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ABSTRACT

This paper addresses the problem of determining an optimal
routing that bounded by the cycle time for marine liner.  Through
exploring the practical planning procedure of shipping company and
analyzing the core of route design, this problem is realized as similar
as the traveling salesman problem (TSP), but, with some specially
industrial properties.  A mixed integer programming model is pro-
posed to optimize ship’s routing under satisfying the relationships
between the cycle time and deployed vessels with given service
frequency in a week.  Some constraints, besides, are organized to
avoid the routing sequence has separated tours.  Intuitively, we also
divide the solving procedure into two parts.  The first chooses some
visited ports from relaxed problem as routing candidates for determin-
ing the final routing in the next, both through implemented by the
branch-and-bound algorithm.  Test results show that our procedure
can obtain the suitable route service plan within the stable consumed
CPU times of calculation.

INTRODUCTION

Route planning is the source of all operations in
marine liner shipping.  Carrier has to design the com-
petitive routes for providing public shippers long-termed
and dependable shipping conditions for procuring a
stable market share.  Undoubtedly, demands between
port pairs are supposed to be the most important factor
for driven the result of route planning.  However, they
are quite difficult to be estimated the exact amounts for
each service trade in the planning stage.  The core of
planning contents is dedicated to obtain the available
ship’s routing and fleet deployment.

1. Problem Description

Route of liner shipping provides a cyclic voyage.
The well-defined general traveling salesman problem
(TSP) is naturally motivated to compare with it.  Some

various properties of marine transportation need to be
distinguished from TSP and to be reflected in our model
formulation, such as:
(1) Although many possible calling ports are considered,

not every one has to be visited.  Final executed
routing sequence is allowed to pass some candidates
over.

(2) The number of visited for one port is not limited only
once, either.  Almost practical two-way routes al-
ways call the same port once for both direction
services.

Besides, for a special case for the port pairs with
relatively larger cargo demands than the vessel’s
capacity, a route served between them is designed single-
handedly.  It implies that the same segment is not served
more than twice in most route structures.

Another basic characteristic of marine liner than
other transportation modes concerns with the service
conditions and deployed vessels.  In the normal situation,
single vessel can hardly serve long distance route with
a fixed service frequency in a week.  It needs enough
homogeneous vessels, which means same cruising speed
at least, to complete the whole rotation under satisfying
given weekly frequency.  The relationships of them
build on the cycle time. We can formulate it as

  v = r
168

f , (1)

where v means required vessels, r is the cycle time of
voyage in hours, and f is the given frequency of route
service in a week.  For example, if we keep one route on
weekly service, which means one time visited for each
port on the route in a week, seven days trip needs one
vessel, fourteen days trip needs two vessels, etc.

Ship’s routing and scheduling problem is a main
studied branch of fleet planning and management dis-
cussed from Ronen [12].  However, container liner has
attracted less attention.  Rana and Vickson [10, 11]
formulate a nonlinear programming and a mixed integer
programming models for multi-vessel and single vessel
routing problem, respectively, for containership charter.
Cho and Perakis [2] also submit two models to select
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suitable routes for various container fleets in which the
fleet size is determined or not.  Besides, a series of
papers discussed fleet deployment are contributed from
Papadakis and Perakis [5], Perakis and Papadakis [7, 8],
Perakis and Jaramillo [6], Jaramillo and Perakis [3],
Powell and Perakis [9], and Lane et al. [4]. These
contributions have not considered the characteristics of
liner shipping yet.

2. Practical Planning

In the beginning of the procedure of route planning
in marine liner’s practice different available fleets and
some possible visiting ports will be picked out after
ensuring the service scope of route.  Each fleet needs to
be assessed one by one for whether it can form a
complete, compatible and economic service route.
During this assessment, an experimental routing se-
quence referred to the relationships between the direc-
tion of route and the geographical position of ports can
be easily designed for inspecting its availability.  The
cycle time is summed up all its parts from estimation of
the sailing time over sea, piloting time in the ports, the
staying time in the ports for containers loading and
unloading, and allowed buffer time of the type of de-
ployed vessels.  If the number of vessels deployed can
just make service with the cycle time as held the exact
relationships in equation (1), the available ship’s rota-
tion is obtained as well.  Otherwise, any revising steps
by adjusting the number of visiting ports, routing
sequence, or even the type of vessels, cause to return to
the top of planning flow again until an available plan
obtained.  The finished route plan has finally to distrib-
ute to relative departments for reconfirming if it can be
really executed.  This procedure is simply depicted by
Fig. 1.  From above descriptions, the influence of de-

