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ABSTRACT

In this paper, a novel approach based on the trigonometric
equation solving technique is developed to solve the classical prob-
lem of celestial navigation.  It is shown that this approach, namely, the
simultaneous equal-altitude equations method (SEEM), can directly
calculate the astronomical vessel position (AVP) without an addi-
tional graphical procedure.  It is also found that the SEEM is not only
simpler than the matrix method but is also more straightforward as
compared with the spherical triangle method.  In addition, aimed at
the drawbacks of the intercept method, an improved approach with the
new computation procedure is presented to plot the celestial line of
position without the intercept.  With the improved approach and
iteration method the AVP can be determined successfully.  The
improved approach then, is used to validate the SEEM through two
designed examples.  Numerical results show that both the SEEM and
the improved approach are more accurate and effective as compared
with the conventional intercept method.

  INTRODUCTION

It is known that celestial navigation is the process
of determining the vessel position by observing the
celestial bodies, such as the sun, moon, planets, and
stars.  Only after the longitude and latitude of a vessel
at sea have been accurately calculated, the navigator can
thus, determine the safe course for the vessel and its
economical route.  Before the development of a means
of determining accurate time at sea, longitude could not
be found by celestial observation.  However, celestial
bodies, whose positions are independent of the time,

were used to determine the latitude and served as an
indication of direction in a very general way.  The
development of the marine chronometer, which is inno-
vated by John Harrison [15], opened up a whole new
vista to the navigator.  Several methods began to appear
to utilize this new dimension of navigation.  During the
two centuries, lots of efforts have been made to provide
easier or more adequate methods of reducing observa-
tions to a form of suitable for determining the position.

To date, the sight reduction methods, which in-
clude the high-altitude observation and intercept method,
are widely used in maritime training education or prac-
tical operation [8].  From theoretical point of view, the
concept of celestial line of position (LOP) is originated
from the circle of equal altitude, that is, the center of this
circle should be the geographical position (GP) of the
celestial body and the radius is equal to the co-altitude.
The celestial circle of position (COP) can be directly
plotted on the navigational chart.  However, there are
two reasons why this direct method of plotting the COP
is not suitable for most of celestial observations.  The
first is that the radii of most circles of equal altitude are
too long to be plotted on the chart.  Secondly, graphic
distortion at the high latitude is apparent on the com-
monly used Mercator chart, and the distortion increases
with the latitude of the GP.  These causes lead to the
limited usage of high-altitude observations.  For instance,
the high-altitude observation is only available at the
observed altitude greater than 87 degrees [2,11].  If,
however, the celestial body is very high in altitude, the
co-altitude will be small enough to plot on a naviga-
tional chart, and the distortion is negligible.  That is why
all sights with an observed altitude of 87 degrees or
more are classified into high-altitude observations, and
the resulting COP is directly plotted.

However, most of the altitudes of celestial bodies
are smaller than 87 degrees, to break through the limi-
tation of high-altitude observations, Commander Marcq
de St.- Hilaire of the French Navy first introduced the
assumed position (AP) to form the altitude difference,
or the intercept method, which has become the basis of
virtually all present day celestial navigation [2, 11].
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Following with the intercept method, numerous inge-
nious solutions to the problem of celestial navigation
have been devised and reduced to the practice. It should
be noted that available solutions to this problem are
essentially trial-and-error methods using the concept of
the AP [16].  Besides, these solution methods, no matter
directly or indirectly for their calculating procedures,
are inevitably driven into the graphical procedure for
the LOP [2, 5].

To resolve the problems mentioned above, let’s go
back to the “initial point” and consider the concept of
the circle of equal altitude.  Basically, two circles of
different celestial bodies will result in two intersections
and one of them will be the AVP by judging either the
dead reckoning (DR) position or estimated position
(EP). Since some errors will exist due to observation for
the celestial fix principle of circle of equal altitude,
three circles may arise three possible AVPs, and four
circles may produce six possible positions, etc.
Therefore, a case of three circles or more will become an
over-determined problem of the AVP. Such a problem
usually can be solved by using the least mean squares
technique [6, 13, 14].  Basically, the classical problem
of celestial navigation, in its simplest form, is the deter-
mination of an AVP of two celestial bodies, observed at
known Greenwich Mean Time (GMT) on a known date
[16].  With fast developments of the computers, the
direct numerical computation becomes possible, and
several packages, based on the numerical schemes, such
as the STELLA by the US navy and the ASTROLAB by
the France, have been developed [2, 13].  The direct
computation methods, in our opinion, they can be cat-
egorized into the spherical triangle method and the
matrix one.  Although the former is usually called the
direct method due to its practice, its solving process is
still indirect. In contrast, the latter is a direct one owing
to its mathematical formulation.  For the matrix method,
however, a four-order equation is formulated by using
the plane analytic geometry, and it needs to be imple-
mented by the numerical program for the AVP [16].  The
drawbacks of the mentioned methods motivate this re-
search to develop a simple and direct approach called
simultaneous equal-altitude equations method (SEEM).

Aimed at simplicity, the SEEM is formulated to
determine the AVP based on the trigonometric equation
solving technique, which owns the respective advan-
tages of the spherical triangle method and the matrix
one.  The SEEM, unlike the spherical triangle method
that needs lots of trigonometric equations in solving
process, only adopts two equations to obtain the AVP.
Besides, when the SEEM is compared with the matrix
method, it shows that their formulations are similar
each other; however, the SEEM adopts the local merid-
ian in place of the Greenwich meridian to form a relative

meridian concept and simplify the constructed equations.
In summary, the SEEM is not only more straightforward
than the spherical triangle method but also simpler than
the matrix one with respect to the solving procedures.

