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ABSTRACT

A robust nonlinear composite controller, which is simple in
structure and has the characteristics of good tracking performance and
guaranteed system stability, is designed in this study.  A pre-compen-
sator is proposed to eliminate uncertainties or disturbances so that the
tracking error is bounded in a pre-specified ball.  The composite
control law proposed in this study guarantees system tracking preci-
sion and stability by the aid of a third-order differential equation that
has been derived in this research.  The control parameters in the
proposed controller can be adjusted systematically.  For unknown
serious variation in system surrounding, a composite control law with
fuzzy-type pre-compensator is proposed to guarantee the system
stability and the tracking precision.  The compensating terms of the
proposed controller use the mean-values of uncertainties to represent
the system time-varying uncertainties at the first trial and then instead
of sticking to the mean values, the proposed controller utilizes the
fuzzy logics to update its nonlinear compensating terms so that good
tracking results can be maintained under the presence of disturbances
or plant uncertainties.  Finally a submarine is used as an example to
demonstrate the feasibility of the proposed controller.

INTRODUCTION

In recent years, a considerable amount of effort
has been focused on developing theories for the control
of nonlinear systems [1, 2, 3, 4].  But many of the
available controllers are typically hard to construct and
are complex in structures [4].  The robustness and
performance achievement issues are also widely ad-
dressed in many publications by using various control
techniques [5, 6, 7, 12].  In this paper, a robust nonlinear
composite controller, which is simple in structure and
has the characteristics of good tracking performance

and guaranteed system stability, is designed.  A pre-
compensator is proposed to eliminate uncertainties or
disturbances so that the tracking error is bounded in a
pre-specified ball [3].  The composite control law pro-
posed in this study guarantees system tracking precision
and stability by the aid of a third-order differential
equation that has been derived in this research.  The
control parameters in the proposed controller can be
adjusted systematically.  The proposed controller is
relatively easy to construct and is simple in structure.
Some of the benefits of using this method are the
simplicity in the assumed system model and the pro-
posed controller, the straight-forwardness of the basic
philosophy, and the characteristic of the high tracking
precision with low input energy requirements. A trade-
off between accuracy of tracking and control effort will
be identified in this research [3].  In general, in order to
achieve accurate tracking of a desired trajectory, a
suitable gain value should be chosen.  A large gain value
will speed up the rate of convergence and therefore will
make the system more sensitive to position, velocity
and integral tracking errors.  However, too large a gain
value can lead to instability and may cost high input
energy [3].  The choice of gain values will be discussed
in this paper.  Finally, to illustrate the applicability of
the control design, an example of submarine is used to
demonstrate the feasibility and robustness of the pro-
posed nonlinear composite controller.

SYSTEM  DESCRIPTION

A general 2nd order non-linear system can be mod-
eled as [3]

Di(x(t), x'(t), r(t), d(t), t)x"(t)

+ Hi(x(t), x'(t), r(t), d(t), t)

= Ui(x(t), x'(t), t)

and x(t) = (x1, x2, ... xn) (1)
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Where i = 1, 2, n.
If we let

(•) = (x'(t), x(t), r(t), d(t), t)

(*) = (x'(t), x(t), t)

Then the above system can be written as Di(•)x"(t)
+ Hi(•) = Ui(*).  Uncertainty r(t) in the system is
modeled by an unknown Lebesgue measurable function
r(t): R → Ω, where the set Ω is known and is compact.
d(t) is the disturbance terms.  Di(.) and Hi(.) represent
coupling effects between states.  Before proposing the
controller Ui(*), to ensure the existence and continua-
tion of the feedback control system (1), some assump-
tions are made as follows:

1. Di(.), i = 1, 2, n are continuous real positive functions
and its inverse [Di(.)]

−1 exists, where (.) = (x'(t), x(t),
r(t), d(t), t).

2. Hi(.), Di(.) and Di
−1 (.) are uniformly bounded with

respect to time t and are continuous functions over [0,
T], T is the working time.

3. The reference motions   (xri(t), xri
' (t), xri

" (t)) , i = 1, 2, n,
are bounded and are absolutely continuous over [0,
T].

The uncertainty r(t) and disturbance d(t) are
bounded as follows:

||r(t)|| ≤ k1(x, t)

||d(t)|| ≤ k2(x, t)

Where k1, k2 are continuous functions of x(t) and
t and k1(x, t), k2(x, t) are continuous functions of X and
t||.|| is the sup-norm.  Based on the above assumptions,
we now proceed to design the controller to achieve good
path tracking precision.  By letting the tracking errors
be

ei(t) = xi(t) − xri(t)

  e i
' (t) = x i

' (t) – xri
' (t)

  e i
"(t) = x i

"(t) – xri
" (t)

Obviously, the goal of the controller is to force
errors to decay to zero asymptotically so that the desired
motion can be tracked.  With this goal in mind, we
construct a controller that makes the error equation a
stable third-order differential equation.  Consequently,
a robust nonlinear composite controller can then be
proposed.