mands is presented on the type of vessels deployed,
selected ports and given service frequency.  The crucial
contents of route planning are producing a suitable
ship’s routing with the limitation of the cycle time.

In this paper, we follow the concept of practice to
assume that the capacity allocation caused from the
frequency and considered vessels can sustain the de-
mand of cargos for each calling port from early
estimation.  Besides, it is hard to expect that the cycle
time of designed route, which adds all of the fixed
sailing and calling times, can exactly match with the
number of vessels expressed in equation (1).  We apply
the concept of buffer time to increase the flexibility of
route design.  A mathematical model will be formulated
to describe this problem in the next section.

MATHMATICAL  MODEL

In our model, the segments between port pairs are
to be arc variables in considered network for represent-
ing the passage of route in the basic model structure.
We first define N as the node set of all considered ports
as well as A to be the arc set of all considered segments.
Each segment is also set buffer time variable to have the
flexibility in matching with the cycle time.  Some basic
constraints will be introduced before the objective func-
tion described and a lot of constraints added for avoid-
ing subtours occurred are also explained in following
contents.

1. Basic Constraints and The Objective Function

Since the route of liner carrier is always cyclic, arc
flows passing each node need to be conserved equally.
The variable xij is defined as the arc variable of the
segment between port i to j, then flow conservation
constraints are represented as equation (2).

   x ijΣ
j

– x jiΣ
j

= 0   ∀ i ∈  N (2)

The cycle time of route can be actually calculated
as representation in equation (1), when carrier has de-
cided the number of deployed vessels and the frequency
in a week already.  To calculate the cycle time of cyclic
journey can easily sum the sailing time of segment and
take only the time of staying in one port, origin or
destination port, into account to the segment.  We
further refer a variable of buffer time, bij with lower and
upper bounds (   β ij

–  signed negative and   β ij
+  signed posi-

tive respectively), to sailing segment (i, j).  Equation (3)
describes the constraint of the cycle time, where tij

means the average time of sailing on the segment (i, j)
plus staying in port i.  Equation (4) sets the bounds of
buffer time.Fig. 1.  Flow chart for the procedure of route planning in practice.
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    (Σ
(i, j) ∈ A

t ij + b ij) x ij = 168
f

v (3)

   β ij
– ≤ b ij ≤ β ij

+   ∀ (i, j) ∈  A (4)

However, variables bij and xij make equation (3) as
nonlinear that increase the difficulty of problem solved.
We replace bij to the difference of two nonnegative
variables,   b ij

+
 and   b ij

–
, i.e.   b ij = b ij

+ – b ij
–

.  Above two
equations are replaced by equations (5), (6) and (7) for
keeping linear limitations and assuring   b ij

+
 and   b ij

–

always positive between bounds.

    (Σ
(i, j) ∈ A

t ijx ij + b ij
+ – b ij

–) = 168
f

v (5)

   b ij
+ – b ij

– ≤ β ij
+x ij   ∀ (i, j) ∈  A (6)

   b ij
– – b ij

+ ≤ – β ij
–x ij   ∀ (i, j) ∈  A (7)

Some ports are sometimes asked to visit by carrier.
We can force the sum of flows directed out from each
one of these ports to be the number of compulsory
visiting.  As representing in equation (8), pi means the
least number of visiting port i, while Np represents the
set of all compulsory visiting ports.

   x ijΣ
j

≥ p i   ∀ i ∈  Np (8)

In the variables limitations, xij are supposed to be
0-1 integers and buffer time variables   b ij

+
,   b ij

–
 are

nonnegative real as equation (9).

xij ∈  {0, 1},     b ij
+ , b ij

– ≥ 0 (9)

We can formulate the objective function through
the above definitions of variables as equation (9) to
minimize the sum of variable costs of operation.  The
parameter of segment cost, cij, includes the average cost
of sailing on the segment (i, j) plus staying in port i as
same reason as the sailing time.  Another parameter hij

represents the unit cost of buffer times on the segment
(i, j).