To reduce drawbacks of the intercept method, an
improved approach and its computation procedure is
also developed for solving the LOP especially when the
condition of altitude of a single celestial body is
encountered.  This approach shows the merit of plotting
the LOP without intercept since it can directly calculate
the perpendicular intersection of computed azimuth arc
and observed altitude arc.  By using the improved
approach, the navigators can easily plot the LOP on the
chart.  With information of altitudes of two celestial
bodies, a combined use of the approach and the iteration
method, which is used to minimize the error of artificial
AP selection, can further determine the AVP effectively.
Results from the iteration methods for the numerical
example show the effectiveness of the improved
approach, and results of the proposed approach are
further used to validate the SEEM.

This paper, apart from the current section is orga-
nized as follows.  Section 2 details methodologies of the
intercept method and reviews theoretical backgrounds
of these direct computation methods.  Derivations of
needed equations, constructions of the computation pro-
cedures of the SEEM and the improved approach are
presented in Section 3.  Two available examples [2, 11]
are adopted for validating the proposed approaches and
included in Section 4.  Finally, some important conclu-
sions are drawn in Section 5.

REVIEWS  ON  THE  METHOLODGY  FOR
DETERMINING  ASTRONOMICAL  VESSEL

POSITION

The theory of the sight reduction method is inter-
preted in this section first.  Various calculating methods,
which can be categorized as the intercept method and
are used when the computer technology or the calcula-
tor was not well developed, will be reviewed also.  And
several direct computation methods for determining the
AVP will be introduced since the SEEM combines the
advantages of these methods and avoids the shortcom-
ings of them.

1. Theory of sight reduction method

    The basic concept of the sight reduction method,
which is defined as the process of deriving from a
celestial observation the information needed for estab-
lishing a LOP, is attributed to the circle of equal altitude.
The observation itself consists of measuring the altitude
of a celestial body and noting the time.  In general, there
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exist two approaches for sight reduction, that is, the
high-altitude observation and the intercept method.  For
their solving processes, the former is a kind of direct
graphical methods, while the latter is a kind of calcula-
tion methods with graphic procedures.  The high-alti-
tude observation is to plot the celestial COP, and the
plotting elements are the GP of the celestial body and its
co-altitude.  The flowchart for solving the COP by using
the high-altitude observation is shown in Fig.1.  The
intercept method, in contrast, is to plot the celestial LOP
and the plotting elements are the AP, computed azimuth
of the celestial body, Zn, and the intercept, a. The
flowchart for solving the LOP by using the intercept
method is shown in Fig. 2.  It should be note that, in Figs.
1 and 2, the observed altitude Ho can be determined by
correcting the instrument errors (e.g., fixed and adjust-
able errors) and optical deviation errors (e.g., dip, re-
fraction and parallax errors, etc.) from the sextant
altitude, hs.  Besides, by using the nautical almanac or
related software, position variables in the celestial equa-
tor coordinate system, such as the declination, Dec, and
the Greenwich hour angle, GHA, can be obtained at
observed time.

2. Calculating methods based on the idea of intercept

The basic idea of the intercept method is to choose
an AP at the most nearby probable position (MPP) and

take it as the reference position to calculate the altitude
and azimuth.  By comparing the computed altitude and
observed altitude, the difference of the two altitudes
(called the intercept or altitude difference, a) can be
obtained.  Therefore, once the AP, computed azimuth of
the body, and intercept are all determined, the LOP can
be plotted according to the three elements.

Obtaining the computed altitude and azimuth for
the intercept method is an astronomical spherical tri-
angle problem.  That is, when the two sides and the
included angle of an oblique spherical triangle are given,
the problem is to solve the third side (co-altitude) and
the outer angle (azimuth angle).  Basically there are two
kinds of methods to fix it [2, 5].  One is called the direct
method, in which the triangle is not divided, and the
other is the indirect one, in which the triangle is divided
into two right-angled spherical triangles.  For the direct
method, the computed formulae including the cosine-
haversine equations, the classic equations and cosine-
four parts equations can be selected respectively.  For
the indirect one, the basic concept is to divide the
astronomical triangle into two right-angled spherical
triangles due to easy application of the Napier’s Rule,

Fig. 1. The flowchart for solving the COP by using the high-altitude
observation. Fig. 2.  The flowchart for solving the LOP by using the intercept method.
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and this method can be further categorized into two
types.  Type one is to drop arc of the great circle from the
celestial body perpendicular to the celestial meridian,
while type two is to drop arc of great circle from the
zenith to the hour circle.  Based on the two types of
methodology, many researches were devoted to the
field of the indirect method and resulted in many
methods.  In some methods, partial solutions were made,
and the resulted were tabulated into short tables due to
their simplicity and convenience, for instance, Aquino
and Braga of Brazil; Ball, Comire, Davis, and Smart of
England; Bertin and Hugon of France; Fuss of Germany;
Ogura and Yonemura of Japan; Blackburne of New
Zealand; Pinto of Portugal; Garcia of Spain; and Ageton,
Driesonstok, Gingrich, Rust, and Weems of the United
States [2, 5].  Due to these short tables, the indirect
method is usually called the short method. These short
methods are still in use mainly due to the compactness
of their tables and the universality of their applications.
They are an intermediate step between the earlier te-
dious solutions and the fast tabulated ones, and they
encouraged the navigator to work to a practical precision.
The earlier custom of working to a precision not justi-
fied by the accuracy of the used information created a
false sense of safety for navigators, especially those of
beginners.  Moreover, uses of logarithmic or auxiliary
functions during calculating process may easily result
in mistake.

Therefore, the inspection tables based on the di-
rect method were proposed to improve the “shortcom-
ing” of the short methods.  As mentioned above, these
inspection tables, like the Pub. No. 214, Pub. No. 249
and Pub. No. 229 in the references of [2, 11], are
constructed by those available spherical triangle
equations.  That is, when the latitude, declination, and
local hour angle are entering arguments, for instance
like the Pub. No. 229, the altitude and azimuth calcu-
lated by the cosine-four parts equations are tabulated.
Since the inspection tables offer additional detailed
information and avoid possibility of calculation
mistakes, they have now become the commonly used
tools.  However, detailed calculating information largely
increases the amounts of these tables and leads to the
inconvenience of carrying especially for the navigators
of small vessels.

