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ABSTRACT

This paper describes the practical experiences about the no-load
dynamic performance test, parameter identification, and tuning of
static excitation systems (SESs) of the synchronous generators in the
Tong-Shiao Generation Station of the Taiwan Power System.  The
dynamic stability of under-load generators has also been improved.
The hardware circuits of SESs had been modified.  This caused the
detuning of parameter values, so that the generators did not have
enough ability to sustain voltage fluctuation disturbances.  Several
SESs had been preliminarily retuned according to the results from
simple field tests.  However, step signal responses in field tests
revealed that the characteristics of some units were different from the
computer simulation results. Before retuning them again, it needed to
identify the parameters of SESs.  The least-squared-error algorithm
has been employed to estimate the parameters of inner-loop regulators
in SESs.  Then SESs have been retuned again to have good dynamic
performance indices.  Eigenvalue analysis and time domain simula-
tion were used to examine the dynamic stability conditions of under-
load generators.  The experiences and results in this paper provide
useful references about performance improvement of generators.

INTRODUCTION

In the study of this paper, the Tong-Shiao Genera-
tion Station of the Taiwan Power System had six com-
bined-cycle generation units with a total capacity of
1716 MW.  Both static excitation systems (SESs) and
brushless rotating excitation systems are employed.
Since of the shortage of area generation capacity, these
units also have to operate in off-peak period at night.  A
69-kV feeder connected to the station bus serves three
large electric arc furnace (EAF) customers.  The EAFs
only work during off-peak period but cause continuous

voltage fluctuation disturbances.  This had ever acti-
vated the V/Hz protection relays of the SESs and tripped
the generators.  A field measurement of the SESs showed
that the SESs did not have enough damping because the
hardware circuits of SESs had been modified.  The SESs
had been preliminarily retuned to improve the dynamic
performance [14].  However, the field test responses of
some units were different from computer simulation
results.  The actual performance conditions needed to be
checked again, and SESs parameters needed to be
identified.

The small signal test method [3, 8] with time
domain responses is a good method to examine the
dynamic performance of an excitation system of a gen-
erator under no-load.  The method is to inject a small
step signal into the excitation system, and then the
performance condition is examined from the responses
of terminal voltage.  The results can be compared with
the recommendation values in the IEEE Standard 421.2
[3].  It also recommends that an SES should be tested at
least every five years.  Computer simulations have to be
compared with the field measurements as well.  Param-
eters of SESs must be identified if the comparison
shows non-allowable difference.  Several approaches
about parameter identification and dynamic performance
improvement of excitation systems had been given in
the literature.  An excitation control system had been
tested on a single generator-infinite bus system with the
simulation results showing excellent damping of power
swings and retaining good voltage control [10].  The
method to fit complex frequency-response data to a
rational transfer function was obtained by an online
identification algorithm [7].  The recursive least square
time-domain identification was employed to identify
the parameters of a synchronous machine model [11].
The modified least-squared-error approach with a co-
herence function was developed to determine param-
eters of exciters [9].  In [12], a step input voltage test
was performed to estimate the parameters of time con-
stant models and equivalent circuit models.  An identi-
fication procedure for a hydro-generator plant using an
adaptive technique was investigated [13].  The variable
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parameters of a synchronous machine were estimated
using an on-line adaptive algorithm [15].

Before  the  mit igat ion of  vol tage  f l icker
disturbances, it is still required that generators in Tong-
Shiao have enough damping of power oscillations.  The
parameter values of the excitation systems must be well
known so that the performance conditions are ensured.
In this paper, a step signal was injected into the SESs to
test the dynamic performance.  The responses of no-
load generator terminal voltages were surveyed.  The
voltage responses provided information of overshoot,
rise time, settling time and damping ratio to confirm the
performance conditions.  The test results have been
compared with the IEEE Standard 421.2.  Some differ-
ences appeared between field tests and computer
simulations.  A least-squared-error algorithm was also
used to identify the inner-loop regulator parameters of
the SESs.  Then the SESs were retuned again.  Accuracy
of simulation results with true parameter values is sat-
isfactorily confirmed by comparing with the field

measurements.  It could be concluded that the SESs with
final parameter values should have enough ability to
sustain the disturbances of voltage fluctuation.