   Min. c ijΣ
(i, j)

x ij + h ijΣ
(i, j)

(b ij
+ – b ij

–) . (10)

Above model can decide a route mix with minimi-
zation of cost and exact times of sailing on the required
segments already, but subtours may occur in the final
result.  These will also make the route plan impractical.
More constraints for avoiding these kinds of results
taking place are needed.

2. Constraints for Avoiding Subtour

Normally, another embedded network flow struc-

ture is applied to treat the infeasibility from subtours in
TSP [1], except the way of exponentially generating a
set of constraints for ensuring tour connected.  In con-
trast to TSP the routing problem in this research can
allow to bypass ones of all ports.  That means the
number of nodes connected in the tour is unknown, i.e.
the supply or demand on each node has to be changeable
in the network flow problem.  At the same time, a source
of supply node needs to be designated in advance.  It is
obviously easy to choose a source node from ports in
practical.  We can assign any one in the set of Np or
obtain it from the most recommended one by the carrier.
This source node is certainly involved in the final result.

We define yij as the embedded tour flow on the
segment (i, j), di as the supply variable of node i (−di

means demand), and ds as the supply of source node
specifically.  The tour flow is also required to follow the
flow conservation passed each node, however supplies
or demands on nodes are variables, not given values.
We formulate them as equation (11), but it may lose the
characteristics of flow conservation due to change the
parameters of supply and demand into variables.

    
y ijΣ

j
– y jiΣ

j
=

d i if i = s ,
– d i ∀ i ∈ N – {s} (11)

If there are tour flows on the arc, it represents that
the arc is selected by the route, and vice versa.  The tour
flow has a matching relationship with segment flow.
We use equation (12) to limit it, where M means an
enough big positive number.

yij ≤ Mxij  ∀ (i, j) ∈  A (12)

The sum of all supplies and demands should be
zero, so equation (13) binds the balance of all supplies
on nodes.  Since every node, except source, is demand
node, their sum equals the amount of source node.
Meanwhile, equations (13) and (14) satisfy the require-
ment of assuring the itinerary passed is a whole round
trip.

    d s = d iΣ
i ∈ N – {s}

(13)

   d i = x ijΣ
j

  ∀ i ∈  N − {s} (14)

Finally, equation (15) shows that variables of the
tour flow are asked as nonnegative integer and variables
of node supply are positive real.  Actually, variables of
node supply are also supposed to be integer.  Equation
(14), naturally, satisfies this requirement and equation
(13) follows to this condition for source node.

yij ≥ 0 integer, di ≥ 0 (15)
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3. Model Formulation

According to the explanation of the evolution for
each equation in the previous section, the whole math-
ematical model [MP] can be pined up as equation (16-1)
to (16-12) where all notations as previous mentions.

   [MP] Min. (Σ
(i, j)

c ij + εi) x ij + Σ
(i, j)

h ij(b ij
+ – b ij

–) (16-1)

   s.t. x ijΣ
j

– x jiΣ
j

= 0   ∀ i ∈  N (16-2)

   x ijΣ
j

≥ p   ∀ i ∈  Np (16-3)

   (Σ
(i, j)

t ijx ij + b ij
+ – b ij

–) = 168
f

v (16-4)

   b ij
+ – b ij

– ≤ β ij
+x ij   ∀ (i, j) ∈  A (16-5)

   b ij
– – b ij

+ ≤ – β ij
–x ij   ∀ (i, j) ∈  A (16-6)

    
y ijΣ

j
– y jiΣ

j
=

d i if i = s ,
– d i ∀ i ∈ N – {s} (16-7)

yij ≤ Mxij  ∀ (i, j) ∈  A (16-8)

    d s = d iΣ
i ∈ N – {s}

(16-9)

   d j = x ijΣ
j

  ∀ i ∈  N − {s} (16-10)

xij ∈  {0, 1},     b ij
+ , b ij

– ≥ 0 (16-11)

yij ≥ 0 integer, di ≥ 0 (16-12)

Some side constraints make this model as a mixed
integer programming (MIP) problem, although there are
two kinds of flows embedded on the defined network.
In addition to use the direct calculating methods, such as
the branch-and-bound algorithm, to solve it, an intuitive
method to manage these two flows respectively is
motivated.