It should be emphasized that two basic assump-
tions are made in this ingenious intercept method.  One
is that the azimuth of the observed vessel position to the
GP of a celestial body is the same as that of the AP to the
GP.  The other is that when the co-altitude is large
enough, the COP can be considered as the LOP.
Therefore, the precision of the AVP is influenced by
these two basic assumptions. The reasons are described
in the following.

(1) The distance between the AP and the true vessel
position should not exceed 30 nautical miles due to
entering arguments of integrated degrees; however,
the true vessel position is unknown for the naviga-
tional practical work.  Therefore, the intercept
method is essentially a kind of trial-and-error
method.  That is, if after the observed vessel posi-
tion had been obtained, and the distance between
the observed position and the initial AP had ex-
ceeded 30 nautical miles, then the obtained ob-
served vessel position could be considered as the
new AP in the iterative calculation with graphic
procedures for increasing the precision of AVP.

(2) When a celestial body is observed at a very high
altitude, for instance, the altitude exceeds 70 degrees,
in general, the co-altitude will be smaller and the
curvature of the COP will be larger.  Thus, the error
of curvature due to the replacement of the COP as
LOP on the Mercator chart will be increased.

3. Comments on Direct Computation Methods

Aimed at the classical problem of the celestial
navigation, the direct computation methods for the AVP,
can be categorized into the spherical triangle method
and the matrix one.  Comments on these two methods
are given in this section since some solving techniques
used in the SEEM are followed with both of them as
mentioned in the previous section.

A. Spherical triangle method

Two centers of circles of equal altitude are given
as S1 and S2, respectively, and their radii are zd1 and zd2,
respectively.  Now, assume the two intersections of the
two circles of equal altitude be P1 and P2, respectively,
and one of them is the AVP, P.  Then, the elevated pole,
Pnr, S1 and S2 can form three arcs of the great circles on
another as shown in Fig. 3.  Therefore, the problem now
becomes: the two zenith distances of two celestial bod-
ies (zd1 and zd2), the two pole distances of two celestial
bodies (pd1 and pd2), and the difference of hour angle
between two celestial bodies (HA) are known and try to
solve the AVP. The solving procedures using the spheri-
cal triangle method are summarized in the following
(Refer to Fig. 3).
Step 1. For the spherical triangle ∆ PnrS2S1, if pd1, pd2

and HA are known, then solve the great circle
distance between two celestial bodies, D.

Step 2. For the spherical triangle ∆ PnrS2S1, if pd1, pd2

and HA or pd1, pd2 and D are known, then solve
the angle α .

Step 3. For the spherical triangle ∆ P1S2S1 or ∆ P2S2S1,
if zd1, zd2 and D are known, then solve the angle
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β.
Step 4. For the vessel position P1 in the spherical tri-

angle ∆ PnrS2P1, the difference of angles m is
equal to (α  ~ β); while for the vessel position P2

in the spherical triangle ∆ PnrS2P2, the sum of
angles M is equal to (α  + β) in which M and m
are called the parallactic angle of the celestial
body S2.

Step 5. For the spherical triangle ∆ PnrS2P1 or ∆ PnrS2P2,
if pd2, zd2 and m (or M) are known, then solve
the two latitudes of AVPs, LP1 and LP2.

Step 6. For the spherical angle ∆ PnrS2P1 or ∆ PnrS2P2,
if pd2, zd2 and m (or M) as well as pd2, zd2, and
LP1 (or LP2) are known, then solve the meridian
angle of the celestial body S2.  Finally, the
longitudes of AVPs, λP1 and λP2, can be ob-
tained by the conversion of the meridian angle
and the Greenwich hour angle of the celestial
body S2.

After clarifying the solving procedures of the
spherical triangle method, one can easily understand
Chiesa, Kotlaric and many other researchers’ works are
based on the spherical triangle methods.  For instance,
one can found that in Chiesa’s work [4], those spherical
triangle equations, such as the cosine formula for side,
four parts formula, half angle formula, sine formula and
Napier’s analogies, are adopted in Steps 1, 2, 3, 5, and
6, respectively.  As for the work of Kotlaric [9, 10],
transformation of the Haversine function, Hav x = sin2x

2
,

is adopted in Steps 1 and 5; the half angle formula is
adopted in Steps 2, 3, and 6. Other related papers
can also be found in Ref. [1, 12].  Further to analyze,
except for Step 4, any one of the spherical triangle
formulae used in Steps shows the relation of three sides
and one angle.  Therefore, without consideration of
error propagation existing in Steps, the cosine formula

for side can be adopted in every step of the procedures.
In summary, the trigonometric equations are adopted
for the formulae of the spherical triangle method and for
constructing the computing procedures as mentioned
above, the spherical triangle method is actually an
indirect solver.

B. Matrix method

The AVP of the Earth coordinate system in a
Cartesian coordinate system can be expressed in a vec-
tor form as

P  = (X, Y, Z) = (cosL • cosλ , cosL • sinλ , sinL),

in which L denotes the latitude of an observer, and λ
denotes the longitude of an observer.  Similarly, the
celestial body position of the celestial equator coordi-
nate system in a Cartesian coordinate system can be
expressed as

E  = (x, y, z) = (cosd • cosG, cosd • sinG, sind),

in which d denotes the declination of a celestial body,
and G denotes the Greenwich hour angle of a celestial
body.  Then, the included angle of the unit vectors, P ,
and E , is the observed co-altitude and the dot product of
the two vectors yields

E  • P  = cos(90° − H) = sin H = h,

in which H represents the observed altitude.
Now, assume the observed altitudes of the two

celestial bodies are obtained simultaneously or nearly
simultaneously and the AVP of the Earth coordinate
system is the zenith of the celestial horizontal coordi-
nate system.  From the viewpoint of the observer, it
means that the observed altitude of the zenith should be
90 degrees, therefore, the three expressions can be
presented as

  x 1 y 1 z 1
x 2 y 2 z 2

X Y Z

X
Y
Z

=
h 1

h 2

1
,

or in matrix form as

E • P = H,

in which E represents the matrix of the celestial bodies
positions in the celestial equator coordinate system, P
represents the vector of the AVP in the Earth coordinate
system, and H represents the vector of the observed
altitudes of the celestial bodies in the celestial horizon-
tal coordinate system.  The above equation can be

Fig. 3. An illustration of obtaining an astronomical vessel position by
using the spherical triangle method.
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considered as a constitutive equation set of three differ-
ent coordinate systems on the celestial sphere for celes-
tial navigation.