SYSTEM  UNDER  STUDY

The one-line diagram of the Tong-Shiao Genera-
tion Station under this study is shown in Fig. 1.  Each
combined-cycle generation unit consists of two or three
60-MVA gas turbine (GT) generators and one 100-
MVA steam turbine (ST) generator.  The excitation
systems of GT generators in unit 1 and unit 2 are of static
type with analog controllers and belong to the IEEE-
ST3A model [4].  The two ST generators are equipped
with digital static excitation systems.  All generators of
units 3-5 are equipped with brushless rotating excita-
tion systems.  The digital static excitation systems are
also used in unit 6.  The SES, as shown in Fig. 2, consists
of an automatic voltage regulator (AVR), a transient
gain reduction (TGR) element, an inner loop regulator,
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Fig. 2.  SES block diagram and field test points.

Fig. 1.  One-line diagram of Tong-Shiao Generation Station.

Fig. 3.  Equivalent SES block diagram of a generator at no-load.
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a reactive current compensator (RCC), and a static
exciter.  Since the generators are connected through
transformers, the RCC is not used.  Figure 3 shows the
SES block diagram with equivalent transfer functions
for the generator at no-load.  The EAF plants are fed
from the generation station (GS) 69 kV bus.

The six generators considered in this paper are the
GT type in units 1 and 2, which are identical.  Table 1
gives the original parameter setting of generator 1-1.
The original parameters were obtained from the equip-
ment manual.  Figure 4 shows the field recording of
active and reactive power outputs of generator 1-1 with
original parameter setting.  When the EAFs were in

operation, reactive power variation in the 60-MVA
generator could reach up to 40 Mvar.  The power factor
can be as low as 0.7.  More severe voltage fluctuation
had ever activated the V/Hz protection relays of SESs.
The SESs of six GT generators had been forced to
manual operation (open-loop voltage regulation) mode.
Therefore the improvement of SESs performance was
necessary.  The temporary parameters were obtained
after evaluating the frequency domain Bode plots of
SESs according to IEEE Standard 421.2.  Table 1 also
gives the temporary parameter setting.  The record in
Fig. 5 reveals that the generator has better reactive
power response compared with Fig. 4.  The temporary
parameter setting was also employed in other GT gen-
erators of units 1 and 2.  However, their dynamic
performance must be checked carefully again.

Fig. 4. Recorded powers of generator 1-1 with original setting of
excitation system (a) day time; (b) night time.

Fig. 5. Recorded reactive power of generator 1-1 with temporary
setting of excitation system (a) day time; (b) night time.
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DYNAMIC  PERFORMANCE  TEST  METHOD

The dynamic performance test considers the volt-
age responses of no-load generators with excitation
systems.  In field tests, the small signal method with
time domain responses is used [3].  A no-load generator
means at synchronous speed and rated voltage but is not
connected to the power system.  For the system in Fig.
2, a 1% small step signal can be injected into the
excitation system reference voltage terminal, and then
the dynamic performance is examined by the responses
of generator terminal voltage.  The dynamic perfor-
mance response of a second-order system subjected to a
step input signal is shown in Fig. 6, where the perfor-
mance indexes include rise time, overshoot, and settling
time.  The other index, damping ratio ζ can be calculated
from the overshoot:

   

Overshoot = e
– ξπ/ 1 – ξ 2

(1)

The field test results could be compared with the
recommendation values in the IEEE Standard 421.2 to
verify the performance conditions.

The results from field tests and computer simula-
tions must be compared not only for the performance
conditions but also for accuracy of system parameter
values.  In computer simulations, the Runge-Kutta
method is used.  For the equivalent system shown in Fig.
3, five first-order differential equations are used.
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A 1% step signal, vs, can be injected to the reference
voltage input of SES in Fig. 3, and the response of
generator terminal voltage is used to reveal the dynamic
performance.

DYNAMIC  PERFORMANCE  TEST  RESULTS

The SES dynamic performances of three unit-1 GT
generators were examined.  The voltage responses of
generators 1-1, 1-2, and 1-3 in field tests and computer
simulations are shown in Fig. 7.  At field tests, the
system goes to steady state after 1-2 oscillation cycles.
The performance indexes of voltages are shown in
Table 2.  The values of rise time, overshoot, damping
ratio, and settling time should be compared with the
IEEE 421.2.  In field tests, generator 1-2 and generator
1-3 are more similar, and their values satisfy the IEEE
421.2.  However, generator 1-1 is different with other
generators.  The rise time, 0.08 second, is out of the
recommendation value.

PARAMETER  IDENTIFICATION  OF
EXCITATION  SYSTEM

Before retuning of SESs, their parameters should
be identified.  According to the manual, values of gain
KA and time constants TA, TB, and TC can be easily
examined by checking the control card, which consists
of analog electronic circuits.  Their values are the same
as those temporary setting values listed in Table 1.
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Fig. 6.  Response of a second-order system subjected to a step signal.