COMPUTATIONAL  ALGORITHM

We propose a two-phase procedure based on the
branch-and-bound algorithm to be adopted for the de-
scribed model. In the first phase, the branch-and-bound
algorithm only solves the segment flow problem:

[P1] Minimizes (16-1)

subject to (16-2), (16-3), (16-4), (16-5),
(16-6), and (16-11).

Its solving result can satisfy the service conditions,
but subtours may exist.  If, on the other hands, all visited

ports are connected by the segment flows without
subtours, other constraints for avoiding separated tours
become redundant naturally.  Undoubtedly, the optimal
solution is obtained only from the first stage.  Otherwise,
the visited ports can be the candidates of the next stage’s
calculation.

For checking the whole sailing journey is con-
nected or not, an inspecting algorithm is supposed to be
developed.  However, we instead this complicate proce-
dure to combine into the second phase.  First, we sum up
the outgoing flows for each node from the result of the
first phase optimization.  The total flows of outgoing (or
incoming) from each node represent the times of node
passed by.  All of nodes with zero segment flow, that
means they are not selected to visit in the first phase,
will be disregarded in the next stage’s optimization.
Anyone with segment flows can be picked out on pur-
pose as the source of connecting flow, others are consid-
ered as demand node.  In equation (16-10), values of
nodes’ supply are supposed to be the sum of the segment
flows, except source.  The function of these constraints
ensures the visiting tour is connected.  It will bind the
tour flows in the second phase, if we convey this rule by
the result of the first phase.  So only to make sure that
the node candidates are connected to be same as the one-
to-all shortest path problem can increase the flexibility
and convenience in optimizing the second phase’s model.
Following this concept, values of candidate nodes’ sup-
ply can be set up as that let ds equal the total numbers of
nodes with the passing flows minus 1 and others equal
−1, i.e. di equals 1, in naturally.  Some constraints in the
second phase model also need to be modified to consist
with this idea.  In addition to keep the objective function
and constraints in the first model, equations (16-7) and
(16-9) are revised as

    
y ijΣ

j
– y jiΣ

j
=

k – 1 if i = s ,
– 1 ∀ i ∈ Nf – {s} , (17)

where Nf is the set of visited ports from the result of the
first phase and k equals its amount, |Nf|.  Meanwhile,
equation (16-10) is deleted.

The model [P1] neglects some constraints from
original model, so its optimal is supposed to be the
lower bound of original problem.  The objective value
and the branching order of [P1] can be exploited in the
second phase.  Suppose the objective value of the sec-
ond phase is equal to the objective value of the first, it
is certainly to be the optimum.  The solving procedure
is shown in Fig. 2.

NUMERICAL  EXAMPLE

We use one of the trans-Atlantic route provided
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from Yang Ming Lines in Taiwan for testing our model.
It is illustrated in Fig. 3.  The service ports in the Unite
State of America include Charleston (CHS), Miami
(MIA), New Orleans (NOL) and Houston (HOU), which
located in the southeast of U.S.A. or around the shore of
Gulf of Mexico respectively.  In the European ports, it
calls Felixstowe (FXT) in the Great Britain, Le Havre
(LEH) in France, Bremerhaven (BRV) in German,
Rotterdam (RTM) in the Nerthlands and Antwerp (ANR)
in Belgium. Yang Ming Company deploys five ships
with 1,962 TEU capacities on this route for weekly
service.  The cycle time is 35 days.  The route calls two
times in Charleston and Antwerp, one time for the
others and serves 11 segments.

