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ABSTRACT

In this paper, focus on the null space vector duty cycle control,
a reversible three-phase step up/down switching mode rectifier is
proposed attain clean sinusoidal input current, unity power factor, bi-
directional power flow, step up/down output DC voltage and insensi-
tivity for a voltage input.  In addition, a precise simulation model is
proposed to simulation by using PC software tools.  Finally, some
simulation and experimental results are presented for verification.

INTRODUCTION

Recently, the power drive technology for motor
drive is very popular in various industrial application
such as industrial robots, machine tools etc.  In those
machine there are traditional utility interface made of
diodes or phase-controlled rectifiers.  However, the low
power factor translates into poor utilization of the avail-
able current carrying capacity of the AC distribution
system [1,2], then a high harmonic content in the line
current frequency creates interference among equip-
ment connected lines.  In addition, from the point of
view that the harmonic restriction of rectifier factors
cannot fit all different kinds harmonic standards such as
IEC 1000-3-2 and EN 60555-2 [3-5].  In other words, to
obtain a high power quality and satisfy harmonic stan-
dards with the utility grid draw as similar as a sinusoidal
current is important.  So, a lot of research has been made
for the area of pulse width modulation(PWM) switching
mode rectifiers.  On the other hand, for active DC load
such as DC or AC motor drives needs the DC voltage
with a step up/down DC bus voltage and regeneration
capability.  To provide the above capabilities, the con-
ventional step-up/down AC/DC conversion may be com-
pleted by two cascaded rectifiers.  Although this scheme

offers many possibilities, the power delivered to load
has been processed twice causing a decrease in the
overall efficiency.  Some three-phase buck-boost type
AC/DC converters in literature have been proposed to
offer step-up/down capability [5-10].  However, the
disadvantages of pulsating input and/or output currents
remain the problem, but unidirectional power flow needs
to be overcome.  The single-phase SEPIC AC/DC recti-
fier combines the best features of boost and flyback
topologies, making it especially advantageous in high
power factor preregulator applications.  In addition, the
ripple current can be steered away from the input,
dramatically reducing input noise filtering requirements
[11-13].  In the recently, there are very few papers talk
about three-phase SEPIC AC/DC rectifier with bidirec-
tional power flow converter in literature.

In this paper, based on the null space vector duty
cycle control, a novel three-phase switching mode in-
terface with its control circuit is proposed to achieve the
desired qualities such as clean sinusoidal line current,
unity power factor, bidirectional power flow, step up/
down output DC voltage and insensitivity to voltage
input.  Also, the proposed control circuit without the use
of multiplier and lock-out circuit implemented in con-
ventional power correction rectifiers.  Next an accurate
simulation model is presented that can be used for
convenient simulation with common PC software tools.
In addition, the popularly used state space averaging
technique is extended for modeling the proposed recti-
fier and deriving the voltage transfer ratio.  Finally,
some simulation and experimental results are processed
to verify the validity of the proposed rectifier.

SYSTEM  DESCRIPTION  OF  THE  PROPOSED
RECTIFIER

A basic block diagram of the proposed switching
mode rectifier is shown in Fig. 1.  It consists mainly of
power stage which switches are MOSFETs and turned
on or off independently to active low current distortion,
unity power factor, bidirectional power flow and step
up/down capability, a feedback controller and a current
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controller.  In order to reduce the total harmonic distor-
tion (THD) of the input line current, three filter induc-
tors are used on the AC side.  In addition, the DC load
is assumed to have resistance R.  The control strategy
block diagram as shown in Fig. 2 can be easy for
understanding the basic operation principle of the pro-
posed rectifier.

