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ABSTRACT

In this study the system identification method is applied to obtain
a nonlinear equation for an oil film rotating system.  The centrifugal
force induced by an unbalanced mass is used as the input signal for
identification, and the phase between the input signal and the mea-
sured output vibration amplitude is calculated to perform the
identification.  Stability analysis and system performance are evalu-
ated by using the root locus and the Floquet-Liapunov theorem.  Based
on the model, the oil whirl of the journal bearing can be predicted.  A
comparison between the simulation results and some experimented
data shows the feasibility of the proposed approach.

INTRODUCTION

The fluid model of an oil-film bearing system has
been studied by several workers [1-3].  Muszynska et al.
[4,5] established the fluid force system model in 1986.
In practical applications, these mathematical models
can not be used to predict the occurrence of the oil whirl
because they are all derived theoretically, based on
certain simple assumptions, and do not identify the
system with the experiment results.  Thus mathematical
models are only used for theoretical analysis and
simulation, not for on line diagnosis.  Several different
time-domain and frequency-domain techniques [6-11]
have been developed for identifying the oil-film coeffi-
cients of the bearing, but these studies only identified
the linear parts of the system or a system that was
linearized.  They did not identify the nonlinear parts
of the system.  Some scholars have identified a nonlin-
ear oil-film bearing system [12-15], using the tradi-
tional excitation methods, such as impacts or sweep
sines to perturb the experimental oil film bearing system,

for the purposes of identification.  However, these
methods are not suitable for use in practical applications,
because a rotating machine does not permit an external
force to disturb or change the system once it is in
motion.

Zhao et al.[16] pointed out that the fluid force
induced by the oil in the bearing is related to the
operating speed.  Thus, we deal with the model in the
frequency domain for such reasons as less susceptibility
to noise, more convenience of identification, and easier
correction of rotating machinery malfunctions.  For
exhaustive observation of the signals system is input
and output, we transform the time domain data to fre-
quency domain data, by using the Discrete Fourier
Transform (DFT).  The system identification method is
applied based on the principle of harmonic balance [17-
19].  In order to perform system identification, the input
signal and the output signal should be obtained
simultaneously.  An unbalanced mass force is used as
the system excitation force.  We developed a method to
calculate the phase between the input unbalanced force
and the measured vibration amplitude.  After obtaining
the phase, we can establish the identification method,
obtaining a mathematical model by the principle of
harmonic balance.  By performing stability analysis
[20], we can predict the speed at which an oil whirl
occurs.

ALGORITHM  OF  IDENTIFICATION

The equation for a single-degree-of-freedom can
be written as

  mx + cx + kx + N = f , (1)

where m, c, and k denote the mass, the damping and the
stiffness in the linear part of the system.  The parameter

 N , represents the nonlinear part of the system, and it is
a function of x.  f is the external force in equation (1).
The algorithm of identification is described as follows [21]:
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Step 1:
Assume that the nonlinear term  N  is approximated

by a polynomial of x:

 N  = αx2 + βx2 + ..., (2)

where α, β...are unknown coefficients.  When this as-
sumption is made, the problem of identification is re-
duced to the determination of the parameters m, c, and
k in equation (1), and the unknown coefficient α, β...in
equation (2).

Step 2:
When a periodic external force f, with a period T =

  2π
ω , is applied to the system, the steady-state responses

x, with the same period as the external force, are induced.
Then, both the external force f and the steady-state
response x are recorded within the time interval of one
period.

Step 3:
Transfer the external force f and the steady-state

response x into the Fourier series [8].

Step 4:
Express the input force term and each term in the

equation of motion including the nonlinear terms in
Fourier series.  Then, equation (1) and equation (2) can
be expressed as a matrix in the form of :

[A]{X} = {F}, (3)

where:

   

[A] =

0 0 xOR (x 2)OR (x 3)OR

– ω2x 1R ωx 1I x 1R (x 2)1R (x 3)1R

– ω2x 1I – ωx 1R x 1I (x 2)1I (x 3)1I

– 4ω2x 2R 2ωx 2I x 2R (x 2)2R (x 3)2R

– 4ω2x 2I – 2ωx 2R x 2I (x 2)2I (x 3)3I

{X} = [m  c  k  α  β  ...]T

{F} = [f0R  f1R  f1I  f2R  f2I  ...]
T (4)

If the various values of ω are properly calculated,
we can transfer equation (1) correctly into equation (3).
We know that {x} is an unknown vector, solved by the
least-square estimator (LSE)[19].  The result of the LSE
is then:

