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ABSTRACT

A simple and efficient method for controlling high dimensional
discrete-time chaotic systems is proposed in this paper.  This method
is implemented similar to the OGY method, and is feasible for
practical experiments.  The key component is to assign the eigenval-
ues of a linearized map by using the well-known pole placement
technique.  According to the Cayley-Hamilton theorem, the trajectory
will converge to the desired fixed point after n iterations at most (n  is
the dimension of the map), if the real trajectory of the chaotic system
falls within the neighborhood of the desired fixed point.  The proposed
approach improves the convergence rate and the robustness of the
OGY method, especially for the case where the modulus of the stable
eigenvalue is close to unity.  The simulations illustrate the perfor-
mance of our presented controller for controlling a chaotic system
compared to the OGY method.

INTRODUCTION

Chaotic behavior often occurs in engineering’s
and natural systems [1-6].  In the past it has been seen as
irregular or unpredictable and was often attributed to
random external influences.  Further studies have shown
that chaotic behavior is deterministic, and is a typical
characteristic of nonlinear systems.  However, in many
engineering applications, chaos is seen as an undesir-
able phenomenon, because chaotic motion can cause
performance degradation and restrict the operating range
of dynamic systems.  Therefore, developing strategies
to control chaos, based on the features of chaotic motion,
is necessary.  The famous Ott-Grebogi-York (OGY)
paper [7], that pointed out the possibility of chaos
control, was the seed for a large body of research that is
still rapidly growing.

The OGY method is based on Jacobian lineariza-
tion.  First, one chooses an appropriate unstable
periodic orbit embedded in a strange attractor.  The
linearized model is then estimated and a small region
around the desired periodic orbit is defined.  The main
feature of the OGY controller is that assigns the un-
stable eigenvalue of the linearized model to zero, but
does not move the stable eigenvalue.  Hence, when
a trajectory falls into the defined region, small param-
eter perturbations are applied to force the trajectory
into the stable manifold.  The trajectory will then
approach the desired periodic orbit asymptotically.
Unfortunately, for higher-dimensional chaotic systems,
especially for a chaotic attractor with two or more
positive Lyapunov exponents, the original OGY method
fails.  In order to lesson the disadvantages of the original
OGY method, many modified methods and other
approaches, which can be applied to high dimensional
chaotic systems, have successively been proposed
[8-12].  However, no general method of control exists
which is adaptable to all chaotic systems due to their
diversity.

The solution to the problem of determining the
feedback gain, so that the eigenvalues of the controlled
system have specified values, has been extensively
studied, the so-called pole-placement technique.  The
position of the specified eigenvalues will determine the
performance of the controlled system, so how to locate
controlled system eigenvalues becomes an important
issue.  Modified OGY control schemes, such as a con-
trol law based on pole-placement techniques [13], a
scheme for implementation of the convergence rate
[14], and the optimization of control [15] have been
proposed.  Nevertheless, in these papers the assigned
eigenvalues only confirm the asymptotical stability of
the system.  Here, we present a simple and efficient
method for controlling discrete-time chaotic systems
based on the OGY method and the linear feedback
theory.  In the OGY method, if the modulus of the stable
eigenvalue is close to unity, the tracking error con-
vergence will be very slow, because the orbit will
approach the desired periodic orbit only at the geometri-
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cal rate of the stable eigenvalue.  However, the key to
the proposed method is to assign all of the eigenvalues
of a linearized map to zero, by applying the well-known
pole placement technique [16] and Cayley-Hamilton’s
theorem, which can control an n-dimensional chaotic
system into stable region in the desired n steps.  Since
this method is also based on a linear approximation of
the chaotic map, it is feasible in practical experiments
similar to the OGY method.  Whenever the trajectories
fall in the neighborhood of the desired fixed point, our
proposed method requires less effort to control, and has
a faster convergence rate, to stabilize a chaotic system,
than does the OGY method.

