
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Mcr =

I ⋅ σ cr
y f

σ cr =
k b

2 ⋅ D

t p ⋅ b 2
D =

E ⋅ t p

12(1 – v2)

(3) Transverse yielding of flange plate:

g7(xc) = σy − SFs × σmax ≥ 0

   σ max =
p
2

⋅ b
t p

2
⋅ 1 – c

b
+ c2

b 2

(4) Large permanent set of flange and web plates:

g8(xc) = pcrf − SFs × p ≥ 0   g9(xc) = pcrw − SFs × p
≥ 0

   
p cr =

Qσ y
2

E    Q = Qy + T(Rw) × (∆Q0 + ∆Q1 × Rw)

   
Q y = 2

1 – v + v2 × β2
× 1 + 0.6 × b

a
4

   
∆Q 1 = 0.32 ×

b
a
β

1.5

   

Q 0 =

1 + 0.5 × β × b
a 1 + b

a × 3.3 – 1
β

4

1 – v + v 2 × β2

  Rw =
w pt – w pi

w p0
    w pi = b

100   wpi = 0.65 × tp × β1.65

   
w p0 =

0.07 × β2 × t p

3

   

T(Rw) =
1 – (1 – Rw)3

1 31 3
Rw ≤ 1

1 Rw ≥ 1
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