DESIGN  OF  THE  PROPOSED  CONTROLLER

In order to track the desired motion, the controller
is proposed as

  U i(*) = – D i(*)[K Dei
' (t) + K Pe i(t) + K I e i(t) dt]

  + H i(*) + D i(*) xri
" (t) (2)

Where KD, KP and KI are the gains and are to be
chosen to make the closed system stable and robust.
Since the uncertainty r(t) and d(t) are assumed to be
bounded from the above constants, the mean of upper-
and lower-bounds may be taken as reasonable estimates
of r(t) and d(t) respectively so that the terms (*) in (2)
can somewhat compensate the uncertain terms (.) in the
left-hand side of the system’s dynamic equation (1).  Of
course, extreme values of r(t) and d(t) may be used to
yield more conservative results.  Because local high
gain can compensate not only the nonlinearities but
also some errors in the estimate of uncertainty and
disturbance, good tracking results may be obtained by
using average values to approximate uncertainties and
disturbances if the range of variation of parameters is
relatively small.  However, if the effect of time varia-
tion of such parameters (uncertainty and disturbance) is
relatively large, a good choice for the estimated values
of uncertainties and disturbance could be chosen as,
instead of constant nominal values, a time-dependent
function so that the compensation terms H(*) and D(*)
become large as needed and stay small otherwise.  The
state variable description form of the system and the
corresponding controller design will be shown in the
next section.

STATE  EQUATION  FORM  AND
CORRESPONDING  CONTROLLER

For convenience, we can rewrite the general non-
linear system (1) in the state equation form.  By letting
xi1 = xi and   x i2 = x i

' , the system (l) can be written as

  x i1
' = x i2

   x i2
' = –

H i(⋅)
D i(⋅)

+ 1
D i(⋅)

U i(*)

i = 1, 2, 3 ... n

Where n represents the n generalized coordinates.  Thus,
in general, we obtain 2n equations.

  x i1
' = x i2    C i(⋅) =

H i(⋅)
D i(⋅)

   E i(⋅) = 1
D i(⋅)
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x i2

' = − Ci(.) + Ei(.)Ui(*),

where (.) = (x(t), x'(t), r(t), d(t), t)

i = 1, 2, 3 ... n, (*) = (x'(t), x(t), t)

xT = [x11, x12, x21, x22, ... xn1, xn2]

By defining the tracking error as

ei(t) = xi(t) − xri(t) = xi1 − xri1

  e i
' (t) = x i

' (t) – xri
' (t) = x i2 – xri2

We can rearrange the proposed controller in the
state space form:

  U i(*) = 1
Ei(*)

[ – (K D(x i2 – xri2) + K P(x i1 – xri1)

  + K I e i(t) dt – C i(*) + xri2
' (3)

Where xri1, xri2 and   x ri2
'  are the desired motions of

the corresponding states.

Proof of the Validity of the Proposed Controller

First, let us investigate the situation in which the
variations of uncertainty and disturbance are negligible
in the system.  The validity of the controller in (2) can
be shown by simply putting (2) into (1), which yields

  e i
''' + K Dei

" + K Pe i
' + K Ie i = 0

⇒  m3 + KDm2 + KPm + KI

≡ (m + a)(m2 + bm + c)

= m3 + (a + b)m2 + (ab + c)m + ac = 0 (4)

For (m + a)(m2+ bm + c) = 0

   ⇒ m = – a, – b± b 2 – 4c

For b2 ≥ 4c,
  

e i(t) = Ae – at + B1e
(– b + b 2 – 4c ) t

+ B2e
(– b – b 2 – 4c ) t

For b2 < 4c,

   e i(t) = Ae – at + Be – btsin( 4c – b 2 t – φ)

The parameters a, b and c can now be selected to
make the tracking errors decay to zero at desired rate so
that the corresponding gains can be chosen to make the

closed-loop system asymptotically stable.  In other
words, the desired motion can be tracked in finite time
for this special case.  However, the variation of loads or
disturbance is not negligible in general.  If the varia-
tions of uncertain load and/or disturbance are large, the
difference equation will have the characteristics of a
forced vibratory motion instead of free vibration as in
(4) because the estimated nominal values of uncertain-
ties and disturbance may have a larger deviation from
actual values [3].  In this situation, the difference equa-
tion can be obtained by a similar computation.

