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ABSTRACT

This study investigated the temperature distribution of alumi-
num plates welded by gas tungsten arc.  The heat of fusion, the size
and distribution of heat source, the travel speed, the heat conduction
in the welding direction and the surface heat loss during welding were
considered.  A numerical scheme was developed to solve the three-
dimensional problem.  With the help of a mathematical model, the
effect of welding parameters such as heat input of the weld, preheating
of the workpiece and moving velocity of heat source on weld penetra-
tion in moderately thick plates were discussed.  The steady-state
temperature profiles of the welded plate were solved by finite differ-
ence method.  In addition, an experiment was conducted to verify the
theoretical results.  The predicted values from the proposed model
compared favorably with the experimental data.

INTRODUCTION

Welding is extensively used in the construction of
shipbuilding,  aerospace automotive,  chemical ,
electronic, and power generation industries.  In fusion
welding, parts are joined by the melting and subsequent
solidification of adjacent areas of two separate parts.
Safety and reliability of the welded joints depend on the
weld metal geometry, composition, and structure.

Heat flow during welding is of great interest to
welding engineers and metallurgists.  It not only con-
trols the size of the fusion, but also affects the properties
of the resultant weld.  The gas tungsten arc (GTA)
welding is a process in which a coalescence of metals is
produced by heating them with an arc between a tung-
sten electrode and the workpiece.  A good quality weld
is characterized by material composition, joint condition,

relative position of the welding arc to the joint and
welding parameters such as arc current, arc voltage, and
torch travel speed, etc. [2].  Therefore, choosing an
appropriate set of welding parameters becomes one of
the most important tasks in GTA welding process.

The analytical solution to the steady state, two
dimensional heat flow problem of thin-plate welding
was first derived by Rosenthal [15].  Due to some
unrealistic assumptions, heat flow and solidification in
the weld pool can not be predicated, and poor agreement
exists between calculated and experimental results in
the area immediately adjacent to the weld pool.  Solving
a transient three-dimensional heat conduction equation
with convection boundary conditions at the surfaces of
the weldment, Boo and Cho [1] obtained the transient
temperature distributions in a finite thickness plate
during arc welding.  A series of GTA welding experi-
ments for various conditions is performed to verify their
solutions.  Oreper et al. [11] and Oreper and Szekely
[12] formulated a mathematical model on the transient
fluid flow and temperature fields in a liquid pool gener-
ated by a spatially distributed surface heat flux on an
initially solid metal block.  In the formulation, allow-
ance was made for electromagnetic, buoyant and sur-
face tension force, and the resultant equations were
solved numerically.  For GTA welding of pipes, Grill
[4] studied heat flow during girth welding by the finite
difference method.  A heat source was assigned to each
grid point in the workpiece, and the solution was ob-
tained by using the alternating direction implicit scheme.
Later, Kou and Le [9] investigated the heat flow during
the welding of pipes.  Both steady state heat flow during
seam welding and unsteady state heat flow during girth
welding were theoretically calculated and experimen-
tally verified.

Considering arc parameters, radiative and convec-
tive heat losses and the temperature dependent thermal
properties, Sharir et al. [16] employed the finite differ-
ence method to calculate the unsteady heat flow during
the fusion welding of thin tantalum sheets.  Based on the
measured shape of the weld pool, Pavelic et al. [14]
calculated the temperature distribution in a thin plate of
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steel using the finite difference method.  Neglecting
heat conduction in the welding direction, Friedman [3]
used the finite element method to calculate the tempera-
ture and stress distribution in a thin plate being welded.
Kou [6] developed a model to describe the steady state,
two-dimensional heat flow during the welding of thin
plates.  The heat of fusion, the size and distribution of
the heat source, the temperature dependence of thermal
properties, the heat conduction in the welding direction
and the surface heat loss during welding were taken into
account.