In summary, using the matrix method to construct
the needed equation is quite directly; however, the
plane analytic geometrics should be used.  It leads to
complicated mathematical operations in solving pro-
cess and it is nearly impossible to calculate the result
only by means of a calculator [7, 13, 16, 17].  Therefore,
coding the calculation procedure into a numerical pro-
gram is usually necessary to obtain the AVP.

DERIVATIONS  OF  GOVERNING  EQUATIONS
AND  CONSTRUCTION  OF  COMPUTATION

PROCEDURES

In this section, the vector algebra will be used to
formulate some basic equations, which are found to be
the spherical triangle equations.  Besides, based on the
combined formulae for different conditions of celestial
observation, the computation procedures are constructed
to determine the AVP.

First of all, since the celestial equator coordinate
system is the extension of the Earth coordinate system,
the celestial sphere can be considered as a unit sphere.
Therefore, from the viewpoint of the navigator, the
position variables, the latitude and the longitude, de-
scribed in the Earth coordinate system and the position
variable, declination and Greenwich hour angle, de-
scribed in the celestial equator coordinate system can
replace the conventional (mathematical) spherical co-
ordinate system.  By doing so, the position vector for
any point P in the Cartesian coordinate system can be
expressed as

P  = (cosL • cosλ , cosL • sinλ , sinL)

= (cosd • cosGHA, cosd • sinGHA, sind),     (1)

in which L represents the latitude of the observer, λ
represents the longitude of the observer, d represents
the declination of the celestial body, and GHA repre-
sents the Greenwich hour angle of the celestial body.

Since the coordinate system has been decided, the
sign convention of the latitude or the declination is: a
positive value for the north, negative for the south.
Then, the concept of the relative meridian is introduced
and the Greenwich meridian is replaced as the local
meridian for transformation of the coordinate system,
as shown in Fig. 4.  Therefore, the position vectors for
the zenith, celestial body and elevated pole can be
respectively expressed as

X  = (cosL, 0, sinL), (2a)

S  = (cosd • cost, cosd • sint, sind), (2b)

P nr = (0, 0, ±1) (2c)

in which t is the meridian angle and its value is deter-
mined by the difference of the longitude of the observer
and the Greenwich hour angle of the celestial body.  The
sign convention is decided according to the conven-
tional practice of the celestial navigation [3].

1. Derivation of the basic equations

By introducing the concept that the latitude of the
observer is equal to the altitude of the elevated pole, the
celestial equator coordinate system and the celestial
horizontal coordinate system can be combined together;
that is, the described position variables, altitude and
azimuth angle, for the celestial horizontal coordinate
system based on the observer can be set up on the
celestial sphere.  Hence, the astronomical triangle can
be formed, and its three vertices, three sides and three
angles are shown as Fig. 4.

A. Equal altitude equation of celestial body

In Fig. 4, the included angle, side of astronomical
triangle, of the unit vectors, X  and S , is exactly the
zenith distance, zd, and it is also called the co-altitude
since the celestial body can only be observed upon the
celestial horizontal plane.  According to the geometric
and algebraic definitions of the dot product of two
vectors, one can have

X  • S  = 1 • 1 • cos (zd) = sin H
(Geometric definition)

Fig. 4. The astronomical triangle in the combined celestial equator
and celestial horizon systems of coordinates.
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= cosL • cosd • cost + sinL • sind

(Algebraic definition),

and rearranging the above equation one has

sinH = sinL • sind + cosL • cosd • cost, (3)

in which H represents the altitude of the celestial body.
It should be note that Eq. (3) is the well-known cosine
formula for side in spherical trigonometry.  Since sev-
eral formulae, such as the haversine formula, are de-
rived from this equation, it has been recognized as the
basic formula in celestial navigation [2, 11].

B. Azimuth angle equation of celestial body

For different given conditions there can have dif-
ferent azimuth angle equations of celestial body, the
altitude azimuth equation, the time and altitude azimuth
equation and the time azimuth equation, are derived,
respectively, in the following.

a. The altitude azimuth equation

As shown in Fig. 4, the cosine formula for side in
the spherical trigonometry can be expressed as

cos(pd) = sinL • cos(zd) + cosL • sin(zd) • cosZ,(4)

in which pd represents the polar distance and Z repre-
sents the azimuth angle.  Because pd = 90° +− d and zd =
90° − H, Eq. (4) yields

sind = sinL • sinH + cosL • cosH • cosZ. (5)

Therefore, the azimuth angle can be obtained as

   cos Z =
sin d – sin L ⋅ sin H

cos L ⋅ cos H
. (6)

Eq. (6) is another form of the cosine formula for
side in spherical trigonometry.  When the altitude of the
celestial body is given, the azimuth angle can be deter-
mined from the equation, which is thus called the alti-
tude azimuth equation in celestial navigation [2, 11].

b. The time and altitude azimuth equation

As shown in Fig. 4, the azimuth angle is the
included angle, angle of astronomical triangle, of the
two unit vectors, (X  × S ) and (X  × Pnr ).  The geometric
and algebraic meanings of the cross products of the two
vectors can be expressed as

||X  × S | × |X  × Pnr ||

= |[sin(zd) • sin(Co − L) • sin (Z)]X |

   = cos H ⋅ cos L ⋅ sin Z (Geometricdef inition)