By putting (2) into (1), we get

  D i(*) x i
" + H i(*) = U i(*)

  = D i(*) xri
" + D i(*) [ – (K Dei

' (t) + K Pe i(t)

  + K I e i(t) dt] + H i(*)

and letting

   k 3(t) = (D i(⋅) – D i(*)x i
"(t)

k4(t) = Hi(.) − Hi(*)

  k(t) = – D i
– 1(*)(k 3(t) + k 4(t)) (5)

The equation (5) can be expressed as

  D i(*) [e i
"(t) + K Dei

' (t) + K Pe i(t)

  + K I e i(t) dt] + k 3 + k 4 = 0

Which can rewritten as

  e i
" + K Dei

' + K I e idt

  = – D i
– 1(*)(k 3(t) + k 4(t))

= k(t) (6)

Hence the resulting differential equation can be
viewed as a typical forced vibration with k(t) as its input
force.  From previous assumptions, both of k3(t) and
k4(t) are bounded.  Thus, the value of k(t) must be
bounded by a certain constant [3], say, k, i.e.

||k(t)|| < k

Note that since the value of k(t), caused by esti-
mated errors, can be minimized to make it small by
using the fuzzy nonlinear compensating terms shown in
the proposed controller, the upper-bound of k is also a
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small constant.  Now we can investigate the differential
equation with constant input k i.e.

  e i
''' + K Dei

" + K Pe i
' + K Ie i = d

dt
k(t)

By using a similar notation in equation (4), we get:
For b2 ≥ 4c case, the homogeneous solution is

  

e i(t) = Ae – at + B1e
(– b + b 2 – 4c) t

+ B2e
(– b + b 2 – 4c) t

And the complete solution can be expressed as
   

e i(t) = Ae – at + Be
(– b ± b 2 – 4c) t

+ εik , where εik represents
the particular solution of error equation.

For b2 < 4c case, the homogeneous and complete
solution will be

   e i(t) = Ae – at + Be – btsin( 4c – b 2 t – φ)

And the complete solution can be expressed as
   

e i(t) = Ae – at + Be – btsin( 4c – b 2 t – φ) + εik
Thus, the gains can readily be chosen to make a

finite steady state error within a value β = εik
Now, if the input is a sinusoidal input with ampli-

tude Foi, the error dynamic equation will be

   e i
''' + K Dei

'' + K Pe i
' + K Ie i =

dFoisin ωt
dt

Or    e i
''' + K Dei

" + K Pe i
' + K Ie i = ωFoicos ωt (7)

Then, for the cases of b2 − 4c < 0 and b2 − 4c ≥ 0,
the tracking errors can respectively expressed as [3]:

   e i(t) =
Foi

(ac(ω – ω3(a + b))2 + (ω4 – (ab + c) ω2)2
cos (ωt – φi2)

   + Ae– at + Be – btsin( 4c – b 2 t – φi1) (8)

And

   e i(t) =
Foi

(acω – (a + b) ω3)2 + (ω4 – (ab + c) ω2)2
cos (ωt – φi)

  

+ Ae – at + B1e
(– b + b 2 – 4c) t

+ B2e
(– b – b 2 – 4c) t

    (9)

Where Foi is a positive real number, φi1, φi2 and φi1

are lag angles; A, B, A, B1 and B2 are determined by the
initial conditions.

The above solutions reveal that the error will
finally be bounded within accuracy β, where β is de-
fined as

   
β i =

Foi

(acω – (a + b) ω3)2 + (ω4 – (ab + c) ω2)2

(10)

Since the value of Foi contributes part of the ampli-
tude of a sinusoidal function in (7), which results from
can be minimized to make it small by using the proposed
fuzzy nonlinear compensator proposed in this paper, we
can conclude that the proposed controller guarantees
that the desired motion can be tracked to within calcu-
lable accuracy β, and tracking with arbitrarily small
error can be achieved.

As for the choice of gain values, the controller
gains can readily be selected by following the above
formulation.  For example, from equation (4), the con-
troller gains can be selected as KD = a + b, KP = ab + c
and KI = ac respectively.  The pre-specified tracking
precision can then be achieved with the above predict-
able bounds.

DESIGN  OF  FUZZY  NONLINEAR  ROBUST
COMPENSATOR

Before proposing a fuzzy-typed controller to make
the proposed controller of equation (2) more flexible,
we would like to mention some fuzzy logics and theo-
rems to be used in our controller- designed process later.
During the past decade, fuzzy logic control has emerged
as one of the most active and fruitful areas for research
the compensating errors of the plant nonlinear terms, it
in the application of fuzzy set theory, fuzzy logic and
fuzzy reasoning [8, 9, 12].  Since fuzzy reasoning can be
done in linguistic ways, which can effectively simply
the complexity in compensating system dynamics to
make the robust controller design process easier, espe-
cially for nonlinear and ill-defined systems like
submarines, we will use the fuzzy logic to compensate
the uncertain variation, which may be caused by the
variation of uncertain system parameters or un-modeled
dynamics, appearing in the nonlinear terms of a nonlin-
ear system to form a robust controller for nonlinear
systems in the paper.  The basic operation of a fuzzy set
can be illustrated as follows [8]:

(a) Fuzzy set:
A fuzzy set A can be expressed as: [8]

when U (the universe of discourse) is discrete, a fuzzy
set A can be represented as

   A =
µA(χ1)

χ1
+

µA(χ2)
χ2

+ +
µA(χn)

χn
(11)

Where    µA(χ i)
χ i

 represents the relationship between
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the generic element χi of U and its grade of membership
µA(χ i).