  {X} = ([A]T[A])
– 1

[A]T{F} , (5)

From equation (5), we get the parameters m, c, k,
α, β ... for the system.  If necessary, the weighting
matrix can be used to improve the accuracy. When the
weighting matrix [W] is used, equation (5) becomes:

  {X} = ([A]T[W][A])
– 1

[A]T[W]{F} , (6)

The Apparatus and the Experiment Figure 1 and
Figure 2 show a schematic diagram and a photo of the oil
film rotating system.  A proximitor assembly is used as
the vibration probe along the horizontal direction(x-
axis).  The keyphasor probe is located at the shaft notch
also in a horizontal direction.  A rigid bearing near the
motor side, and a lubricated cylindrical bearing on the
other side support this rotor system.  We put the unbal-
anced disk of the rotating shaft near the oil film bearing
to reduce the degrees of freedom.  Thus, the equation of
motion in the rotor system can be simplified as a one-
degree-of-freedom system.  To establish a mathemati-
cal model of an oil film bearing system that analyzes the

Fig. 2.  Photograph of the experimental equipment.

Fig. 1.  Structure of the experimental oil-film bearing.
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vibrational phenomena in the oil film bearing, is the
main object of this study.  It is helpful to observe the oil
whirl phenomenon by running an experimental rotor kit
set-up before the mathematical model is found.  When
the oil film bearing system, rotating in its fluid lubri-
cated cylindrical bearings, has a lightly loaded, slightly
unbalanced symmetric rotor, the dynamic phenomena is
quite apparent.  The vibration data for our experimental
oil film bearing system are shown as Figure 3.  The
inertia forces of the unbalanced rotor mass may cause
the vibrations at low operating speeds.  At low rota-
tional speeds, these vibrations are stable, and we can
neglect the impulse perturbation of the rotor that causes
a short term transient vibrational process.  When the
rotation speed increases, the synchronous vibration is
not the only system motion.  Along with first harmonic
vibrations, an oil whirl appears, cause by the rotor’s
lateral forward subharmonic vibration around the bear-
ing center at a frequency close to half the rotation speed
(usually smaller than half).  The amplitudes of the oil
whirl are usually much higher than those of the synchro-

nous vibrations, because the oil whirl occurs due the
nonlinear fluid forces.  At 1900 rpm shown in Table 1,
the vibration of the system becomes unstable and the
bearings fluid force becomes the main factor which
influences the amplitude.

According to the dynamic phenomena described
above, there are two causes of system vibration.  One is
the synchronous vibration caused by an unbalanced
force, and the other is self-excitation caused by the
nonlinear fluid force.  When the vibration frequency
grows, the nonlinear factors influence the system more.
In order to perform identification, we need an external
force to excite the oil film rotational system.  Without
using additional excitation equipment, the unbalanced
mass already existing in the system may be used as the
excitation force.  Suppose that the unbalanced mass is
m, the distance between the unbalanced mass and the
center of the disk is r, the rotational speed of the system
is ω, and the phase angle between the input and the
output in x-axis is θx.  The external force caused by an
unbalanced mass is Funbalance = mrω2.

Since the systems input force can be estimated
from the unbalanced mass, only the systems output can
be measured during its operation.  However, for per-
forming system identification the systems input and
output should be recorded simultaneously.  To find the
phase angle is the key to performing identification using
an unbalanced mass as the excitation force.  The system
phase angle is the phase lag between the systems input
and output.  The calculation of the system phase angle
is shown as Figure 4 and is described as follows.

If the speed of rotation is far below the first critical
speed of the system, the phase angle is zero.  In this case
the heavy spot (the unbalanced mass) can be located by
observing the angle θ1 (as indicated in Figure 4a) from
the keyphasor dot on the time response to the next
positive peak on the time response.  Thus, if the machine

Fig. 3.  Waterfall diagram of the oil film bearing system.