= |[(X  × S ) • Pnr ]X |

= cosL • cosd • sint (Algebratic definition)

and rearranging it yield

cosH • sinZ = cosd • sint. (7)

Eq. (7) is the sine formula in spherical trigonom-
etry and is also called the time and altitude azimuth
equation in celestial navigation. Besides, a combination
of Eqs. (3) and (7) is called the sin-cosine equations or
the classic equations.

c. The time azimuth equation

Substituting Eqs. (3) and (7) in Eq. (5) yields

   sin d = (sin d ⋅ sin L + cos d ⋅ cos L ⋅ cos t) ⋅ sin L

   + (cos d ⋅ sin t
sin Z

) ⋅ cos L ⋅ cos Z ,

Rearranging the above equation can yield

sind • (1 − sin2L) = (cosd • cosL • cost • cosL)

+ cosd • sint • cosL • cotZ.

By dividing cosd • cosL at two sides of the above
equation simultaneously yields

tand • cosL = cost • sinL + sint • cotZ.

Hence

   tan Z = sin t
(cos L ⋅ tan d) – (sin L ⋅ cos t)

. (8)

Eq. (8) is the four parts equation of the spherical
trigonometry.  When the altitude is unknown, this equa-
tion can be used to obtain the azimuth to adjust the
compass error for observation of the celestial body.
Therefore, this equation is also called the time azimuth
equation in celestial navigation [2, 11].

2. Construction of the computation procedures

Based on “do right things (effectiveness) rather
than do things right (efficiency)”, the computation
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procedures of the altitude of a single celestial body
and the altitudes of two celestial bodies can be
constructed by choosing different combinations of for-
mulae to determine AVP effectively at different sight
conditions.

A. Condition of the altitude of a single celestial body

a. The combined computation formulae of the intercept
method

The intercept method is to choose an AP, at the
nearby of the MPP and take it as the reference position
to compute the altitude and the azimuth, respectively.
The appropriate measure is to choose Eqs. (3) and (8)
and one has

sinHC = sinL • sind + cosL • cosd • cost,           (9)

   tan Z C = sin t
(cos L ⋅ tan d) – (sin L ⋅ cos t)

, (10)

in which HC represent the computed altitude and ZC

represents the computed azimuth angle.

b. The computation procedures to solve the LOP with-
out intercept

In fact, Eqs. (9) and (10) are generally used to
make the sight reduction tables for marine navigation,
more specifically, the commonly used Pub. No. 229.
The AP is originated for entering arguments of integral
degrees in accordance with the inspection table.  If
the computation method is adopted, the choice of the
initial reference positions, such as the DR position, the
MPP, or the optimal EP, can be unconstrained.  As
mentioned in the previous section, the distance between
the AP and the true vessel position should not exceed
30 nautical miles due to entering arguments of inte-
grated degrees.  Again, if the computation method is
used, this impractical regulation can be released and the
accuracy of the obtained AVP can be increased by the
iteration method.  From the viewpoint of computation,
once the computed azimuth is obtained, the perpendicu-
lar intersection can be calculated by using the classic
equations.  Then, the computed azimuth line and the
LOP can be plotted by considering the intersection as
the reference point of the possible AVP.  In other words,
this scheme is a kind of computation methods which can
plot the LOP without intercept.  Hence, it is an improved
approach for conventional intercept method.  It’s basic
idea is illustrated in the following.

Eqs. (7) and (3) are chosen for plotting the
LOP without intercept and they can further be expressed
as

   sin t =
cos H 0 ⋅ sin Z C

cos d
, (11)

sinH0 = sinL • sind + cosL • cosd • cost (12)

in which ZC represents the computed azimuth angle and
it can be obtained by using Eq.(10), and H0 represents
the observed altitudes.  By using Eq. (11), the meridian
angle can be obtained quickly and a comparison of the
longitude of the initial reference position and the GP
can yield the longitude of the possible AVP easily.
Similarly, the latitude of the possible AVP can be
obtained by using Eq. (12).  Derivations of the trigono-
metric equation for the computation are presented in the
following.

Dividing d at two sides of Eq. (12) simultaneously
can yield

   sin H 0

sin d
= sin L + cos L ⋅ cos t

tan d
. (13)

Now, let

   tan θ = cos t
tan d

. (14)

Substitute Eq. (14) in Eq. (13), multiply cosθ at
both sides simultaneously and introduce the additional
formula can yield

   sin (L + θ) =
sin H 0 ⋅ cos θ

sin d
. (15)

Therefore, the computation procedures to solve
the LOP without intercept can be summarized in the
following.
Step 1. The computed azimuth angle ZC can be obtained

by using Eq. (10).
Step 2. The longitude of the possible AVP can be ob-

tained by using Eq. (11).
Step 3. The latitude of the possible AVP can be ob-

tained by using Eqs. (14) and (15).
Step 4. By taking the possible AVP as the reference

point and plotting the azimuth line according to
the computed azimuth, the LOP can be deter-
mined from the line which is perpendicular to
the azimuth line and passes through the refer-
ence point simultaneously.  This step is also a
graphic drawing work.

B. Condition of the altitudes of two celestial bodies

The condition of the altitude of two celestial bod-
ies can be categorized into two cases.  One is the case of
observing the altitudes of two celestial bodies simulta-
neously or nearly simultaneously; the other one is the
case of observing altitudes of the same or different
celestial bodies at different time.  For the latter case, the
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running fix concept is usually adopted and after the
course, speed and the period of two observing times
have been identified the latter case can be transferred
into the former case when the rhumb line sailings in
conjunction with the moving reference position,  the GP
of high-altitude observation or the AP of intercept
method, is adopted.  The reason is to obtain a celestial
fix, each would have to be advanced or retired to the
desired for the fix, making proper allowance for the
travel of the ship during the intervening time [2, 11].  As
shown in Fig. 5, since the observing altitudes and its
GPs of two celestial bodies have been determined, the
equal altitude equations of the two celestial bodies can
be expressed in the following:

cosd1 • cost1 • cosL + sind1 • sinL = sinH1       (16)

cosd2 • cost2 • cosL + sind2 • sinL = sinH2       (17)

in which d1, t1, H1 and d2, t2, H2 represent the declination,
meridian angle  and observed altitude of the celestial
body 1, S1, and the celestial body 2, S2, respectively.