(b) Fuzzy Intersection:
The membership function µc(x) of the intersection

A ∩  B is defined for all µ ∈  U by

µC(χ) = min{µA(χ), µB(χ)} = µA(χ) ∧  µB(χ)    (12)

(c) Fuzzy Union:
The membership function µc(x) of the union A ∪  B

is defined for all  by

µC(χ) = max{µA(χ), µB(χ)} = µA(χ) ∨  µB(χ)   (13)

(d) Fuzzy Complement:
The membership function    µ A (x)  of the comple-

ment of a fuzzy set A is defined for all µ ∈  U by

   U A (x) = 1 – µA(χ) (14)

(e) Fuzzy Relation:
If A and B are fuzzy relation in X * Y and Y * Z,

respectively, the composition of A and B is a fuzzy
relation denoted by A ° B  and the membership function
µc(x, z) of the composition A and B is defined by

µC(x, z) = µA ° B(x, z) = sup{min[µA(x, y), µB(y, z)]}

Or     c ij = k
∨ {a ik ∧ b kj} (15)

Based on the above fuzzy operation concepts, the
basic configuration of a fuzzy logic controller (FLC) is
proposed and shown in Figure 1, which comprises four
principal components: A fuzzification interface, a knowl-
edge base, an inference engine and a defuzzification
interface.  The main functions of these four components
can be described as follows:
(1) The fuzzification interface involves the following

functions:
(a) It receives the state variables from the plant.
(b) It transfers the range of values of input vari-

ables into corresponding universes of discourse.
(c) It performs the function of fuzzification that

converts input data into suitable linguistic
values.

(2) The knowledge base consists of a “data base” and a
“linguistic control rule  base”:

1. The database provides necessary definitions,
which are used to define linguistic control rules
and fuzzy data manipulation in an FLC.

2. The rule base characterizes the control policy
and control goals of the domain experts by
means of a set of linguistic control rules

3. The inference engine is the most important
kernel and it is the decision-making center of a
FLC, which is designed by simulating human
thinking model

(3) The defuzzification interface performs the follow-
ing functions:

(a) It yields a non-fuzzy control action from an
inferred fuzzy control action.

(b) It converts the range of values of output vari-
ables into corresponding universes of discourse.

Fuzzification is related to the vagueness and im-
precision in a natural language.  It is a subjective
valuation to transform measurement data into valuation
of a subjective value.  Hence it can be defined as a
mapping from an observed input apace to labels of fuzzy
sets in a specified input universe of discourse.  Since the
data manipulation in a FLC is based on fuzzy set theory,
fuzzification is necessary and desirable at an early
stage.  In fuzzy control applications, the observed data
are usually crisp.  A natural and simple fuzzification
approach is to convert a crisp value X0 into a fuzzy
singleton A within the specified universe of discourse.
That is, the membership function µA(x) of A is equal to
1 at the point X0 as zero at other places.

A fuzzy system is characterized by a set of linguis-
tic statements based on expert knowledge.  The expert
knowledge is usually as “if-then” rules, which are easily
implemented by fuzzy conditional statements in fuzzy
logic.  Fuzzy control rules have the form of fuzzy
conditional statements that relate the state variables in
the antecedent and process control variables in the
consequence.  Many experts have found that fuzzy
control rules provide a convenient way to express their
domain knowledge.  This explains why most FLC are
based on the knowledge and experience that are ex-
pressed in the language of fuzzy “if- then” rules.  The
general form of the fuzzy control rules in the case of
two-input single-output systems is:

IF x is A1 and y is B1 THEN z is C1

IF x is A2 and y is B2 THEN z is C2

                  …
IF x is An and y is Bn THEN z is Cn                      (16)

Where x, y and z are linguistic variables represent-
ing the process state variable and control variable,
respectively?  An, Bn and Cn are the linguistic values of
the linguistic variables x, y and z in the universe of
discourse U, V, and W.  In what follows, we consider
some useful properties of the FLC inference engine [8,
9, 12].
[Theorem 1]

   (A ', B ') ° Ri∪
i = 1

n
⇒ µC '(z) = (µA'(x), µB'(y))
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   ° max
x, y, z