Table 1. Parameter setting of excitation system of generator 1-
1

Original Temporary Final
setting setting setting

Kmin 14 7 8.01
TB (sec) 2.5 7 10
TC (sec) 0.25 1 1
TA (sec) 0.001 0.001 0.001

Tmin (sec) 0.28 0.28 0.0516
TF (sec) 0.003 0.003 0.003

KA 105 105 50
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Thus, only the gain Kinn and time constant Tinn of the
inner-loop in the firing-control circuit should be
identified.

The least-squared-error algorithm is used.  Three
steps are taken:

(1) A 1% step signal is injected into the SES in Fig.
2.  A digital transient recorder is used to record input
and output response data of the inner-loop.

(2) A low-pass filter is used to eliminate high
frequency noises in recorded data.

(3) The least-squared-error algorithm is employed
to identify Kinn and Tinn by providing a model to achieve
a best fit to experimental data [2].

The responses of vavr and vinn in the inner-loop
were recorded.  The sampling time, Ts, is 0.347 milli-
seconds.  The test time T is 5 seconds.  The total
sampling point number is

  m = T
T S

(7)

For a sequence of m observations of vinn and vavr, they
can be expressed by vinn(k + 1), vinn(k), and vavr(k), k =
1, 2, ........., m.  There are m linear equations.

vinn(k + 1) = a1vavr(k) + a2vinn(k), k = 1, 2, ......, m
(8)

Let   A = [a1    a2]T be a set of constant parameters,
  

a 1 = K inn(1 – e
–

T S
T inn ) and 

  

a 2 = e
–

T S
T inn  to be estimated. In

statistics literature, equation (8) is called a regression
function, and a1 and a2 are the regression coefficients.
The system of equation (8) can be conveniently ar-
ranged into a simple matrix form

 
V min = V A (9)

where

   

V inn =

v inn(2)
v inn(3)

.

.

.
v inn(m + 1)

   

V =

vavr(1) v inn(1)
vavr(2) v inn(2)

. .

. .

. .

. .
vavr(m) v inn(m)

It is necessary that m ≥ 2.  If m = 2 and the inverse
of 

 
V  exists, it can solve 

 
A  uniquely by

Fig. 7. Generator voltage step responses with temporary setting of
excitation system (a) generator 1-1; (b) generator 1-2; (c)
generator 1-3.
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  A = V – 1 V inn (10)

However, when m > 2, generally it is not possible
to determine 

 
A  exactly to satisfy all equations because

the data may be complicated by random measurement
noises, errors in the model, or a combination of both.
An alternative is to obtain the estimate,   A ,  based on
least error squares.  Define an error vector  e  = [ε1  ε2  ...
εm]T, and let

  e = V inn – V A (11)

The choice of  A  is to minimize the objective
function

    J = Σ
i = 1

m

εi
2 = e T e (12)

It can be expressed as

   J = ( V inn – V A )T( V inn – V A )

  = V inn
T V inn – A T V T V inn – V inn

T V A

  + A T V T V A (13)

Differentiate J with respect to  A  and equate the
result to zero, that is,

    ∂J
∂ A A = A

= – 2 V T V inn + 2 V T V A = 0    (14)

We have

   V T V A = V T V inn (15)

Then

   A = ( V T V )
– 1

V T V inn (16)

IDENTIFICATION  RESULTS

In the parameter identification, 400 iterations are
used.  For generator 1-1, the iteration procedure of Kinn,
Tinn, and J is shown in Fig. 8.  The average value of Kinn

is 8.01, Tinn and that of  is 0.0516 second.  The computer
simulation response with identified Kinn and Tinn of
generator 1-1 voltage is shown in Fig. 9.  The result is
similar with the field test response.  The identified
values of Kinn and Tinn of this generator are different
with the temporary setting values.  Table 3 also shows
the identified parameters in the inner-loop of generators
1-2 and 1-3.

RETUNING  OF  SES

The SESs should be tuned again so that the dy-
namic performance can be better.  Because the SES uses
analog electronic circuit, it is easy to tune the elements
in the automatic voltage regulator [14].  The values of
Kinn and Tinn are given by the identified parameter
values of generator 1-1.  Then it is emphasized on the
automatic voltage regulator [5, 6].

(1) The differential time constant TC is set to a
standard value of 1 second.

(2) The integral time constant TB could be tuned
from 1 to 12 seconds.

(3) The value of KA could be from 20 to 230 to have
a proper whole system loop gain [4].

