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ABSTRACT

In this paper we consider the control problem of Dynamic
Positioning Systems for Ships (DPSS).  It interests as a case which
study in nonlinear controller design because the model exhibits
nonlinear interaction in three degrees of freedom (surge, sway, and
yaw) by means of main propellers aft of the ship.  The DPSS system
considered in this paper is modeled by a Takagi-Sugeno (T-S) type
fuzzy model.  By using linear feedback controller design technology,
we design a nonlinear fuzzy controller for the T-S type fuzzy-based
DPSS.  Finally, simulation results show the utility of the present fuzzy
control methodology.

INTRODUCTION

Recently, the nonlinear control problem of Dy-
namic Positioning Systems for Ships (DPSS) has been
widely studied [1-4].  The DPSS control problem is
usually solved under the assumption that the kinematic
equations can be linearized about a constant yaw angle
such that linear theory and gain scheduling techniques
can be applied.  This assumption has been removed by
using the Globally Exponentially Stable (GES) nonlin-
ear control law, which is developed in [2].  The GES is
proven by applying the backstepping design methodol-
ogy based on the Lyapunov stability theory.  The control
law is simulated on thruster-controlled ships [2].  In this
paper, we utilize Linear Matrix Inequality (LMI) meth-
odology [5-8] to find a fuzzy controller for stabilizing
the nonlinear DPSS.

Using fuzzy control methods to control nonlinear
DPSS, we utilize T-S type fuzzy model to represent the
nonlinear DPSS.  The T-S fuzzy type model are de-
scribed by a set of fuzzy IF-THEN rules, and then local

dynamic in the different state space can be regard as the
linear system.  The controller of nonlinear system can
be blended by the linear controllers of all rules.  The
controller design is carried out depend on the fuzzy
model via the Parallel Distributed Compensation (PDC),
which has been proposed in [6-7, 9-13].  The PDC
concept is useful for the fuzzy controller design of T-S
type fuzzy models.  The control approach is to design
linear feedback gains for each local linear model and let
the overall system input can be blended by these linear
feedback gains.  Based on LMI methods, we can find a
suitable common positive definite matrix and linear
feedback gains for each rule, and then to satisfy the
stability conditions for closed-loop systems.

The organization of this paper is presented as
follows: Section 2 describes the dynamic equations of
the nonlinear DPSS and the T-S type fuzzy modeling of
the DPSS.  Section 3 will provide the stability condi-
tions for the existence of the T-S fuzzy controllers,
which achieve the stability of the overall DPSS.  The
simulated results are also stated in this section. Finally,
a conclusion is given in the Section 4.

T-S  TYPE  FUZZY  MODELLING  OF  THE
NONLINEAR  DPSS

The normalized DPSS system model is proposed
in [1].  The case study of this paper is benchmark DPSS
system [2], which is controlled exclusively by means of
thrusters.  If thruster-assisted mooring is to be
considered, the ship can also be supplied with anchors.
During DPSS the damping forces can be assumed to be
linear since the speed of the ship is quite small.  There-
fore the equations of motion are as follow:

    η = J(ηη)v (1)

    v = H1η + H2v + H3τ (2)

where H1 is state matrix of the earth-fixed positions and
yaw angle ψ of the vessel, H2 is the state matrix of the
body-fixed velocities, and H3 is the state matrix of the
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control force and moment which are provided by the
thruster system.

   
J(ηη) =

cos(ψ) –sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1
(3)

is the rotation matrix in yaw and

    
H1 ≡ –N–1T ≡

h 111
h 112

h 113

h 121
h 122

h 123

h 131
h 132

h 133

(4a)

    
H2 ≡ –N–1Q ≡

h 211
h 212

h 213

h 221
h 222

h 223

h 231
h 232

h 231

(4b)

    
H3 ≡ N–1 ≡

h 311
h 312

h 313

h 321
h 322

h 323

h 331
h 332

h 333

(4c)

The earth-fixed positions (x, y) and yaw angle ψ of
the ships is expressed in vector η = [x y ψ]T.  The body-
fixed velocities are represent by the vector v = [u v r]T,
where the elements in these state vectors describes the
surge, sway and yaw modes, respectively.  The control
and moment are provided by the thruster system, τ = [τ1

τ2 τ3]T, see [1] for details.  The matrices N, Q and T for
a floating production ship are given in Section 3.  Star-
board-port symmetry of ships implies that N and Q,
which is constructed as follow:

   
N =

n 11 0 0
0 n 22 n 23

0 n 32 n 33

, Q =
q 11 0 0
0 q 22 q 23

0 q 32 q 33

(5)

The N is the inertia matrix including hydrody-
namic added inertia.  In general N will be nonsym-
metrical, that is n23 ≠ n32 due to the properties of
hydrodynamic added inertia [1].  The Q is damping
matrix, which is nonsymmetrical in most cases.