There are two control loops in this rectifier.  The
first one is the current control loop.  The sign of the dc
voltage error ev indicates whether the rectifier is oper-
ated at rectifier or regeneration mode.  In the rectifier
(regeneration) mode, a 0 (π) radius phase signal is
obtained from the source voltage signal and applied to
the reset terminal of the counter.  At the same time an
oscillator that generates a high frequency clock signal is
applied to the clock terminal of the same counter.  An
output signal from the counter is led to an address
terminal of three ROMs that store the sinusoidal data

with 2π/3 phase differences.  The sinusoidal waveforms
data corresponding to the variation of the signal is
obtained from the counter as the address signals is read
successively and applied to a data input terminal of
three digital-to-analog (D/A) converters.  The magni-
tude of the current command signal  Im

*
 is obtained from

the value of a voltage controller and applied to the
reference terminal of the D/A converters to generate the
desired reference currents  i k

*
, k = 1, 2, 3.  To force the

line current ik follows the respective reference current
signals and obtains unity power factor, bidirectional
power flow, step up/down output dc voltage as well as
insensitive input voltage, a current controller as shown
in Fig. 2 is adopted to generate the desired gating signals
of seven switches.  It consists of three conventional
PWM current controllers and an integrated logic circuit
as shown in Fig. 3.  For reference, Fig. 4 shows the
conceptual gating signals of seven switches for one
switching period Ts where the switching frequency is
assumed to be much higher than the reference wave mk,
k = 1, 2, 3 frequency and m1 > m2 > m3.  For analysis
simplicity, the amplitude of the triangular wave C(t) is
normalized, and the magnitude of each reference wave
may not exceed one to avoid the presence of low fre-
quency harmonics.  As can be observed from Fig. 4,
during each switching period there are two portions,
namely dn0Ts and dn7Ts, where all six active switches of
the bridge are closed such that vC1 of Fig. 1 can be
discharged and supply the inductance L1 to keep the
stage followed the DC SEPIC converter operation
principle.  As a result, the conduction loss can be
minimized.  Additionally, to preserve the function of
SEPIC converter, switch S7 should operate complemen-
tary for the remaining switching period, namely [1 −
(d7a + d7b)]Ts, where all six switches of the bridge

Fig. 1. (a) Block diagram of the proposed switching mode rectifier; (b) The
proposed power circuit. Fig. 2.  Block diagram of control strategy.
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function basically as that of a boost type converter to
charge C1 and Co.  A more detail discussion of the
operation mode with the proposed rectifier will be de-
scribed in next section.

The second loop is the voltage control loop.  The
voltage error signal ev can be obtained by comparing the
reference signal  υo

*  with the output voltage signal vo.
Hence, a voltage controller, such as the simple propor-
tional integral (PI) controller can be used to shape the
system dynamic response performances.  In a practical
implementation, naturally, a limiter must be used to
obtain a reasonable output.  This output is then imposed
in the current loop to control the magnitude of the
current command signals  Im

*
.  It is obvious that not any

multiplier or lock-out circuit (the reason will be de-
scribed in next section) is used in the proposed control
circuit, that can keep minimum cost in the markets.

OPERATION  PRINCIPLE

In order to illustrate the operation principle, first,
consider the proposed rectifier is operated at rectifier
mode.  For reference, an ideal three-phase phase voltage
waveform is shown in Fig. 5.  Since the line currents are
controlled to be in phase with the corresponding phase
voltages, then none of the input line current in each time

interval changes sign and one current has the largest
absolute value with two other currents having smaller
magnitude and opposite sign.  Here, one take interval B
in Fig. 5 as an example.   For convenience, one define
the following control state flags:

Fig. 3.  The proposed logic circuit. Fig. 4.  Pulse patterns generated by proposed PWM scheme.
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µk(t) ≡ C(t) − mk(t),  k = 1, 2, 3 (1)

Hence, one has the following seven modes corre-
sponding to µk(t).

Mode 1: µ1 > 0, µ2 > 0, µ3 < 0
This means both currents i1 and i2 should be de-

creased and i3 should be increased.  In this situation, the
switches S1, S2, S6, S7 and S3, S4, S5 should be closed and
opened, respectively.  Switches S1 and S6 are turned on
at this situation which shunts the body diode with the
MOSFET Rds(on).  Switch impedance thus lowers con-
duction losses. The corresponding equivalent circuit is
shown in Fig. 6.