Now let a1 = cosd1, b1 = sind1, c1 = sinH1, a2 =
cosd2, b2 = sind2, and c2 = sinH2.  From Eqs. (16) and
(17), one has

  cos L =
b 2c 1 – b 1c 2

a 1b 2cos t 1 – a 2b 1cos t 2
, (18)

  sin L =
a 1c 2cos t 1 – a 2c 1cos t 2

a 1b 2cos t 1 – a 2b 1cos t 2
. (19)

Basically, the celestial equator coordinate system
can be considered as the extension of the Earth coordi-
nate system.  Since the two systems have been inte-
grated in the celestial sphere and are further combined
with the celestial horizontal coordinate system; based

on the concepts that the observer is exactly the zenith
and the celestial sphere is a unit sphere, the length of the
unit vector is equal to 1 in geometric definition, and the
observed altitude of the zenith should be 90 degrees in
celestial navigation, that means

cos2L + sin2L = 1. (20)

Substituting Eqs. (18) and (19) in Eq. (20) and
rearranging it, the relation of the meridian angles of the
two celestial bodies in the combined coordinate system
can be yielded as

(A • cost1 − B • cost2) • (C • cost1 − D • cost2) = E2,
(21)

in which

   A = a 1(b 2 – c 2) = cos d 1 ⋅ (sin d 2 – sin H 2)
B = a 2(b 1 – c 1) = cos d 2 ⋅ (sin d 1 – sin H 1)
C = a 1(b 2 + c 2) = cos d 1 ⋅ (sin d 2 + sin H 2)
D = a 2(b 1 + c 1) = cos d 2 ⋅ (sin d 1 + sin H 1)
E = b 2c 1 – b 1c 2 = sin d 2 ⋅ sin H 1 – sin d 1 ⋅ sin H 2

.

(22)

Since now the celestial bodies can be observed
simultaneously, the difference of meridian angles for
the two celestial bodies can be expressed as (refer to
Fig. 5)

HA12 = t1 ~ t2, (23)

in which HA12 denotes the difference of meridian angles
from celestial body 1 to body 2.  Taking the cosine
operation in Eq. (23) yields

cost1 = p • cost2 + q • sint2, (24)

in which

  p = cos HA12

q = sin HA12
. (25)

Substituting Eq. (24) in Eq. (21) yields

[(Ap − B) • cost2 + Aq • sint2] • [(Cp − D) • cost2

+ Cq • sint2] = E2. (26)

To solve the meridian angle of celestial body 2, t2,
from Eq. (26), let

   tan α =
Ap – B

Aq
, (27)

Fig. 5. An illustration of obtaining an astronomical vessel position by
using the SEEM.
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in which

   sin α =
Ap – B

R

cos α =
Aq
R

R = ± (Ap – B)2 + (Aq)2

, (28)

and also let

   tan β =
Cp – D

Cq
, (29)

in which

   sin β =
Cp – D

S

cos β =
Cq
S

S = ± (Cp – D)2 + (Cq)2

, (30)

It should be noted that the sign convention of R is
the same as that of the multiply product of Ap − B and
Aq.  Similarly, the sign convention of S is determined by
that of the multiply product of Cp − D and Cq.  Substi-
tuting Eqs. (27) and (29) in Eq. (26) and introducing the
additional formulae, one has

   sin (t 2 + α) ⋅ sin (t 2 + β) = E2

RS
. (31)

Introducing the products of trigonometric func-
tions in Eq. (31) yields

   cos (2t 2 + α + β) = cos (α – β) – 2E2

RS
. (32)

Now, t2 can be obtained and reduced to the longi-
tude of the AVP. By using Eq. (23), the meridian angle
of the celestial body 1, t1, can be obtained.  Therefore,
the computation procedure of the SEEM can be summa-
rized in the following.
Step 1. The preliminaries, A, B, C, D, E, p, q, R and S,

can be obtained by using Eqs. (22), (25), (28),
and (30).

Step 2. The parameters, α  and β, can be obtained from
Eqs. (27) and (29).

Step 3. The meridian angle of celestial body 2, t2, can
be obtained from Eq. (32) and can be further
reduced to the longitude of the AVP, λ.  Besides,
the meridian angle of celestial body 1, t1, can be
determined from Eq. (23).

Step 4. Repeating uses of Eqs. (14) and (15) for Eqs.
(16) and (17), respectively, can determine the
latitudes of the AVPs for celestial body 1 and
celestial body 2, respectively. Besides, the re-
sults can be checked with each other for

validation.

ILLUSTRATED  EXAMPLES

Two examples are used to validate the proposed
improved approach for solving the LOP without inter-
cept and the SEEM, respectively.  Results are further
compared with those of the intercept method commonly
used in conjunction with the inspection tables (Pub. No.
229).

Example 1. A vessel is in the position of DRL39°N,
λ157°08.0'W at the Zone Time of 20-07-43 to observe
the Star Kochab with a sextant and to observe the Star
Spica in the position of DRL39°N, λ157°10.0'W at the
Zone Time of 20-11-26.  The navigator records the
needed information and further reduces it from the
nautical almanac for sight reduction as shown in Table
1 [2].