The coupling of the stress and heat transfer analy-
sis provides a detailed insight into the mechanical re-
sponse of a system when it is under thermal strain.
Assuming one-dimensional stress at the plate normal to
the weld line, Tall [17] theoretically studied the residual
stress in welded plates.  Hibbitt and Marcal [5] and
Friedman [3] used a two-dimensional finite element
method to investigate the latent effect during the weld-
ing process with the simplified assumption that the heat
of fusion is released linearly between the liquidus and
solidus temperatures of the alloys.  Later, Lai et al. [10]
presented a general numerical model for simulating
three-dimensional thermal stress analysis.  The model
could be used to predict the transient thermal mechani-
cal response of a weld plate.

The purpose of this work was to investigate the
steady state three-dimensional heat flow during the
GTA welding of plates.  The internal heat source corre-
sponds to the arc heat input moves with constant speed.
In addition, the heat of fusion, the size and the distribu-
tion of the heat source, and the surface heat loss due to
both convection and radiation were taken into account
in this heat flow model.  The explicit finite difference
method with successive over-relaxation technique was
employed to solve the three-dimensional steady state
heat conduction equation of this welding problem.
Finally, a simple experiment was performed to verify
the theoretical results.

MATHEMATICAL  MODEL

Figure 1 shows the schematic sketches of plates
being butt welded with a moving heat source (tungsten
electrode).  The origin locates at right below the arc, and
the welding direction is identical to the positive x'-axis.
The thickness of the plate is given in z '-axis and is
positive toward the bottom.  Besides, the tungsten elec-
trode moves with a constant speed U.  As a result of the
heat input, a molten pool is created under the heat
source.  Due to the combined effects of the electromag-
netic force, the plasma jet force, and the surface tension
of the liquid metal, the convection in the molten metal
pool appears to be rather complex in arc welding.  No

attempts were made to simulate the weld pool convection.
Rather, the effective thermal conductivity was used to
account for the effect of convection on heat flow during
welding.  For a three-dimensional unsteady state heat
transfer in the welded plate without any heat generation,
the governing equation can be expressed as

   ∂
∂x'

(k∂T
∂x'

) + ∂
∂y'

(k∂T
∂y'

) + ∂
∂z'

(k∂T
∂z'

) = ρc∂T
∂t

(1)

In equation (1), the temperature of the welded
plate is designated as T, while k, ρ, c, and t are thermal
conductivity, density, specific heat of the workpiece
and time respectively.

For brevity, it is assumed that the arc heat input
area is far smaller than that of the plate and can be
considered as a point heat source.  No heat generates
from the plate.  Except during the initial and final
transients of the welding process, the temperature dis-
tribution in a workpiece of sufficient length is steady
with respect to a coordinate system moving with heat
source.  Under such conditions the time dependent term
in equation (1) vanishes and the process is reduced to a
steady state (quasi-stationary state) heat flow problem
[2, 3].  For this reason, a new group of variables is given
as

x = x' − Ut     y = y'     z = z' (2)

Substituting equation (2) into equation (1), the
governing equation then becomes

   α (∂
2T

∂x 2
+ ∂2T

∂y 2
+ ∂2T

∂z 2
) + U ∂T

∂x = 0 (3)

where α , thermal diffusivity of the workpiece, is equal
to k/(ρc).  The power input of the heat source Q de-
scribes the heat flux from the arc.  It equals η EI, where
η is efficiency of the arc, E is the arc voltage, and I is the
welding current.  According to Pavelic et al. [14] the
heat flux from the arc can be expressed by

   q =
3Q

πa 2
exp – 3r 2

a 2
(4)

Fig. 1.  Schematic sketch of welded plates.
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where Q, r, and a are the power input, the distance from
the center, and the radius of the heat source, respectively.
To complete the mathematical description of the
problem, the boundary conditions are specified as
follows:

   – k∂T
∂z =

3Q

πa 2
exp – 3r 2

a 2
+ h(T – T a) + σε(T 4 – T a

4)

for z = 0 (5)

Note that the first term in the right of equation (5)
describes the heat input due to the arc, while the second
and third terms in the right of equation (5) indicate the
heat loss due to convection and radiation.  Also, h is the
heat transfer coefficient, Ta the ambient temperature, σ
the Stefan-Boltzmann constant, and ε the total emissiv-
ity of the workpiece surface.  In addition to the bound-
ary conditions at the top surface, the boundary condi-
tion at the bottom surface is given as