In other words, there is no coupling between the
surge and the sway-yaw subsystems.  The anchor forces
and moment are usually described by a diagonal matrix
as follows:

   
T =

t 11 0 0
0 t 22 0
0 0 t 33

(6)

After combining (1) and (2) in the space of
state variables, we can obtain the following state
equation:

  x 1 = cos(x 3)x 4 – sin(x 3)x 5 (7a)

  x 2 = sin(x 3)x 4 – cos(x 3)x 5 (7b)

  x 3 = x 6 (7c)

  x 4 = h 111
x 1 + h 112

x 2 + h 113
x 3 + h 211

x 4 + h 212
x 5

  + h 213
x 6 + h 311

u 1 + h 312
u 2 + h 313

u 3 (7d)

  x 5 = h 121
x 1 + h 122

x 2 + h 123
x 3 + h 221

x 4 + h 222
x 5

  + h 223
x 6 + h 321

u 1 + h 322
u 2 + h 323

u 3 (7e)

  x 6 = h 131
x 1 + h 132

x 2 + h 133
x 3 + h 231

x 4 + h 232
x 5

  + h 233
x 6 + h 331

u 1 + h 332
u 2 + h 333

u 3 (7f)

where

x(t) = [x1  x2  x3  x4  x5  x6]T = [x  y  ψ  u  v  r]T (8)

u(t) = [u1  u2  u3]T = [τ1  τ2  τ3]T (9)

We transform the nonlinear DPSS into T-S type
fuzzy model and we assume that yaw angle changes
between x3 ∈    ± π

2 .  Then the DPSS T-S type fuzzy

model forms as follows:

Rule1: IF x3 is about 0 (10a)
THEN    x(t) = A1x(t) + B1u(t)

Rule2: IF x3 is about  
π
2       x 3 < π

2 (10b)

THEN    x(t) = A2x(t) + B2u(t)

Rule3: IF x3 is about   – π
2       x 3 < π

2 (10c)

THEN    x(t) = A3x(t) + B3u(t)

where

    

A1 =

0 0 0 1 –α 0
0 0 0 α 1 0
0 0 0 0 0 1

h 111
h 112

h 113
h 211

h 212
h 213

h 121
h 122

h 123
h 221

h 222
h 223

h 131
h 132

h 133
h 231

h 232
h 233

(11a)

    

A2 =

0 0 0 β – 1 0
0 0 0 1 β 0
0 0 0 0 0 1

h 111
h 112

h 113
h 211

h 212
h 213

h 121
h 122

h 123
h 221

h 222
h 223

h 131
h 132

h 133
h 231

h 232
h 233

(11b)
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A3 =

0 0 0 β 1 0
0 0 0 – 1 β 0
0 0 0 0 0 1

h 111
h 112

h 113
h 211

h 212
h 213

h 121
h 122

h 123
h 221

h 222
h 223

h 131
h 132

h 133
h 231

h 232
h 233

(11c)

   

B1 = B2 = B3 =

0 0 0 h 311
h 321

h 331

0 0 0 h 312
h 322

h 332

0 0 0 h 313
h 323

h 333

(11d)

in which α  = sin(2°) and β = cos(88°).  The above T-S
type fuzzy model can be represented as:

    
x(t) =

Σ
i = 1

3

ωi[Aix(t) + Biu(t)]

Σ
i = 1

3

ωi

(12)

where

   ωi(t) = Π
j = 1

6

Mij(x j(t)) (13)

and Mij(xj(t)) is the grade of membership of xj(t) in Mij,
ωi(t) is the weight of the i-th rule and it is appropriate for
membership values.  The membership functions of this
T-S type fuzzy DPSS are shown in Fig. 1.