(µR 1
(x, y, z), , µR n

(x, y, z))

   = sup
x, y

max
x, y, z

{min (µA'(x), µB'(y)), µR 1
(x, y, z) , ,

   min (µA'(x), µB'(y)), µR n
(x, y, z) }

   = max
x, y, z

{[(µA'(x), µB'(y)) ° µR 1
(x, y, z)], ,

   [(µA'(x), µB'(y)) ° µR n
(x, y, z)]}

   ⇒ = C i
'∪

i = 1

n
= (A ', B ')∪

i = 1

n

° Ri (17)

[Theorem 2]
For the intersection operation of fuzzy sets, the

minimum and the product methods are formulated as
follows:

If µAi × Bi = µAi ∧  µBi then

(A', B') ° (Ai and Bi ⇒  Ci) = [A' ° (Ai) ⇒  Ci]

∩  [B' ° (Bi ⇒  Ci)]

If µAi × Bi = µAi ∧  µBi then

(A', B') ° (Ai and Bi ⇒  Ci) = [A' ° (Ai ⇒  Ci]

× [B' ° (Bi ⇒  Ci)] (18)

The above two formulas implies that we need to
make a combination of the membership function opera-
tion and the logic operation.  Because Ai and Bi ⇒  Ci is
not easy to be operated, we partition it into two parts and
evaluate them separately.
[Theorem 3]

If the inputs are fuzzy singletons, namely, A' = x0,
B' = y0, based on the minimum operation and the product
operation rules, we have the following four different

operations:

   α i
∧ ∧ µC i(z)

   α i
∧ • µC i(z)         α i

∧ = µA i
(x 0) ∧ µB i

(y 0)

Where (19)

   α i
• ∧ µC i(z)         α i

• = µA i
(x 0) • µB i

(y 0)

   α i
• • µC i(z)

The above theorems explain the process of fuzzy
inference.  Fig. 2 gives a graphic interpretation of
theorem 3 in terms of minimum operation rule, while
Fig. 3 offers a graphic interpretation of theorem 3 in
terms of product operation rule.

Basically, defuzzificaton is a mapping from a space
of fuzzy control actions defined over an output universe
of discourse into a space of non-fuzzy control actions.  It
is employed because a crisp control action is required in
many practical applications.  At present, the commonly

Fig. 2.  Graphical interpretation of fuzzy inference under minimum
rule.

Fig. 3.  Graphical interpretation of fuzzy inference under product rule.Fig. 1.  Basic configuration of fuzzy logic controller.
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used defuzzification strategies may be described by the
method of the center of area or the mean of maximum
[10].  The graphic interpretation of defuzzification on
the general output of fuzzy controller is described in
Fig. 4.

Construction of Fuzzy Nonlinear Robust Compensator:

For a nonlinear system shown in equation (1), the
uncertainty r(t) and d(t) are assumed to be bounded by
some known constants, the mean of upper- and lower-
bounds are then taken as reasonable estimates of r(t) and
d(t) respectively so that the terms (*) in controller U can
then somewhat compensate the uncertain terms (.) in the
left-hand side of the system’s dynamic equation (1).
Thus, the above controller is a nominal value compen-
sated controller and normally good tracking results can
be obtained by using average values to approximate
uncertainties and disturbances if the range of variation
of parameters is relatively small.  However, if the effect
of time variation of such parameters (uncertainty and
disturbance) is relatively large, a fuzzy-based compen-
sation term can be designed to estimate the values of
uncertainties and disturbance.  That is, instead of con-
stant nominal values in the compensation terms, a fuzzy
time-dependent function is used to make the compensa-
tion terms H(*) and D(*) become large as needed and
stay small otherwise.  Then following the fuzzification,
fuzzy inference engine and defuzzification logic opera-
tions discussed in the previous section, we can now
revise the controller proposed in equation (2) to the
following form:

  U(*) = – [fuzzy D i(*)] (K Dei
' (t) + K Pe i(t) + K I e i(t) dt

  + [fuzzy H i(*)] + [fuzzy D i(*)] xri
" (20)

Where the terms [fuzzy Di(*)] and [fuzzy Hi(*)]
denote the fuzzy-adjusted compensated terms, which

are the corrected values of the compensated terms Di(*)
and Hi(*) of the controller proposed in equation (2) and
the corrections are obtained from the fuzzification,
fuzzy inference engine and defuzzification processes of
the matching errors between Hi(*) and Hi(.) as well as
between Di(*) and Di(.) as shown in equation (1)
respectively.  The fuzzy processes have been discussed
in the previous section.  The above fuzzy nonlinear
controller is formulated in the form to apply the fuzzy
logic to make the compensated terms of the proposed
controller more flexible.  The design procedure can be
described as follows:

Step 1: Obtain the model of the nonlinear uncertain
plant.