Mode 2: µ1 > 0, µ2 < 0, µ3 > 0
This means both currents i1 and i3 should be de-

creased and i2 should be increased. Similarly, in this
situation, the switches S1, S3, S5, S7 and S2, S4, S6 should
be closed and opened, respectively.  Due to the limited

space, the corresponding equivalent circuit is not shown
here.

Mode 3: µ1 > 0, µ2 < 0, µ3 < 0
This means currents i1 should be increased and

both i2 and i3 should be decreased.  Similarly, the
switches S1, S5, S6, S7 and S2, S3, S4 should be closed and
opened, respectively.  For the purpose of saving space,
the resulting equivalent circuit of this mode is not
shown here.

Mode 4: µ1 < 0, µ2 > 0, µ3 > 0
This means currents i1 should be increased and

both i2 and i3 should be decreased.  Hence, the switches
S2, S3, S4, S7 and S1, S5, S6 should be closed and opened,
respectively.  Also, according to the relations of Im and
iL1, there are three different cases (i.e. Im > iL1, Im = iL1

and Im < iL1) exist.  Fig. 7(a)~(c) shows the resulting

Fig. 5.  The ideal three-phase input voltages.

Fig. 6.  The equivalent circuit when the proposed is operated at Mode 1.
Fig. 7. The equivalent circuit when the proposed is operated at Mode 4 and

(a) Im > iL1; (b) Im = iL1; (c) Im < iL1.
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equivalent circuit when Im > iL1, Im = iL1 and Im < iL1

correspondingly.  As can observed from Fig. 7, it is
interesting to see what the proposed rectifier can be
normally operated even when Im ≤ iL1.  In addition, the
anti-parrelel diode of S7 will also be conducted when Im

> iL1.
Mode 5: µ1 < 0, µ2 > 0, µ3 < 0
This means both currents i1 and i3 should be in-

creased and i2 should be decreased.  Switches S2, S4, S6,
S7 and S1,  S3,  S5 should be closed and opened,
respectively.  Also, according to the relation of Im and
iL1, three different cases, Im > iL1, Im = iL1 and Im < iL1 will
be generated.  The resulting circuit of this mode is not
shown here in interest of the saving the space.

Mode 6: µ1 < 0, µ2 < 0, µ3 > 0
This means both currents i1 and i2 should be in-

creased and i3 should be decreased.  Similarly, the
switches S3, S4, S5, S7 and S1, S2, S6 should be closed and
opened, respectively.  Also, according to the relation of
Im and iL1, three different cases, Im > iL1, Im = iL1 and Im

< iL1 will be generated.
Mode 7: µ1 < 0, µ2 < 0, µ3 < 0 (or µ1 > 0, µ2 > 0, µ3

> 0)
In this mode, to maintain the normal operation

principle of the traditional SEPIC DC/DC converter for
the DC part of the proposed converter and reduce the
conduction losses, the switches S1~S6 and S7 should be
closed and opened, respectively.  The corresponding
equivalent circuit is shown in Fig. 8.

Similarly, the selected switches for other intervals
of Fig. 5 and regeneration mode can be easily obtained.
From the above discussion, one can see that the iL1

current is boosted only happen at mode 7 by vC1.  Also,
practically, by means of the finite turn on/off time of
semiconductor devices, it is possible to have a very
short time period of short circuit of the bridge arms
during mode transitions.  In this case, the effect is
similar to the mode 7.  Hence, the lock-out circuit in
conventional power factor regulators can be eliminated
in the proposed power correction circuit.

ACCURATE  SIMULATION  MODEL

To further explore the accurate simulation model,
one can consider the conceptual gating signals of seven
switches for one switching cycle.  From Figs. 1 and 4 by
neglecting the ESR of C1, Co and L1, using the state
space averaging technique[14] one can get the follow-
ing averaged equation.