   – k∂T
∂z = h(T – T a) + σε(T 4 – T a

4)  for z = H (6)

where H is the thickness of the workpiece.  At the
centerline of the workpiece, the temperature gradient in
the transverse direction, i.e., ∂T/∂y, equals zero due to
the symmetry requirement.  The boundary conditions at
the center plane and at side face can be expressed as

   ∂T
∂y = 0 for y = 0 (7)

   – k∂T
∂y = h(T – T a) + σε(T 4 – T a

4)  for y = w/2        (8)

where w is width of the welded plate.  Far ahead of the
heat source (x → −∞), the plate is not affected by the arc
input and, therefore its temperature remains unchanged.
Far behind the heat source (x → ∞), on the other hand,
the temperature of the workpiece levels off to a steady
value, and ∂T/∂x approaches zero.  In this case, the
boundary conditions have the following forms

T = To  for x → −∞ (9)

   ∂T
∂x = 0  for x → ∞ (10)

In equation (9), To is the initial temperature of the
workpiece.

METHOD  OF  SOLUTION

It is reported that the effect of the temperature
dependence of the thermal conductivity of solid alumi-
num on heat flow was very small [8 ] and was, therefore,
neglected.  The heat of fusion was included in the
enthalpy-temperature relationship.  Since heat flow is

symmetrical with respect to the center vertical plane,
only the temperature distribution in one-half of the
workpiece was calculated.  The arc efficiency η of GTA
welding may vary according to the welding conditions
and materials.  For brevity, an arc efficiency of 78 per
cent is adopted for all calculations in this study. The
governing equation (3), boundary conditions (4) to (10),
and the enthalpy-temperature relationship [7] were used
to solve the temperature distribution of the workpiece
during GTA welding.

The input data for this calculation included the
ambient temperature, the initial temperature of the
specimen, the size of the specimen and of the elements
of the mesh, the initial position of the arc, the thermal
properties of the specimen and environment, and the
parameters which characterized the arc.  The governing
equations and the boundary conditions are then trans-
formed into a set of explicit finite difference equations
and were solved numerically.  In order to verify the
calculated results, the selected physical properties were
identical to workpieces used in experiment and were
given in Table 1.  A 150 × 60 × 10 unevenly spaced grid
was used.  The successive over-relaxation method with
a relaxation parameter of 0.5 was used to assure
convergence.  It is noted that the source terms in the
nonlinear boundary conditions (5), (6), and (8) were
linearized [13] during the coding.  The iterative proce-
dure of computation was carried out with a personal
computer until the following convergence criterion was
satisfied.

   T new – T old

T old maximum

≤ 0.001 (9)

In equation (9), the whole temperatures of the
welding plates were examined while executing the cal-
culating program and a relative error of 0.001 for all
grid points is selected to be a stopping criterion.

EXPERIMENTS

The objective of this experiment is to verify the
numerical solutions in finite thickness plates of equa-
tion (3).  In the experiment, 5456 aluminum alloy plates
were used as the workpieces to be welded with gas
tungsten arc welding machine under various welding
conditions.  Detailed compositions and weight percent-
ages of 5456 aluminum plates are shown in Table 2.  The
welded plates are 3.2 mm thick, 200 mm wide and 250
mm long.  In addition, the experimental conditions and
thermal properties of the welded plates were the same as
those used in the numerical calculation and were shown
in Table 1.  The physical properties used in the calcula-
tions are fixed as the values at 300°C, which is approxi-
mately the average value of room temperature and melt-
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ing temperature.  Also, note that the effective liquid
conductivity is about 1.5 times the value of the solid
thermal conductivity whereas the specific heat of liquid
aluminum is equivalent to that of solid one.  The GTA
welding parameters were welding voltage: 10 V, weld-
ing current: 86A-125A, travel speed: 3 mm/sec-7.24
mm/sec, respectively.  Oxide films were polished off
the surfaces of the plates before the experiment.  The
polished surface was then cleansed with acetone just
before welding.  Furthermore, the workpieces were
thermally insulated from the fixtures in order to avoid
heat sinks during welding.  Argon gas was used for both
welding and protecting the underside of the plate.  Twelve
K-type thermocouples were positioned in the workpieces
as shown in Figure 2, six on the top and six on the
bottom surfaces of the aluminum plates.  All the thermo-
couples were precalibrated by a quartz thermometer
with 0.1°C precision, and all of the data signals were
collected and converted by a data-acquisition system (a
hybrid recorder).  The data-acquisition system then
transmitted the converted signals through a general-
purpose interface bus to the host computer for further
operation.  The experiments were repeated under vary-
ing process variables such as arc current, travel speed
and initial temperature of the welded plates.  Detailed
experimental procedures can be found from the author’s
previous investigation [18].