CRITERIA FOR CONTROL

In practical experiments the exact nonlinear dy-
namic equations of a chaotic system are usually unknown.
Sometimes the only measurable signal may be a scalar
output signal, for instance y(t), in which case, one can
reconstruct the chaotic attractor using the embedding
technique [17].  Since continuous dynamic systems can
be regarded as discrete maps on the Poincare surface,
only discrete-time dynamic systems are considered here.
A delay-coordinate vector in the n-dimensional embed-
ding space is defined as follows:

y(k) = [y(k)  y(k − 1)  y(k − 2)  ...  y(k − (n − 1))]T,
(1)

where k denotes the sampling instant and is an integer
ranging from −∞ to +∞.  The bold capitals and bold
lowercase letters denote the matrices and vectors,
respectively.  We let   y i , i = 1, ..., N, be an unstable
periodic-N orbit embedded in the strange attractor.  If
we suppose the performance of the periodic-N orbit
satisfies our requirements.  Then by using the delay-
coordinate vector, the desired periodic-N orbit can be
represented as follows:

   y (k) = [ y i + n – 1 y i + n – 2 y i]
T ,

i = mod(k, N) + 1. (2)

The tracking error can be defined as:

   e(k) = y(k) – y (k)

  = [y(k) – y i + n – 1 y(k – 1) – y i + n – 2

  y(k – n + 1) – y i]
T . (3)

In additionally, we assume that p is an accessible pa-
rameter that can be externally perturbed.  The constant

 p  denotes the nominal value.  The small parameter
perturbation about  p  is defined as u(k) = p(k) −  p .  The
error dynamics can then be described using nonlinear
difference equations of the form:

e(k + 1) = f(e(k), u(k)), (4)

where f is assumed to be continuously differentiable, at
least locally in the neighborhood of the fixed point (e, u)
= (0, 0).  A linear approximation of the above system
near the fixed point is given by:

e(k + 1) = Ae(k) + bu(k), (5)

where

    A = ∂f
∂e e = 0

u = 0

, b = ∂f
∂e e = 0

u = 0

. (6)

Let us briefly recall the OGY control method.
Here we restrict ourselves to a two-dimensional system
(i.e., n = 2).  Let λs and λu be the stable and unstable
eigenvalues of the Jacobian A, respectively.  The direc-
tions of the stable and unstable manifolds of the equilib-
rium are given by es and eu, respectively.  If fs and fu are
the contravariant basis vectors defined by    fs

Tes = fu
Teu = 1,

   fs
Teu = fu

Tes = 0 , then the OGY control law is as follows
[4]:

    
u(k) =

λufu
T

(λu – 1) fu
Tw

e(k) ≡ ke(k) , (7)

where w = (I − A)−1b and it is assumed that     fu
Tw ≠ 0  (or

equivalently     fu
Tb ≠ 0).  This is equivalent to the simpler

formula [18]:

    
u(k) =

– λufu
T

fu
Tb

e(k) = ke(k) . (8)

The main feature of the OGY method is to assign
the unstable eigenvalue of the linearized model to zero,
but not to move the stable eigenvalue.  The original
OGY method may have some disadvantages.  First, if
the modulus of the stable eigenvalue λs is close to unity,
the convergence of the tracking error is very slow,
because the orbit will approach the fixed point at a
geometrical rate λs.  In addition, the controlled system
is less robust in term of disturbance and noise if the
modulus of λs is close to unity.  Moreover, for a higher-
dimensional chaotic system, especially for a chaotic
attractor with two or more positive Lyapunov exponents,
the original OGY method fails.

In fact, if (A, b)is controllable, i.e., the controlla-
bility matrix:

U = [b  Ab  ...  An − 1b], (9)
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has the rank n.  Then by using linear feedback in the
form u(k) = ke(k), the eigenvalues of A + bk can be
arbitrarily assigned, provided the complex conjugate
eigenvalues appear in pairs.  This implies that we can
choose an arbitrary feedback gain k, such that all of the
eigenvalues of A + bk lie inside the unit circle to
stabilize the equilibrium of equation (5).

In this paper, a chaos control technique based on
the OGY method and linear feedback theory is presented.
The kernel of the proposed method is to assign all of the
eigenvalues to zero using the well-known pole place-
ment technique.  According to conventional digital
control theory, assigning all of the eigenvalues of a
linear discrete-time system to zero implies that one has
to design a high-gain controller.  Using such controllers
in linear systems can cause two problems.  The first is
the saturation problem of the real actuator/amplifier.
The second is that a high-gain controller usually results
in self-excited oscillation due to the exciting of the
uncertain high-frequency mode of the system.  Therefore,
assigning the eigenvalues to zero is not generally al-
lowed in conventional linear control method.