  
di1
dt
di2
dt
di3
dt

diL1
dt

diC1
dt

dio
dt

=

–
R S
L S

0 0 0 –
d 1
L S

–
d 1
L S

0 –
R S
L S

0 0 –
d 2
L S

–
d 2
L S

0 0 –
R S
L S

0 –
d 3
L S

–
d 3
L S

0 0 0 0
d 7a + d 7b

L 1

1 – (d 7a + d 7b)
L 1

d 1
C 1

d 2
C 1

d 3
C 1

1 – (d 7a + d 7b)
C 1

0 0

d 1
C o

d 2
C o

d 3
C o

1 – (d 7a + d 7b)
C 0

0 – 1
RC 0

  

i 1

i 2

i 3

i L1
vC1
vo

+

e 1 – vNO

L S

e 2 – vNO

L S

e 3 – vNO

L S

0
0
0

(2)

Assume that

ek = Vmcos[ωt − (k − 1)120°], ik = Imcos[ωt
− φ − (k − 1)120°],  k = 1, 2, 3 (3)

where Vm and Im are the maximum input phase voltage
and input line current respectively, and the phase shift
φ is included for generality.

Substituting (3) into the upper half of equation (2)
it is straightforward to get

   vNO = – 1
3

d kΠ
k = 1

3

(vC1 + vo) (4)

The signals of  d k
' , k = 1, 2, 3 in Fig. 4 are deter-

mined by comparing the modulation waves with trian-
gular waves.  Hence, with simple geometric calcula-
tions one can express  d k

'  and the total null vector duty
ratio dnv as follows:

   d k
' ≡ T k

T s
=

1 + m k

2
, m k ≡ M sin[ωt – θ –

2π(k – 1)
3

] ,

k = 1, 2, 3 (5)Fig. 8.  The equivalent circuit when the proposed is operated at Mode 7.
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dnv = dn0 + dn7 (6)

where TS is the switching period, dn0 and dn7 denote the
null space vector [15] duty ratio of   V 0  and   V 7  respec-
tively as well as M and θ are the modulation index and
modulation phase displacement , respectively.

From (6) one can know that the total null vector
duty ratio is apportioned between the two null vector
duty ratio dn0 and dn7.  However, each individual null
vector duty ratio is still not determined.  For convenience,
one can define a null vector duty ratio-apportioning
factor:

   ξ =
d n0

d n0 + d n7
(7)

Substituting (6) into (7) and considering Fig. 4,
one can express dn0 and dn7 as follows:

   d n0 = ξ(1 + d 1
' – d 3

' ) (8)

dn7 = dnv(1 − ξ) (9)

The above equations are valid for the condition of
m1 > m2 > m3 but the conclusion can be easily general-
ized to other cases as following the expressions.

   ξ =
1 – Min[m k]

2 + Max[m k] – Min[m k]
,  k ∈ {1, 2, 3}      (10)

   d n0 = ξ(1 + Min[m k] – Max[m k]) ≡ 1 + m n0

2
,

k ∈ {1, 2, 3} (11)

  d n7 =
1 + m n7

2 (12)

where mn0 and mn7 are the time varying part modulation
indices to be decided by the reference wave mk.

From above results, one can know that the appor-
tioning of null vector duty ratio between two null vec-
tors that represents a degree of freedom that can be used
to minimize the input current THD.

Since the conducting states of Sk is determined by
 d k

' , hence the duty ratio dk, k = 1, 2, ..., 7corresponding
to the switches Sk can be expressed as follows:

  d k = d k
' + d n0 ,   k = 1, 2, 3 (13)

  d k + 3 = 1 – d k
' + d n7 ,   k = 1, 2, 3 (14)

   d 7 ≡ d 7a + d 7b = 1 – d nv =
1 – m 7

2 (15)

where m7 denotes the time varying part moduction index
of S7 and can be decided by substituting (6), (11) and
(12) into (15).  Thus,

   m 7 = 1 – 3
2

M cos(ωt + π
2

– ψ + j π
6

) ,

j = 1, 2, ..., 11 (16a)

   M = 2
vC1

{[Vm – Im(RS cosφ + ωL S sinφ)]2

   + [Im(RS sinφ + ωL S cosφ)]2}
1/2

, (16b)

   ϕ = tan– 1 Im(RS sinφ + ωL S cosφ)
Vm – Im(RS cosφ + ωL S sinφ) (16c)

Then, by substituting (3)-(6), (13) and (15) into
(2), one has the following matrix form.