RESULTS  AND  DISCUSSION

Figures 3(a), 3(b), 3(c), and 3(d) show the calcu-
lated isotherms of the welded plate for Q = 1100 W, a =
3 mm, and U = 4.23 mm/sec.  The simulation of heat
flow was carried out using 5456 aluminum as an example.

The sizes of the welded plates are the same as those used
in experiment.  Note that Figures 3(a) and 3(b) are the
isotherms of the workpiece which are viewed from the
positive x and y axes respectively and Figures 3(c) and
3(d) are the isotherms on the top and bottom surfaces of
the workpiece.  In these Figures, TL, 652°C and TS,
582°C, are liquidus and solidus temperatures of the
aluminum plates used in this study.  It can be seen from
Figure 3(a) that the variation of temperature is large in
the fusion zone.  The temperature profiles in the right
portion are identical to those in the left due to the
symmetric boundary conditions.  The difference of tem-
perature between the top and bottom surfaces of the

Table 1.  Thermal properties of the 5456 aluminum plates and some of the theoretical and experimental conditions

welding welding welding Density, specific thermal
voltage, V current, speed, ρ heat, c conductivity,

(V) I (A) U (mm/s) (kg/m3) (J/kg • °C) k (W/m • °C)

10   86~125   3~7.24 2700   1066      116

arc Stefan-Boltzmann heat transfer emissivity of
efficiency, constant, σ coefficient, h the surface, ε

η (W/m2 • K4) (W/m2 • K)
0.78 5.67 × 10-8 10 0.82

Table 2. Compositions and weight percentages of 5456 alumi-
num plates

Composition Al Mn Mg Cr

Weight % 93.9 0.8 5.1 0.12

Fig. 2. The locations of the welded path and thermocouples on the (a)
top and (b) bottom surfaces of the welded plate.
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welded plate is insignificant at about 5 mm from the
heat source.  In Figure 3(b), it is noted that the weld is
not symmetrical with respect to the center of the
electrode, i.e., the origin. The front of the fusion bound-
ary is about 3.5 mm ahead of the origin, while the tail is
2.5 mm behind.  This is because heat continued to build
up during welding and the areas yet to be welded were
preheated.  Apparently, the problem is no longer two
dimensional but three dimensional, due to the travel of
the heat source.  Comparing Figure 3(c) with Figure 3
(d), the fusion area of the top surface is larger than that
of the bottom whereas no pronounced differences in the
calculated isotherms for temperatures lower than soli-
dus temperature, TS.  Also note that the isotherms in the
upper portions are symmetric to the lower portions
whereas the fusion boundary in the left portion is smaller
than that in the right.  This can be easily understood
from the observations of isotherms shown in Figures 3
(a) and 3(b).   Figures 4(a) and 4(b) display the calcu-
lated isotherms and measured data for the top and
bottom surfaces of the workpiece and for V = 10 V, I =
86 A and U = 3 mm/sec.  The effective radius of the arc
is 3 mm and the arc efficiency is fixed at 78%.  It should
be emphasized that the heat input is too small to have
full penetration in this case.  As can be seen in this
figure, the agreement between the calculated values and
experimental data are in reasonable agreement.  The
temperatures, points No. 1, 4, 7, and 10, measured
behind the tungsten electrode appear a little higher than
the calculated results.  This is due to the fact that the
ambient temperature, especially the regions behind the
heat source, rises quickly during the welding process.
Consequently, poor heat transfer can be found in the
region behind the electrode for smaller temperature

Fig. 3. The calculated isotherms of the (a) front (b) left (c) top and (d)
bottom views of the cross-section area under the moving heat
source (Q = 1100 W, a = 3 mm, and U = 4.23 mm/s).