Nevertheless, most techniques developed for con-
trolling chaotic systems are based on linearized models,
such as that in equation (5).  These controllers are
available only when the real trajectory of the chaotic
system falls in the neighborhood of a desired fixed point
(i.e., the Euclidean norm of the error vector ||e(k)|| is
close to zero).  The small error vector e(k) is multiplied
by a finite gain k and the product u is sure to be small
enough.  This implies that, with a limited control input,
the use of the so-called high-gain controllers in chaotic
systems is feasible.  In addition, using a high-gain
controller in a chaotic system will not produce the
disadvantages induced in linear systems.  Since we can
disable the controller if the actual trajectory in a chaotic
system is far from the desired fixed point or the control
input exceeds the preset range.  Although the trajectory
departs temporarily from the desired fixed point after
the controller is disabled, this uncontrolled trajectory
will once more fall in the neighborhood of the desired
fixed point after some iterations.

In this paper, only one class of chaotic systems,
those controllable at least locally in the neighborhood
of the desired fixed point, are considered.  We first
represent the linearized model of a controllable chaotic
system near the fixed point by the form in equation (5).
According to the pole placement technique, the state
feedback gain for assigning all of the eigenvalues to
zero is then given by:

k = [an  an − 1  ...  a1](UW)−1, (10)

where the controllability matrix U is defined as equa-

tion (9), and:

   

W =

a n – 1 a n – 2 a 1 1

a n – 2 a n – 3 1 0

a 1 1 0 0
1 0 0 0

(11)

We let u(k) = Ke(k).  Thus equation (5) becomes:

e(k + 1) = (A + bk)e(k), (12)

where the resulting matrix   A  = A + bk has an eigen-
value of 0 with multiplicity n.  Since the characteristic
polynomial of   A  is:

∆(λ) = λn, (13)

and

   e(k + r) = A
re(k) , (14)

the Cayley-Hamilton theorem implies:

   A
r = 0 ,   ∀r ≥ n. (15)

Hence, the trajectory will be determined and will
converge to the desired fixed point after n at most
iterations, if the real trajectory of the chaotic system
falls in the neighborhood of the desired fixed point.
This is different from the OGY method, where the
convergence of the tracking error may be very slow,
because the orbit will approach the fixed point at the
geometrical rate λs.

NUMERICAL  EXAMPLE

Consider a two-dimensional nonlinear map de-
scribed as follows:

  x 1(k + 1) = p(x 1(k) – x 1
2(k)) ,

x2(k + 1) = (1 − q)x1(k) + qx2(k), (16)

where p = p0 + u(k), and u(k) is the control input.  The
corresponding parameters are p0 = 4 and q = 0.5.  With
such parameters, an uncontrolled system exhibits a
chaotic attractor.  A dense set of unstable periodic orbits
embedded within a strange attractor is the main charac-
teristic of a chaotic system.  Without loss of generality,
let the period-1 orbit    x = [ x 1 x 2]

T
 = [0.75  0.75]T,

embedded within the strange attractor, be the desired
fixed point.  For simplicity, assume that the exact non-
linear dynamic equation of the chaotic system is
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unknown, but the state vector x(k) = [x1(k)  x2(k)]T, is
measurable.  Define the tracking error, e(k) = x(k) −  x .
The linear approximation of the chaotic system near the
fixed point can be estimated as follows:

e(k + 1) = Ae(k) + bu(k)

   
=

– 2 0
0.5 0.5

e(k) + 0.1875
0

u(k) . (17)

We emphasize that the desired fixed point  x , and
the parameter matrices A and b, are all experimentally
accessible.  Using the pole placement technique, we get:

u(k) = ke(k) = [8  -2.6667]e(k). (18)

The feedback gain will shift the eigenvalues in the
linear error model from {−2, 0.5} to {0, 0}.  If the OGY
method is applied, the controller can be determined as
follows

u(k) = ke(k) = [10.6667  0]e(k). (19)

This feedback gain assigns the eigenvalues in the
linear error model to be {0, 0.5}.  The results are shown
in Figure 1, where the initial conditions are e0 = [0.
00259  0.00966]T and Ω0 = {e ∈ R2 : ||e|| < 3.5 × 10−4}.
Using our proposed method, the trajectory e, originat-
ing from e0, tends to become Ω0 after only two iterations.
If we use the OGY method, at least five iterations are
required to convert trajectory e into Ω0 from e0.  Note
that the nonlinear terms of the exact system and the
truncation error may cause a small deviation.