   
X = AX + BU , A≡ A1 A2

A3 A4
(17)

where

X = [i1  i2  i3  iL1  vC1  vo]T (18)

  A1 = –
RS

L S
[I] (19)

  
A2 = – 1

2L S

0 m 1 m 1

0 m 2 m 2

0 m 3 m 3

(20)

  A3 = –
L S

C 1
A2

T
(21)

  

A4 =

0
d nv

L 1

1 – d nv

L 1

–
d nv

C 1
0 0

1 – d nv

C 0
0

– 1
C 0R

(22)

  B = I
0 (23)

U = [e1  e2  e3]T (24)

and [I] denotes the unity matrix.
The above expression can be used to provide a

convenient numerical simulation tool such as MATLAB
for the proposed rectifier.  Figs. 9 and 10 show some
simulated results.  It is observed from Figs. 9 and 10 that
the proposed converter not only has both step-up/down
and regeneration capability but also clean sinusoidal
input currents and unity power factor, as well as clean
DC voltage.  It may be worth mentioning what for a
desired output voltage, the duty cycle of dn0 and dn7 can
be uniquely determined by mk.  To avoid explicit calcu-
lation of mk and achieve adjustable output DC voltage,
a closed loop output voltage control is adopted in hard-
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ware implementation as shown in Fig. 2.
In addition, substituting (13)-(16) into (17) and

under steady state, one can obtain the following relation:

  VC1 =
1 – d nv

d nv
Vo (25)

   Vo = [3
2

Im
* R (Vm cosφ – Im

* RS)]
1
2 (26)

Form (6) , (25) and (26), it is interesting to see that
VC1 is not constant, however the output voltage Vo is
indeed constant DC as expected.  In fact, (26) actually
represents the principle of conservation of power.

SOME  EXPERIMENTAL  RESULTS

To facilitate the understanding of the above theo-

retical results and as verification, a prototype hardware
circuit is constructed.  The parameters of the rectifier in
Fig. 1 are listed below for reference.

Ls = 6mH, Rs = 0.41Ω, ω = 377rad/sec,
L1 = 3.25mH, Co = 2200µF, C1 = 470µF,
Power switches S1~S7: IRF460.

The switching frequency for the proposed rectifier
is selected to be 3kHz.  Fig. 11 shows the input current
and voltage waveforms when the proposed rectifier is
operated at step-up mode.  To show the step-down
capability of the proposed rectifier, the waveforms of
the input current and output voltage are shown in Fig.
12.  The spectrum of input line current waveform is also

Fig. 9. Simulated input current and output voltage waveforms for step-up mode. (a) Phase-1 input current and voltage; (b) DC output voltage; (c) Output ripples
voltage; (d) Phase-1 input current and voltage for regenerative mode.
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shown for reference.  As can be observed from Figs. 11
and 12 that the results are very nice agreement with the
simulation and theoretical results as shown in Figs. 9
and 10, respectively as expected.

 CONCLUSIONS

In this paper, based on the null space vector duty
cycle control a novel three-phase switching mode inter-
face with its control circuit is proposed.  The proposed
rectifier can achieve the desired qualities such as clean
sinusoidal input current, unity power factor, bidirec-
tional power flow, step up/down output dc voltage and
insensitive to input voltage.  Also, the proposed control

circuit does not use of multiplier and lock-out circuit
implemented in conventional power correction rectifi-
ers that can keep minimum cost in the markets.  An
accurate simulation model is also presented which can
be used for convenient simulation with common PC
software tools.  Finally, some simulation and experi-
mental results are presented for verification the validity
of the proposed rectifier.
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Fig. 10.  Simulated input current and output voltage waveforms for step-down mode. (a) Phase-1 input current and voltage. (b) DC output voltage. (c) Output
ripples voltage. (d) Phase-1 input current and voltage for regenerative mode.
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Fig. 11.  Measured input and output waveforms for step-down mode.
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