Step 2: Check the matching conditions on assumptions.
Step 3: Use the mean-values of uncertainties to form

the compensation terms H(*) and D(*), which
are set as the initial values of the terms Di(*) and
Di(.) in the controller.

Step 4: Evaluate the matching errors between Hi(*) and
Hi(.) as well as those between [fuzzy Di(*)] and
[fuzzy Hi(*)].  These errors are treated as fuzzy
sets, which are operated by the fuzzification,
fuzzy inference engine and defuzzification pro-
cesses described in equations (11)-(19).

Step 5: Obtain the fuzzy - adjusted compensation terms,
and , which are the modified values attained by
compensating the matching errors.

Step 6: If the desired tracking result is achieved, go to
step 7, or else repeat steps 4-5.

Step 7: Form the nonlinear composite compensator of
the system.

A tip for designing the proposed fuzzy-based non-
linear controller containing a fuzzy-based compensated
term is described as follows: The compensating terms of
the above controller use the mean-values of uncertain-
ties to represent the system time-varying uncertainties
at the first trial and then instead of sticking to the mean
values, the proposed controller utilizes the fuzzy logics
for checking the matching errors to update its nonlinear
compensating terms so that good tracking results can be
maintained under the presence of disturbances or plant
uncertainties.  Since the uncertainty r(t) and d(t) are
assumed to be bounded from some constraints, the mean
of upper and lower bounds may be taken as reasonable
estimates of r(t) and d(t) respectively so that the fuzzy
nonlinear terms of the controller can somewhat com-
pensate the corresponding terms of the nonlinear sys-
tems when r(t) and d(t) varies from their mean values in
a real system.  Because local high gains can compensate
not only nonlinearities but also some errors in the
estimation of uncertainties and disturbances, the con-Fig. 4.  The general output of fuzzy controller.
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troller gains can be chosen to be higher to achieve better
system robustness as long as the saturation condition of
control energy is not violated.

COMPUTER  SIMULATION

To illustrate the application of the proposed non-
linear controller, we would like to consider one of the
water vehicles whose models are available in literatures
[1, 2, 18] as an example and let us consider the subma-
rine shown in Figure 5, which has the following dynam-
ics [1]:

   
w(t) = Z w

' U

Lm 3
'

w(t) + 1
m 3

'
(Z θ

' + m ') Uθ(t) +
Z θ

'

m 3
'

θ(t)

   
+

Z δS
' U 2

m 3
' L

δB(t) +
Z δS

' U 2

m 3
' L

δS(t) + 2
ρL 3

m 3
'

Z wave(t)

   + We(t) cosθ cosφ 2
ρL 3

m 3
'

   θ(t) = Mw
'

LI 2
'

w(t) +
Mw

' U

L 2I2
'

w(t) +
Mθ

'

LI 2
'

θ(t) +
MδB

' U 2

L 2I2
'

δB(t)

   
+ MδS

' U 2

L 2
I2

'
δS(t) +

2mg (z G – z B)

ρL 5I2
'

θ(t) +
Mwave
ρ

2L 5I 2
'

ρ
2L 5I 2

'

Where    I2
' = Iy – Mθ

' ,   m 3' = m ' – Z w
'  and m' = 2m /

ρL3.  The numerical values of the above parameters are:
[1]

   Z w
' = – 0.0110 Z w

' = – 0.0075 Z θ
' = – 0.0045

   Z θ
' = – 0.0002 Z δB

' = – 0.0025

   Mw
' = 0.0030 Mw

' = – 0.0002 Mθ
' = – 0.0025

   Mθ
' = – 0.0004 MδB

' = 0.0005

   Z δS
' = – 0.0050 MδS

' = – 0.0025 L = 286ft

  C M1 = 0.35 C Z2 = 077

   C Z1 = 1.28 U = 8.43ft secft sec ρ = 2.0slugs
ft 3

slugs
ft 3

m = 1.52 × 105  Iy = 5.68677 × 10−4  ∇  = 7.6 × 104

zB = 0.005  zG = 0.0025

The system dynamics of the submarine can then be
expressed as [1]

   θ(t) = 3.372 × 10– 4w(t) – 7.713 × 10– 2θ(t) + 4.48182

× 10−2δB(t) − 7.9592 × 10−2δS(t) − 2.7

× 10−5θ(t) − 2.2 × 10−9Mwave(t) + 3.06

× 10−6Zwave + 9.8 × 10−5Me(t)cosθ(t)cosφ

   θ(t) = 3.372 × 10– 4w(t) – 7.713 × 10– 2θ(t) + 4.48182

× 10−4δB(t) − 2.1816 × 10−3δS(t) − 6.625

× 10−6θ(t) − 7.14 × 10−8Me(t) + 5.42

× 10−10Mwave(t) − 2.2 × 10−9Zwave(t)

To construct the state equation, we define the
state variables as follows: x1(t) = r(t),   x 1(t)  = x3(t) =
w(t), x2(t) = θ(t) and   x 2(t)  = x4(t).  The controller
becomes

u1(t) = − 4.61 × 10−2δB(t) − 7.952 × 10−2δS(t)

u2(t) = −4.8182 × 10−4δB(t) − 2.1816 × 10−3δS(t).