Fig. 4. The calculated isotherms and measured data for the (a) top and
(b) bottom surfaces of the workpiece (Q = 670 W, a = 3 mm,
and U = 3 mm/s).

difference between workpiece and environment, and the
measured temperatures appear higher than the predicted
ones.  This is further demonstrated in Figures 5(a) and
5(b) by increasing the welding current from 86 A to 125
A and the welding speed from 3 mm/sec to 7.24 mm/sec.
The differences between the calculated temperatures
and measured data in the rear area of the heat source
become smaller for a larger welding speed even at a
large power input.  This is because the increase in the
temperature of the environment is smaller at a larger
welding speed.  As a result, the reduction of heat dissi-
pation from the welded workpiece is insignificant.  On
the whole, the agreement between the numerical predic-
tions and experimental data is reasonably good.

Figure 6(a) shows the temperatures of the top
surface at a distance of 4 mm and 7 mm to the heat
source for various welding currents and for U = 3 mm/
sec.  As can be seen in this Figure, the temperatures of
the workpiece increase with the increase of welding
currents.  The closer the positions approach the heat
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input, the higher the increasing rates of welded plate
temperature are.   Also, the measured data appear lower
than the theoretical values of this study.  The tempera-
tures of the bottom surface at 4 mm and 7 mm to the heat
source are given in Figure 6(b).  Similar trends can be
found in this figure but as the welding currents increase,
the increasing rates of temperature become smaller.   As
a whole, the experimental data compare with numerical
predictions well.

Figure 7 depicts the temperatures of the top plate
surface at 4 mm and 7 mm from the weld centerline for
various welding speeds.  It is shown that the tempera-
tures of the welded plates decrease with welding speeds.
This is because the faster the electrode travels, the
smaller the preheating effects of the workpiece are.  As
a consequence, the temperatures of the plates appear
lower at a higher travel speed of the heat source.
Moreover, the differences between the experimental
data and numerical predictions become more pronounced
at higher welding speeds.  This can be explained from

the fact that the heat transfer coefficients become larger
for higher operating speeds, which the proposed model
with the assumptions of constant thermal properties
fails to predict.

Fig. 5. The calculated isotherms and measured data for the (a) top and
(b) bottom surfaces of the workpiece (Q = 975 W, a = 3 mm, and
U = 7.24 mm/s).

Fig. 6. The temperatures of the (a) top and (b) bottom surfaces at a
distance of 4 mm and 7 mm from the weld centerline for various
welding currents.

Fig. 7. The temperatures of the top welded plate surface at 4 mm and
7 mm from the weld centerline for various welding speeds.
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In practice, the constantly rapid heating and cool-
ing of the metal material will result in brittleness,
hardness, or crack of the workpiece.  Therefore, it is
sometimes a better way to preheat the welded plates to
prevent the failure of material’s mechanical properties.
The effects of preheating for Q = 1 kW, U = 3 mm/sec
are displayed in Figure 8.  It shows that the both the
measured and the calculated temperatures increase as
the preheating increases.  However, the increase is not
so pronounced for a small amount of preheating.  In
addition, it is observed that the discrepancies between
the theoretical solutions and experimental data become
smaller at a larger preheating.  This is because the
temperature variation of the workpiece is smaller for a
larger preheating while welding.

CONCLUSIONS

Numerical and experimental studies of the tem-
peratures on the plates welded by gas tungsten arc were
carried out.  Major conclusions of this study are summa-
rized as follows:

1. A computer program simulating the three-di-
mensional steady-state heat conduction in welded plates
is developed.  To verify the theoretical results, an
experiment is conducted under the same welding
conditions.  The calculated temperatures and measured
data especially in the region near the source are com-
pared and good agreement is obtained.

2. The measured as well as the calculated tempera-
tures of the workpiece increase as the preheating

increases.  However, the increase is not so pronounced
for a small amount of preheating.

3. An increase in the heat input results in an
increase in the temperatures of the welded plates whereas
an increase in the welding speed produces opposite
effects.
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