T-S  TYPE  FUZZY  CONTROLLER  DESIGN  FOR
THE  FUZZY-BASED  DPSS

We first changed the nonlinear DPSS into the T-S
type fuzzy model in the Section 2.  In this section, we
will introduce the fuzzy controller design of the T-S
type fuzzy models for the DPSS.  From the concept of
PDC, we first need to design the linear controller for
each rule, and then the controller of nonlinear system
can be blended by the linear controllers of all rules.
Using the PDC concept, the fuzzy controller is repre-
sented as follows:

Rule1: IF x3 is about 0 (14a)
THEN u(t) = G1x(t)

Rule2: IF x3 is about  
π
2       x 3 < π

2 (14b)
THEN u(t) = G2x(t)

Rule3: IF x3 is about   – π
2      x 3 < π

2
THEN u(t) = G3x(t) (14c)

where G1, G2 and G3 are the desired feedback gains for
the fuzzy controller design.  Hence, the output of the
fuzzy controller is

    
u(t) =

Σ
i = 1

3

ωi[Gix(t)]

Σ
i = 1

3

ωi

(15)

Substituting (15) into (12), we can obtain the
closed-loop state equation as follows:

    
x(t) =

Σ
i = 1

3

Σ
j = 1

3

ωi(t)ωj(t) {(Ai + BiGj)x(t)}

W (16)

where W =    Σ
i = 1

3

Σ
j = 1

3
ωi(t)ωj(t).  Rewriting equation (16),

we obtain

    
x(t) = 1

W Σ
i = 1

3

ωi(t)ωi(t)(Ai + BiGi)x(t) + 2Σ
i < j

ωi(t)ωj(t)Rijx(t)

(17)

where

   Rij =
(Ai + BiGj) + (Aj + BjGi)

2
i < j (18)

Note that Rij denotes the influence item between
each other rule, which in the same range in membership
function.

The stability analysis of the closed-loop T-S type
fuzzy model, which is driven by the PDC-type fuzzy
controller, is quoted in [6, 9-13].

Lemma 1 [6]
The DPSS T-S type fuzzy model is asymptotic

stable in the large if there exists a common positive
definite matrix P such that the following two conditions
are satisfied.

(Ai + BiGi)
TP + P(Ai + BiGi) < 0,  i = 1, 2, 3 (19)

Fig. 1.  The membership functions of x3(t).
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Rij
TP + PRij < 0,   i < j < 3 (20)

#

The stability analysis of T-S type fuzzy system
depends on the common positive definite matrix P and
linear feedback gainsGi.  Most of procedures are devel-
oped to find the suitable P and Gi to satisfy (19) and (20)
by iterative methods.  In This paper, we will use the LMI
methodology to deal with the present problem.

It is assumed that there is a linear matrix inequality
(LMI) of the following form:

    G(z) = G0 + Σ
i = 1

m

z iGi > 0 (21)

where zT = (z1  z1  ...  zm)is the variable and the symmetric
matrices Gi =   Gi

T
 ∈  Rn × n, i = 0, ..., m are given.  The

inequality symbol > 0 means that G(z) is positive definite.
Considering (21), the purpose of LMI methodology is to
find z such that G(z) > 0 or the LMI is infeasible.

The LMI (21) is a convex constraint on z, i.e., the
set {z|G(z) > 0} is convex.  In the control theory, many
stability conditions can be transformed into a LMI form,
such as Lyapunov inequality.  The Lyapunov inequality
for continuous-time system has the following form:

ATP + PA < 0 (22)

In this paper, the stability conditions for the non-
linear controller design problem of DPSS have been
stated in (19) and (20).  Fortunately, (19) and (20) can
be transformed into a LMI if we assign Gi = KiP

−1.
Applying the interior point polynomial method [14], we
can find the solutions of LMI.  The interior point poly-
nomial method [14] has been used to construct a useful
package in the LMI-toolbox of MATLAB software.  It
can easily find the common positive definite matrix P
and linear feedback controllers Gi for each rule for
satisfying the sufficient stability conditions (19) and
(20).

Now, we will present the numerical simulations
for nonlinear DPSS.  First, we use the T-S type fuzzy
model to represent DPSS.  We consider a tanker with
system matrices as follows (Bis-scaled values form
[1]):

  
N =

1.0852 0 0
0 2.0575 – 0.4087
0 –0.4087 0.2153

, Q =
0.0865 0 0

0 0.0762 0.151
0 0.0151 0.0031

(23)
  

T =
0.0389 0 0

0 0.0266 0
0 0 0

(24)

Then, the system matrices of DPSS T-S type fuzzy
model have the following forms:

  

A1 =

0 0 0 1 – 0.0349 0
0 0 0 0.0349 1 0
0 0 0 0 0 1

– 0.0358 0 0 – 0.0797 0 0
0 – 0.0208 0 0 – 0.0818 – 0.1224
0 – 0.0394 0 0 – 0.2254 – 0.2468

(25a)

  

A2 =

0 0 0 0.0349 – 1 0
0 0 0 1 0.0349 0
0 0 0 0 0 1

– 0.0358 0 0 – 0.0797 0 0
0 – 0.0208 0 0 – 0.0818 – 0.1224
0 – 0.0394 0 0 – 0.2254 – 0.2468