Where the hydroplane angles, are shown in figure
1, in which the notations (δB(t) and δS(t)) denote the
hydroplane angles, θ(t) represents the pitch angle, h(t)
is the depth variation, H gives the ordered depth, U(t),
W(t) and V(t) represent the speed along the ship x-axis,
the ship z-axis and the sea surface elevation respectively.
The relation between the hydroplane angles and torques
are: [1]Fig. 5.  Direction and depth control of a submarine.
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   T 1 = J 1
d 2δB
dt2

+ B1
dδB
dt

   T 2 = J 2
d 2δB
dt2

+ B2
dδB
dt

where J1 = J2 = 1000(lb − ft − sec2)

B1 = B2 = 0.1(lb − ft / rad / sec)

After rearrangement, the state variable description
of the submarine system can be expressed as follows:

  x 1 = x 3(t)

  x 2 = x 4(t)

  x 3(t)  = − 2.453 × 10−2x3(t) + 1.5174x4(t) − 2.7

× 10−5x2(t) − 2.2 × 10−9Mwave(t) + 3.06

× 10−6Zwave(t) 9.8 × 10−3cosx2(t) + u1(t)

  x 4(t)  = 3.372 × 10−4x3(t) − 7.713 × 10−2x4(t)

− 6.625 × 10−6x2(t) − 7.14 × 10−6 + 5.42

× 10−10Mwave(t) − 2.2 × 10−9Zwave(t) + u2(t)

Then, the proposed controller U(*) in equation
(20) is now in the form of [u1  u2]T, the proposed
nonlinear controller is of the following form:

  u 1(t) = – [K P(x 1(t) – xr1(t)) + K D(x 3(t) – xr1(t))

  + K I (x 1(t) – xr1) dt] + 2.453 × 10−2x3(t)

− 1.5174x4(t) + 2.7 × 10−5x1(t)

   + 2.2 × 10– 9fuzzy(Mwave
0 ) – 3.06 × 10–6fuzzy(Z wave

0 )

   – 9.8 × 10– 3sin x 2(t) + xr1

  u 2(t) = – [K P(x 2(t) – xr2(t)) + K D(x 4(t) – xr2(t))

  + K I (x 2(t) – xr2) dt]  − 3.372 × 10−4x3(t)

+ 7.713 × 10−2x4(t) + 6.625 × 10−6

   + 7.14 × 10– 6 – 5.42 × 10– 6fuzzy(Mwave
0 )

   2.2 × 10– 9fuzzy(Z wave
0 ) + xr2(t)

Where   Mwave
0

 and   Z wave
0

 represent the nominal

mean values of wave torque component and the wave
force component respectively.  The fuzzy compensating
terms   (fuzzy(Mwave

0 ) , fuzzy(Z wave
0 ))  in the proposed con-

troller for system disturbances (Mwave(t), Zwave(t)) are
initialed at their nominal values, which are used as the
initial values of the U(*) and then updated by the
proposed fuzzy control engine with time.  The rule
adopted here is the fuzzy inference under product rule as
shown in Figure 3 and the membership functions used
here are the triangular function as shown in Figures 4.
The wave height is assumed to vary from 6 ft to 12 ft at
sea.  Now, if the desired reference path is specified as
that in figure 6, the corresponding equation of the
desired motion can then be expressed as

z(t) = −0.01t2 + 7t − 100(ft)  t = 0 − 200sec

θ(t) = 2.175 × 10−6t−2 + 2.18 × 10−3t(rad)

t = 0 − 200sec

Thus, to meet the performance specified in [18],
the optimal controller parameters are selected as KD =
16.6, KP = 16.42 and KI = 12.4 and the simulation
results are shown in Figures 6-14.  The matching of the
actual submarine path and the reference path shown in
Figure 6 reveals that the submarine can well track the
desired path of motion with the proposed nonlinear
controller.  Under the uncertainties of wave height from

Fig. 6.  The matching of actual path and reference motion.



Journal of Marine Science and Technology, Vol. 11, No. 2 (2003)92

6 ft to 12 ft, the submarine tracking errors, resulted from
using the fuzzy-based nonlinear compensator, in hori-
zontal and vertical directions are shown in Figure 7 and
Figure 8 respectively, while on the other hand the
tracking errors, followed as a result of utilizing the
nominal-value compensated controller, are shown in
Figures 9 and 10 for comparison.  It is obvious that both
the proposed fuzzy-based compensator and the nomi-

Fig. 7.  Tracking errors in horizontal direction.