We use this case to test nine situations distin-
guished with the number of ports visited compulsorily.
First, we execute solving the whole model, i.e. from
equations (16-1) to (16-12), by the branch-and-bound
algorithm directly.  Then, two-phase procedure is ex-
ecuted by the same cases.  During the tests, we use the
optimization package CPLEX 6.0 to implement the
calculation of the branch-and-bound algorithm (B&B).
Test cases still arrange the same cycle time of 35 days
for weekly service, so that needs to deploy 5 vessels

from equation (1).
Test results solved by the B&B directly are sum-

marized in the Table 1.  Since some cases are not so easy
to converge within a countable consumed time, we
record final upper bound that also means a best feasible
solution before stop calculating and lower bound for
each case.  Case 1, 2, 3, 7 and 8 all obtained the optimal
solution within less CPU times, while case 9 almost
obtained optimum in spite of requiring much calculat-
ing time.  On the other hand, case 4, 5, and 6 spent so
much CPU time, but still had a lot of gap between upper
and lower bounds.

Same cases are tested by the two-phase branch-
and-bound algorithm according to the solution proce-
dure described in last section.  Results are summarized
in Table 2.  All cases obtain optimal solutions caused
from the same objective values in two phases.  We can
also check the correctness of the two-phase algorithm
from that the optimal values by this method all fall in the
range of the upper and lower bounds from the result of
B&B for every case.  Meanwhile, the minimum cost
decreases in proportion to the decrease of the number of
compulsory ports visited is.  Under the constraints of
the cycle time, it implies that the less the number of

Fig. 2.  The procedure of the two-phase branch-and-bound algorithm. Fig. 3.  Service route of test case.

Table 1.  Test results solved by the branch-and-bound algorithm (B&B)

Case Number of ports Objective value The difference of bounds Consumed time

compulsory visit Upper bound Lower bound Value Gapa (%) (CPU Sec.)

1 9 394,670.0 394,670.0 0.0 0.00 0.4
2 8 375,520.0 375,520.0 0.0 0.00 0.4
3 7 375,520.0 375,520.0 0.0 0.00 3.0
4 6 366,007.5 361,044.2 4,963.3 1.37 12,285.2
5 5 394,670.0 342,738.1 51,931.9 15.15 7,016.6
6 4 349,037.5 330,929.8 18,107.7 5.47 7,603.4
7 3 318,690.0 318,690.0 0.0 0.00 0.4
8 2 318,690.0 318,690.0 0.0 0.00 2.0
9 1 318,690.0 318,657.9 32.1 0.01 12,137.2

aGap = (upper bound-lower bound) × 100/lower bound.
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visited ports need, the less segments and ports passing
over require.  This phenomenon is also seen from the
tendency of the numbers of visited ports and passed
segments in final results.  For satisfying the constraint
of the cycle time, cases 4 to 9 all produce one extra
segment besides forming a TSP cycle.  Only cases 1 and
2 obtain the divided tours in the first phase results.  The
routings solved in the two phases for case 1 are illus-
trated in Fig. 4 and 5.  Finally, the total CPU times by the
two-phase method are less consumed and more stable in
comparison with those of the B&B method.

CONCLUSIONS

The completed route planning of marine liner has
to make sure the availability of fleet allocation and
routing sequence, besides considering the market re-
quirement and service conditions.  We formulate the
central issue of route planning problem as an integer
programming model in this paper.  It can be applied to
the planning when the demand of transported cargo is
not so emphasized.  The results solved from the model
can obtain the available routing sequence and the buffer
time of each sailing segment with minimum cost.
Actually, user can easily conduct a timetable by it, once

the time of beginning to serve is provided already.
Furthermore, we also develop a two-phase procedure
based on the branch-and-bound algorithm for decreas-
ing the CPU consumed time of calculation.  The results
of comparisons with solving by the branch-and-bound
directly also show that this procedure is promising.

Undoubtedly, the demand of markets should be
taken into the future research account as well as some
service conditions for the cargo transport, such as the
transit time of goods.  Finally, based on those contribu-
tions of single route, the more complicate issues of
shipping network for marine liner could be continued.
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