Table 1.  Experimental data

Channel Name: Channel 1 Machine Name: Rotor Kit Amplitude Units: µm
Sample Date Time Speed Direct Gap Amplitude Phase

71 24APR2001 19:10:05 1820 45.46 -8.91 42.42 151
72 24APR2001 19:10:05 1830 47.50 -8.92 43.18 151
73 24APR2001 19:10:06 1840 45.72 -8.91 42.67 152
74 24APR2001 19:10:06 1850 45.47 -8.92 42.93 153
75 24APR2001 19:10:06 1860 45.72 -8.92 42.93 153
76 24APR2001 19:10:07 1870 46.23 -8.92 42.93 153
77 24APR2001 19:10:07 1880 46.48 -8.92 42.67 154
78 24APR2001 19:10:07 1890 50.55 -8.92 42.67 154
79 24APR2001 19:10:08 1900 58.42 -8.92 42.67 154
80 24APR2001 19:10:08 1907 59.94 -8.92 42.93 153
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is stopped and the notch on the shaft lined up with the
keyphasor probe, the heavy spot will be located at the
observed angle θ as indicated in Figure 4(b), away from
the vibration probe.  For the case that the speed of
rotation is far below the first critical, then θ1 is equal to
θ and the phase angle θx between input response and
output response is zero.  Since the location of the heavy
spot in the oil-film rotating system is already known,
the phase angle θx for any rotational speed can be
obtained by calculating the difference between the angle
θ of the heavy spot and the vibration probe after the
keyphasor probe is lined up with the notch on the shaft,
and the angle θ2 of the keyphasor dot and the next peak
on the time response as indicated in Figure 4(c).  The
calculation of the phase θx is expressed as θx = θ2 − θ1.
After obtaining the phase angle, the system input corre-
sponds with the output and we can perform identifica-
tion experimentally.

EXPERIMENT  WITH  OIL  FILM  BEARINGS
AND  IDENTIFICATION  RESULTS

In this experiment, we adopt a linear approach to
identifing the oil-film rotating system.  The linearized
simplified system model is assumed to be:

   m xx + cxx + k xx = m*r*ω2*cos(ωt) , (7)

It should be noted that the parameters of the inertial,
damping, and stiffness terms of the oil-film system are
a function of the rotational speed.  Thus, the parameters
of the linearized system are dependent on the rotational
speed.  The parameters of the linearized system vary as
the rotational speed varies.  By performing stability
analysis on the linearized system, we can predict at
which rotational speeds the linearized system will be-
come unstable and when an oil whirl will occur.  We
identify the parameters of the one-dimensional linear-
ized oil-film bearing system in the x-axis.  Based on the
identification method used in section 2, the system is
identified from 1400 rpm to 1880 rpm.  The results and
the eigenvalues for the linearized system are shown in
Table 2.  It should be noted that since the equivalent
mass, damping, and stiffness of the system are a func-
tion of the rotational frequency, the parameter values of
m, c, k will be varied with this frequency.

In Table 2, we find that the damping coefficient
becomes small when the frequency is increased, and
that the eigenvalues are close to the image axis.  Figures
5 and 6 show the real time responses at 1860 rpm and
1880 rpm.  Figure 7 shows the root locus of the linear-
ized oil film bearing system.  This means that when the
frequency is growing and the damping coefficient is
getting smaller, the system becomes unstable.  In this
experiment, the system becomes unstable at the fre-
quency of 1900 rpm.  In table 2, we see that the eigenval-
ues change very fast.  Although at 1800 rpm they are not
very close to the image axis, we can expect that the
eigenvalues will cross the image axis if the frequency is
increased slightly.

The experimental results show that the linear model
can only predict until the speed where the system be-
come unstable.  Theoretically it can not show what
happens after a system becomes unstable.  However, the
experimental results show that the oil whirl occurs after
the rotational speed that the identified linear system
becomes unstable.  In order to characterize the systems
behavior due to nonlinear effects we adopt a nonlinear
approach to the identification of oil film rotating system.
We assume that the nonlinear term is N = αx2 + βx3 + ....
Then the system model is

   m xx + cxx + k xx + βx 3 = m*r*ω2*cos(ωt) , (8)Fig. 4.  The relationship of system phase angle.
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Table 3 shows the results by of system identifica-
tion from 1400 rpm to 1880 rpm.  We also see that the
damping coefficients are going to become small when
the frequency gets large.  It is noted that since the value
of α is very small compared to that of β, so α is
neglected.  Figures 8 and 9 show the time responses
experimental data, at 1860 rpm and 1880 rpm along the
x-axis compared with the identification results for the
oil film bearing system along the x-axis.  To analyze the
stability of the results in a nonlinear system, we need to
calculate the eigenvalues of the Poincaré map.  Because
these cannot be computed directly in a nonlinear system
model, we apply the method presented by Friedmann et
al.[20].  The improved integration scheme for evaluat-
ing the transition matrix [ΦA(T, 0)] is based upon the
fourth order Runge-Kutta scheme with Gill coefficients.
The most straightforward method for dealing with the
stability of a periodic system consists of applying the