Our proposed method is also able to stabilize high-
periodic orbits.  The controlled result is shown in Figure
2, where we successively stabilize period-5, period-2,
period-3, and period-4 orbits.  In this example, the
control input is allowed to vary in the range of |u(k)| ≤
0.2, which is about 5% of the nominal value of p0 = 4.

From k = 1 to 10000, the proposed method is applied to
stabilize period-5, from 10001 to 20000 to stabilize
period-2, from 20001 to 30000 to stabilize period-3, and
from 10001 to 20000 to stabilize period-4.

In the following, we will compare the performance
of our method with the OGY method.  Let us first define
Ω = {e ∈ R2 : ||e|| < 10−6} and Cr = {e ∈ R2 : ||e|| =
10−6r}, where r is a parameter greater than one.  Thus,
we can compute the average number of iterations  κ
required to reach Ω from 200 randomly selected initial
conditions on Cr.  Figure 3 shows the variation in  κ  as
a function of r.  Using our proposed method, the value

Fig. 1. Comparison of the trajectories originating from e0 tending to region
Ω0 with the OGY method (•...•) and the present method (°...°).

Fig. 2. Transition between periodic orbits from P5→P2→P3→P4, where
the control input is allowed to vary in the range of |u(k)| < 0.2.  From
k = 1~10000 the proposed method is applied to stabilize period-5,
from to stabilize period-2, from 30001~40000 to stabilize period-3,
from   to stabilize period-4.  (a) Time response of x1(k);  (b) Tracking
error e1(k) = x1(k) −   x 1;  (c) Control input u(k).

Fig. 3. Average number of iterations  κ  required to reach Ω from 200
randomly selected initial conditions on Cr with the OGY method (×)
and the present method (°).
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of  κ  is approximately 2 as r increases from 2 to 400.
This result is consistent with our previous account.

When r is greater than 400, the value of  κ
increases gradually due to the nonlinear terms.
Therefore, we can conclude that linear equation (17) is
a good approximation of this nonlinear system in the
region where ΩL = {e ∈ R2 : ||e|| < 4 × 10−4.  If we use the
OGY method, Figure 3 shows that the average number
of iterations  κ  increases with increasing r and follow-
ing a logarithmic relationship:

   κ ~ logλs
1
r , (20)

or

   λs
κ ~ 1

r , (21)

where λs = 0.5.  This result verifies the previous
statement, that the orbit will approach the fixed point at
the geometrical rate λs.  Therefore, the OGY method is
unsuitable for cases in which the modulus of the stable
eigenvalue λs is close to unity, because the convergence
of the tracking error will be very slow, as shown in
Figure 4.

In Additional, in order to verify that our proposed
method does not require larger parameter perturbations,
the maximum input umax, required to reach Ω from 200
randomly selected initial conditions on Cr, as a function
of r is plotted in Figure 5.  The simulation result satisfies
the following theoretical estimation:

    u max ≈ sup
e = 10– 6r

( u ) ≤ sup
e = 10– 6r

( k e ) = 10–6r k .
(22)

From the above equation, we see that the param-

eter perturbation required for our method is even smaller
than that for the OGY method in this example.

CONCLUSIONS

In this paper, an efficient method for controlling a
class of chaotic systems where there is only a single
parameter available for adjustment is presented.  Since
the proposed method is based on a linear approximation
of chaotic map, using the embedding technique, it is
feasible for practical experiments, where the exact dy-
namic equations of the chaotic systems are unknown.
The proposed method consists of the following
procedure.  First, one chooses an appropriate unstable
periodic orbit embedded in a strange attractor.  The
linearized model is then estimated in a small defined
region around the desired periodic orbit.  All of the
eigenvalues of the linearized map are then assigned to
be zero, using the well-known pole placement technique.
According to both theoretical notation and numerical
simulations, the proposed method requires only a small
parameter perturbation to control chaos, and the con-
vergent properties are superior to the OGY method.
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