Required: The AVP can be determined in the following
three approaches for sight reduction.
1. Using the intercept method together with the inspec-

tion table to solve the AP, Zn and a, and plot the LOP.
(Approach 1)

2. Treating DR as the initial reference position, using
the computation method without intercept to solve
the possible AVP, and plot the LOP. (Approach 2)

3. Using the SEEM to determine the AVP directly.

Solution.
1. The three elements, AP, Zn and a, for plotting the

LOPs from the inspection table and needed informa-
tion are summarized in Table 2.  They can be shown
in the small area plotting sheet to plot the LOPs and
determine the AVP, which is the intersection of the
two LOPs as shown in Fig. 6.

2. Use of the proposed improved approach without in-
tercept can obtain the computed azimuth and possible
AVP as the reference point.  The procedures and
results are summarized in Table 3.  Those results can
be used to determine the AVP, as shown in Fig. 6.

3. Use of the SEEM can directly determine the AVP,

Table 1. The needed information for sight reduction in
example 1

Body ZT Ho GP

Kochab 20-07-43 47°13.6'    74°10.6'N
103°43.0'W

Spica 20-11-26 32°28.7'    11°08.4'S
126°05.7'W

Source: [2]
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L39°N, l156°21.7'W, without plotting.  The details
are summarized in Table 4 and the result is shown in
Fig. 6.

As shown in Fig. 6, although some errors may arise
in the first two approaches due to graphical drawings
and measures, results from the three approaches are
nearly the same, and it shows that theories of the pro-
posed computation approaches have been validated.
Besides, they are also superior to the conventional
intercept method from indices of calculation speed and
plotting the LOP.  Moreover, the proposed SEEM can
determine the AVP directly without plotting as com-
pared with the other two approaches.

Example 2. The 2004 DR position of a vessel is L41°34.
8'N, λ017°00.5'W.  At 20-03-58, the star Capella is
observed with a sextant.  At 20-02-56, shortly before the
above observation, a sight had been taken on another
star, Alkaid.  The navigator records the needed informa-
tion and further reduces it from the nautical almanac for

Fig. 6. A comparison of various methods for sight reduction in ex-
ample 1.

sight reduction as shown in Table 5 [11].

Required: The AVP can be determined using the three
approaches for sight reduction.

Solution.
1. Results of AP, Zn and a are listed in Table 6 and the

graphical AVP, L41°38.6'N, λ017°08.1'W is shown in
Fig. 7.

2. Results of the computed azimuth and possible AVP as
the reference point are listed in Table 7 and the
graphical AVP, L41°39.4'N, λ017°06.9'W is shown in
Fig. 7.

3. Use of the SEEM can directly determine the AVP,
L41°39.1'N, λ017°07.3'W, without plotting. Results
and the procedures are listed in Table 8 and the
computed AVP is shown in Fig. 7.

In Fig. 8, which shows computing results of the
three approaches along the LOP of the star Capella in a
larger scale of Fig. 7, it has been found that the com-
puted AVPs are not the same.  Therefore, the improved
approach (approach 2) with the iteration method is
proposed to validate the true AVP.  The details of
computing results are listed in Table 9.  In Fig. 8, it
shows that when using the AVPs obtained from ap-
proaches 1 and 2, respectively, as the initial values for
iterations; both of them are approaching fast to the AVP

Fig. 7. A comparison of various methods for sight reduction in ex-
ample 2.

Table 2. Three elements, AP, Zn and a, for plotting the
LOPs by using approach 1 in example 1

Body The three plotting elements of LOP

Kochab
   

AP
39°N Zn = 018.9°
156°43.0'W a = 5.2 'Toward

Spica
   

AP
39°N Zn = 143.3°
157°05.7'W a = 20.2 'Toward

Source: [2]
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Table 4.  The solving process of the SEEM for obtaining the astronomical vessel position in example 1

Process Eqn. Input Output Solution

preliminary (22) d1 = 74°10.6' A = -0.199101781
(25) d2 = -11°08.4' B = 0.233763897
(28) H1 = 47°13.6' C = 0.093737476
(30) H2 = 32°28.7' D = 1.664194158

HA12 = 22°22.7'W E = -0.658455667
p = 0.924690071
q = -0.380720728
R = -0.414855393
S = 1.577919672

1 (27) A, B, p, q α = -79.47179607°
(29) C, D, p, q β = 88.70403119°

2 (32) E, R, S, and 2t2 + α + β λ = 156°21.7'W
cos(α − β) = 69.76509369°

= -0.978781026 t2 = 30.26642929°
= 30°16.0'E

(23) HA12, t2 t1 = 52°38.7'E

 3 (14) t1, d1 θ = 9.757174353° L = 38.9998313°
(15) H1, θ, d1 L + θ = 48.75700565° = 39°N

Check (14) t2, d2 θ = -77.15635503° L = 38.99963569°
(15) H2, θ, d2 L + θ = -38.15671934° = 39°N

Answer: Astronomical Vessel Position: L = 39°N, λ = 156°21.7'W

Table 3.  The solving process of approach 2 for obtaining the LOPs in example1

Process Eqn. Input Output Solution

(Kochab) (10) t = 53°25.0'E (Est.) Zc = N18.73888561°E Zn = 18.7°
1 L = 39° (DRL)

d = 74°10.6' (GPL)

2 (11) Ho = 47°13.6' t = 53.13957475°E λ = 156°51.4'W
Zc = 18.73888561°

d = 74°10.6'

3 (14) t = 53°08.4' θ = 9.648471827°
d = 74°10.6'

(15) Ho, θ, d L + θ = 48.7782125° L = 39°07.8'N

(Spica) (10) t = 31°04.3'E (Est.) Zc = -36.71403879° Zn = 143.3°
1 L = 39° (DRL) = N143.28596121°E (*)

d = -11°08.4' (GPL)

2 (11) Ho = 32°28.7' t = 30.93089691°E λ = 157°01.6'W
Zc = 143.28596121°

d = -11°08.4'

3 (14) t = 30°55.9' θ = -77.07085715°
d = -11°08.4'

(15) Ho, θ, d L + θ = -38.45190368° L = 38°37.1'N

Kochab:
   39°07.8'N

156°51.4'W
, Zn = 18.7°

Spica:
   38°37.1'N

157°01.6'W
, Zn = 143.3°

* Since tan(−θ) = tan(180° − θ) therefore, (−θ) is replaced as (180° − θ).