Fig. 8.  Tracking error in vertical direction.

Fig. 9.  Tracking error of a nominal value.

nal-value compensated controllers [3] are robust and
the steady-state errors of the former one converge to a
pre-specified ball of 0.02075 ft and 0.33023 ft in hori-
zontal and in vertical directions respectively even that it
encounters the mentioned large wave uncertainties of
wave height from 6 ft to 12 ft.  A comparison made in

Fig. 10. Tracking error of a nominal value compensator  in horizontal
direction in vertical direction.
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Figures 3, 5 and 4, 6 shows that maximum tracking
errors made by the proposed controller are about 0.007
ft and 0.03 ft smaller than those made by the Hwang’s
controller [3] in horizontal and vertical directions
respectively.  Since the variation of the uncertainties of
wave height from 6 ft to 12 ft is not large in comparison

to its mean value 9 ft, the differences among these
tracking errors are not quite apparent.  Especially for the
case having no sinusoidal disturbances and uncertainties,
the two control forces will be exactly the same because
there are no needs to change the initial mean-value
settings in the nonlinear compensating terms of the
proposed fuzzy-type compensator.  Figures 11 and 12

Fig. 11.  The control history of u1.

Fig. 12.  The control history of u2.

Fig. 13.  Energy history of torque T1.

Fig. 14.  Energy history of torque T2.
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give the control histories and the actual input torques
for the submarine are shown in Figures 13 and 14.

Note that the pre-compensated terms in the pro-
posed controller are designed to compensate the corre-
sponding nonlinear terms of the nonlinear systems to be
controlled so that the tracking performance can be
achieved as expected.  Hence, the mean values of the
uncertainties appeared in these nonlinear terms are usu-
ally used to replace the unknown yet bounded uncertain
elements, e.g., disturbances, to form an explicit nonlin-
ear controller [3].  Thus, the uncertain variation of
uncertainties from the mean value must be relatively
small so that the explicit controller with mean value of
the unknown disturbance can perform it well.  Obviously,
in this case, the controller is not adjustable with similar
control effort and therefore, the bounds of the uncer-
tainties should be relatively small.  However, for a real
system, the uncertain disturbances may be bounded yet
time-varying and hence the controller, containing mean-
valued uncertainty in its nonlinear compensating term,
can no longer work well.  The merits of the nonlinear
controller proposed in the paper is that the compensat-
ing terms of the proposed controller use the mean-
values of uncertainties to represent those time-varying
uncertainties in the first trial and then instead of stick-
ing to the mean values, the proposed controller utilizes
the fuzzy logics to update its nonlinear compensating
terms so that good tracking results can be achieved.  A
comparison between the proposed controller and the
nonlinear controller proposed in reference [3] are made
for robot manipulator and the results shows that the
tracking errors becomes smaller with similar control
efforts and  the same conditions of plant uncertainties.
The results of the computer simulation of a submarine
shown in this paper also reveal that tracking perfor-
mance of the proposed controller is acceptable and the
controller is feasible.

CONCLUSIONS

In this paper, a robust nonlinear composite
controller, which is simple in structure and has the
characteristics of good tracking performance and guar-
anteed system stability, is designed.  The pre-compen-
sated terms in the proposed controller is designed to
eliminate uncertainties or disturbances so that the track-
ing error is bounded in a pre-specified ball.  If the
variation in uncertainties is small, a nominal value
compensated controller is suggested for its simplicity in
structure, whereas a fuzzy-based time varying compen-
sated term is needed in designing a robust controller
when the uncertainty in plant is large.  Therefore, a
fuzzy-based nonlinear controller is simultaneously pro-
posed in this research.

The feasibility of the proposed controllers is dem-
onstrated by the simulation results.  With the mentioned
uncertainties in wave heights, the tracking precisions
obtained from both the fuzzy-base compensated nonlin-
ear controller and the nominal-compensated nonlinear
controllers, are robust enough to meet the performance
requirement for a submarine of 286 ft in length.  However,
the comparison between their simulation results also
reveals that if the effect of time variation of such
parameters (uncertainty and disturbance) is relatively
large, a fuzzy-based nonlinear controller is a better
alternative because the compensated term in the pro-
posed fuzzy-based nonlinear controller, designed for
estimating the values of uncertainties and disturbance,
is time-dependent function.  That is, the proposed fuzzy-
based nonlinear controller can adjust the compensation
terms H(*) and D(*) to make these terms become large
as needed and stay small otherwise with the variation of
uncertainties.
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