(25b)

  

A3 =

0 0 0 0.0349 1 0
0 0 0 – 1 0.0349 0
0 0 0 0 0 1

– 0.0358 0 0 – 0.0797 0 0
0 – 0.0208 0 0 – 0.0818 – 0.1224
0 – 0.0394 0 0 – 0.2254 – 0.2468

(25c)

   
B1 = B2 = B3 =

0 0 0 0.9215 0 0
0 0 0 0 0.7802 1.4811
0 0 0 0 1.4811 7.4562

T

(25d)

Applying LMI-toolbox of MATLAB, we can find
a suitable common positive definite matrix P and linear
feedback controllers G1, G2 and G3 to satisfying (19)
and (20).  The solutions can be found as follows:

  

P =

80.9059 0.0189 – 0.0039 78.2630 0.1595 – 0.0146
0.0189 91.7172 – 2.3605 – 0.0861 123.4075 – 14.6062
–0.0039 – 2.3605 88.6713 – 0.0059 – 18.6237 70.2996
78.2630 – 0.0861 – 0.0059 142.5254 0.0170 – 0.0054
0.1595 123.4075 – 18.6237 0.0170 261.8519 – 42.5122
–0.0146 – 14.6062 70.2996 – 0.0054 – 42.5122 94.6172

(26a)
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G1 =
– 2.5008 – 0.0323 0.0013 – 4.0261 – 0.0478 0.0059
0.0242 – 3.7457 0.5118 0.0276 – 7.4426 1.1990

– 0.0033 0.4926 – 2.0413 – 0.0035 1.3251 – 2.5837

(26b)

  

G2 =
– 1.6374 – 1.3577 0.0443 – 2.9198 – 1.8310 0.2238
1.4449 – 2.7685 0.4458 1.4008 – 5.7836 0.9781

– 0.2507 0.3846 – 1.7263 – 0.2429 1.0951 – 2.1628

(26c)

  

G3 =
– 1.6374 1.3584 – 0.0440 – 2.9228 1.8264 – 0.2232
– 1.4497 – 2.7695 0.4464 – 1.3993 –5.7902 0.9791
0.2510 0.3848 – 1.7264 0.2428 1.0963 – 2.1630

(26d)

Substituting G1 and G2 into (20), we obtain

   

PR12
T + R12P =

0.0057 – 0.0001 0 – 0.0016 0 0
– 0.0001 0.0047 – 0.0003 – 0.0001 – 0.0009 0.0001

0 – 0.0003 0.0008 0 – 0.0001 – 0.0004
– 0.0016 – 0.0001 0 – 0.0004 0.0001 0

0 – 0.0009 – 0.0001 0.0001 – 0.0003 0.0001
0 0.0001 – 0.0004 0 0.0001 0

 < 0

Substituting G1 and G3 into (20), we obtain

   

PR13
T + R13P =

0.0057 0.0001 0 – 0.0016 0 0
0.0001 0.0047 – 0.0003 0.0001 – 0.0009 0.0001

0 – 0.0003 0.0008 0 – 0.0001 – 0.0004
– 0.0016 0.0001 0 – 0.0004 – 0.0001 0

0 – 0.0009 – 0.0001 – 0.0001 – 0.0003 0.0001
0 0.0001 – 0.0004 0 0.0001 0

 < 0

The above fuzzy controller satisfies the stability condi-
tions (19) and (20).  Hence, the DPSS TS-type fuzzy
system is stable with the linear feedback gains given in
(26).

Using the above control gains for the nonlinear
DPSS, we are going to simulate the responses of the
body-fixed velocities v = [u  v  r]T, earth-fixed positions
(x, y) and yaw angle ψ of the vessel, respectively.  The
simulated results are given in Fig. 2 to Fig. 8.  From
these figures, it has been shown that the sound effect of
the LMI-based fuzzy type control method is very
remarkable.

CONCLUSIONS

In this paper, we have used T-S type fuzzy control-
lers to control the nonlinear DPSS.  First, we utilized T-
S type fuzzy model to represent the nonlinear DPSS.
Via PDC concept, we only need to design the linear
feedback gain in the each rule, and then the controller of
nonlinear system can be blended by the linear control-

Fig. 2.  Measured x-position (m).

Fig. 3.  Measured y-position (m).

Fig. 4.  Measured yaw angle (deg).
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lers of all rules.  Using LMI tools, we can solve common
positive definite matrix P and linear feedback gains, to
satisfy the stability conditions for the T-S type fuzzy
DPSS.  Finally, the performances of the fuzzy-based
DPSS can be realized in the simulated results.
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