Table 2.  ID Results and eigenvalues for a linearized system on the x-axis

Frequency (rpm) mx (kg) cx (Kg/sec) kx (Kg/sec2 ) Eigenvalues

1400 0.0968 98.854 15489.837 -827.714, -193.285
1500 0.0726 74.887 13146.133 -807.358, -224.323
1600 0.0742 77.936 14976.191 -797.529, -253.158
1700 0.0733 64.247 17117.222 -438.31±203.57j
1800 0.0661 48.376 16680.106 -365.91±344.16j
1820 0.0628 45.387 16515.354 -361.20±363.87j
1840 0.0593 37.445 16413.779 -315.67±420.83j
1860 0.0615 31.773 17481.478 -258.23±466.34j
1880 0.0665 21.281 18420.124 -160.00±501.38j

Fig. 5. Experimental data compared with the linearized ID results at
1860rpm.

Fig. 6. Experimental data compared with the linearized ID results at
1880rpm.

Fig. 7.  Root locus of the linearized system.
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Floquet-Liapunov theorem, that states that the knowl-
edge of the state transition matrix over one period is
sufficient in order to determine the stability of a peri-
odic system.  Thus, the approximate transition matrix at

the end of a period can be obtained by one integration
pass.  Table 4 shows the eigenvalues of the transition
matrix [ΦA(T, 0)] for our experimental system.

In Table 4, we see that all the eigenvalues are not
outside the unit circle, but the complex eigenvalues
change very fast between 1800 rpm to 1880 rpm.  From
1860 rpm to 1880 rpm they even differ by 2 orders.  We
expect that when the frequency is 1900 rpm, the eigen-
values may be over the unit circle.  Comparing the
results in Table 3 and Table 4, we can see that the
tendency of the eigenvalues in both the linearized and
the nonlinear models is similar.  Figures 10, 11 and 12
show the root locus of the nonlinear system results on
different scales.  According to the bifurcation theory, if
a pair of complex conjugate eigenvalue for a nonlinear
system pass through the unit circle, then a Hopf bifurca-
tion occurs, and a new vibrational structure appears.
This actually predicts the occurrence and the behavior
of the oil whirl.

Table 3.  ID results for a nonlinear system on the x-axis

Frequency (rpm) mx (Kg) cx (Kg/sec) kx (Kg/sec2 ) β
1400 0.0693 98.777 19135.400 -169.970*1010

1500 0.0642 74.823 14523.634 -32.822*1010

1600 0.0655 77.882 16682.132 -39.049*1010

1700 0.0613 64.212 18621.703 -28.6371*1010

1800 0.0586 48.344 17597.422 -12.728*1010

1820 0.0525 45.370 17173.198 -9.926*1010

1840 0.0508 37.433 16734.656 -5.528*1010

1860 0.0529 31.762 17707.601 -4.656*1010

1880 0.0550 21.277 18710.396 -6.083*1010

Fig. 8. Experimental data compared with the nonlinear ID results at 1860rpm.

Fig. 9. Experimental data compared with the nonlinear ID results at 1880rpm.

Table 4. Eigenvalues of the transition matrix [ΦA(T, 0)] in a
nonlinear system

Frequency (rpm) Eigenvalues

1400 7.313*10-3, 1.952*10-18

1500 8.262*10-4, 7.617*10-18

1600 6.233*10-4, 6.847*10-17

1700 4.483*10-7, 1.078*10-9

1800 -1.030*10-6±1.906*10-7j
1820 -4.697*10-7±4.468*10-7j
1840 -3.442*10-6±4.925*10-6j
1860 -5.454*10-5±2.836*10-5j
1880 -1.049*10-3±1.755*10-3j
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CONCLUSION

In practical applications, it is difficult to apply a
persistent excitation for identification of an oil film
system.  In this paper we adapted an unbalanced force to
excite the oil film system, and then developed a method
to calculate the phase angle between the unbalanced
force and the measured responses.  Stability analysis
and system performance are evaluated by the using root
locus and Floquet-Liapunov theorem.  Based on the
identified model, the oil whirl in the journal bearing can
be predicted.  A comparison between the simulation

Fig. 10.  Root locus of the nonlinear system.
Fig. 12. Complex part of the eigenvalues using logarithmic scales for a

nonlinear system.

Fig. 11. Complex part of the eigenvalues using a logarithmic scale for a
nonlinear system.

results and the experimented data show the feasibility of
the proposed approach.
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