Answer
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obtained by using the SEEM.  It proves that the SEEM
is more accurate than the other two approaches.  Besides,
it is more versatile than the other two approaches espe-
cially for higher altitude observation conditions due to
its theoretical background.  Moreover, the SEEM can
compute the AVP effectively without graphic pro-
cedures.  In Fig. 8, it also has been found that the
practical measured distance between the AVPs from
approach 1 and the SEEM are over 0.5 nautical mile,
this significant difference shows that there exist curva-
ture errors due to the replacement of the COP by the
LOP at the higher altitude of the star Alkaid in the

intercept method.  On the other hand, when the im-
proved approach is adopted in conjunction with the
iteration method, the accurate AVP can also be obtained
by the direct computation without considering the two
assumptions of the intercept method as shown in Fig. 8
and Table 9.

CONCLUSIONS

In this paper, two computation approaches based
on the fixed coordinate system and the relative meridian
concept have been developed to solve the AVP problem.

Table 5. The needed information for sight reduction in
example 2

Body ZT Ho GP

Capella 20-03-58 15°19.3'    45°58.4'N
131°24.8'W

Alkaid 20-02-56 77°34.9'    49°25.7'N
003°14.2'W

Source: [11]

Table 6. Three elements, AP, Zn and a, for plotting the
LOPs by using approach 1 in example 2

Body The three plotting elements of LOP

Capella
   

AP
42°N Zn = 318.8°
017°24.8'W a = 24.2 'Away

Alkaid
   

AP
42°N Zn = 047.9°
017°14.2'W a = 10.4'Away

Source: [11]

Table 7. The solving process of approach 2 for obtaining the LOPs in example 2.

Process Eqn. Input Output Solution

(Capella) (10) t = 114°24.3'W (Est.) Zc = N40.98587018°W Zn = 319°
1 L = 41°34.8' (DRL)

d = 45°58.4' (GPL)

2 (11) Ho = 15°19.3' t = 65.52879657° or λ = 016°56.5'W
Zc = 40.98587018° 114.47120343°W (*)

d = 45°58.4'

3 (14) t = 114°28.3' θ = -21.82130093°
d = 45°58.4'

(15) Ho, θ, d L + θ  = 19.94797852° L = 41°46.2'N

(Alkaid) (10) t = 13°46.3'E (Est.) Zc = N46.10682304°E Zn = 46.1°
1 L = 41°34.8' (DRL)

d = 49°25.7' (GPL)

2 (11) Ho = 77°34.9' t = 13.78447652°E λ = 0.17°00.3'W
Zc = 46.10682304°

d = 49°25.7'

3 (14) t = 13°47.1'E θ = 39.74635188°
d = 49°25.7'

(15) Ho, θ, d L + θ = 81.32013587° L = 41°34.4'N

Answer
Capella:    41°46.2'N

016°56.5'W
, Zn = 319°

Alkaid:    41°34.4'N
017°00.3'W

, Zn = 46.1°

*Since sinθ = sin(180° − θ), either θ or (180° − θ) can be chosen according to the estimated t.
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are included to validate the proposed two approaches.  It
is shown that the proposed approaches are not only more
accurate than the conventional one but also more versa-
tile especially when the higher altitude observation
conditions are encountered.  Besides, the proposed SEEM
also shows its superiority over the other two approaches
because it can determine the AVP directly without
graphical procedures.
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Table 9.  The solving process of approach 2 in conjunction with the iteration method to determine astronomical vessel position

Reference                                               Body

     Iteration point Capella Alkaid Intersection

(Approach 1) AP, Zn, a    42°N Z n = 318.8°
017°24.8'W a = 24.2'A

    42°N Z n = 047.9°
017°14.2'W a = 10.4'A

   41°38.6'N
017°08.1'W

1    41°38.6'N
017°08.1'W

   41°38.6'N
017°08.1'W

, Z n = 318.9°    41°39.0'N
017°07.2'W

, Z n = 46.5°    41°39.2'N
017°07.4'W

2     41°39.2'N
017°07.4'W

   41°39.0'N
017°07.5'W

, Z n = 318.9°    41°39.2'N
017°07.4'W

, Z n = 46.5°    41°39.2'N
017°07.3'W

3    41°39.2'N
017°07.3'W

   41°39.1'N
017°07.3'W

, Z n = 318.9°    41°39.2'N
017°07.4'W

, Z n = 46.5°    41°39.1'N
017°07.3'W

4    41°39.1'N
017°07.3'W

   41°39.1'N
017°07.3'W

, Z n = 318.9°    41°39.2'N
017°07.3'W

, Z n = 46.5°    41°39.1'N
017°07.3'W

Answer: Astronomical Vessel Position: L = 41°39.1'N, λ = 017°07.3'W

(Approach 2) DR    41°34.8'N
017°00.5'W

   41°46.2'N
016°56.5'W

, Z n = 319°    41°34.4'N
017°00.3'W

, Z n = 46.1°    41°39.4'N
017°06.9'W

1    41°39.4'N
017°06.9'W

   41°39.4'N
017°06.9'W

, Z n = 318.9°    41°39.2'N
017°07.4'W

, Z n = 46.5°    41°39.1'N
017°07.3'W

2     41°39.1'N
017°07.3'W

   41°39.1'N
017°07.3'W

, Z n = 318.9°    41°39.1'N
017°07.3'W

, Z n = 46.5°    41°39.1'N
017°07.3'W

Answer: Astronomical Vessel Position: L = 47°39.1'N, λ = 017°07.3'W
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