The performance indices with respect to KA and TB

are shown in Fig. 10.  From Figure 10, KA = 50 and TB

= 10 seconds are suitable for the study system.  The final
parameter setting values are indicated in the fourth
column of Table 1.  The step change responses of
generator voltage are shown in Fig. 11, where the damp-
ing is good as shown in Table 4.  The field test is similar
with the computer simulation.  The SES with the final

Table 2.  Dynamic performance indexes with temporary setting of excitation systems

Rise time Overshoot Damping Settling
(sec) (%) ratio time (sec)

Field Generator 1-1 0.08 29.14 0.37 0.64
test Generator 1-2 0.14 61.37 0.15 1.46

Generator 1-3 0.16 52.32 0.20 1.94

Computer simulation 0.15 58.46 0.17 1.49

IEEE-421.2 standard 0.1~2.5  0~80  0~1 0.2~10
recommendation

Accepted range of a good feedback —  ≤ 15  ≥ 0.6  —
control system [4]
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Fig. 8. Results during identifying SES parameters of generator 1-1 (a)
Kinn; (b) Tinn; (c) objective function.

Table 3. Result of parameter identification in the inner-loop of
excitation system

                  Parameters Kinn Tinn
Generator (sec)

Generator 1-1 8.01 0.0516
Generator 1-2 8.42 0.26
Generator 1-3 8.41 0.27

Fig. 10. Changing of dynamic performance indexes (a) rise time; (b)
overshoot; (c) damping ratio; (d) settling time.

Fig. 9. Generator voltage step response of generator 1-1 after param-
eters identification of excitation system.

Table 4. Dynamic performance indexes of generator 1-1 with
final setting of excitation system

Rise time Overshoot Damping Settling
(sec) (%) ratio time (sec)

Simulation 0.2 8.9 0.61 2.25
Field test 0.3 9 0.6 2.6
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parameter setting could be a good feedback control
system.  The same tuning procedures are used to other
ST generators in units 1 and 2.

To examine the dynamic stability of a generator
under load, a two-axis model and an SES could be used.
Since the rating of each GT generator is much smaller
than the short circuit capacity of the 161-kV bus, and
each generator is connected to that bus by a separate
transformer, the generator can be assumed to be con-
nected to an infinite-bus through a step-up transformer
and a transmission line with line reactance Xe.  The
generator and the transformer data are given in the
Appendix.

The changing of eigenvalues of electromechanical
and exciter modes considering generator active power P
from 0.2 to 0.75, reactive power Q from 0 to 0.35, and
transmission reactance Xe from 0 to 0.35 are shown in
Fig. 12.  Some operating conditions with original or
temporary parameter setting may be unstable.  Table 5
shows the eigenvalues of the generator system under
light and full load conditions.  Since the generator rating
is large than the gas turbine, the active power loading at
0.52 is said to be full load.  At light load and full load,
the final parameter setting gives a system with better
damping in the electromechanical mode to depress power
oscillations.  It is desired to examine the transient
behavior of the generator to demonstrate the eigenvalues.
The time domain computer simulation results for a 5%
step change of the mechanical power as a small distur-
bance are shown in Fig. 13.  It reveals that the final
parameter setting of SES ensures a system with better
dynamic stability.

CONCLUSION

This paper gives a comprehensive experience about

Fig. 11. Generator voltage step response of generator 1-1 with final
setting of excitation system.

Fig. 12. Eigenvalues of generator system with different parameter
setting of excitation system (a) original setting; (b) temporary
setting; (c) final setting.
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Fig. 13. Generator speed response to a 5% mechanical power change
(a) light load; (b) full load.

the dynamic performance improvement of excitation
systems and dynamic stability enhancement of synchro-
nous generators.  The method by injecting a step signal
into the excitation system is a good approach to assess-
ing the dynamic performance condition of generator
voltage response.  The least-squared-error algorithm is
also useful to identify the parameters of excitation
systems.  The stability of gas turbine generators has
been ensured and the parameter values of excitation
systems are accurate.  The SESs have been retuned
again to have good dynamic performance indices to
confirm in the range of a good feedback control system.
It is concluded that the generators with SESs in
Tong-Shiao Generation Station should have been satis-
factorily tuned to have enough damping of power
oscillations.

ACKNOWLEDGMENTS

The authors would like to express their sincere
thanks to people in Tong-Shiao Generation Station for
help in this work.

REFERENCES

  1. General Electric, Potential Source Excitation System for
Gas Turbine, General Electric Company, Virginia, U.S.
A. (1985).

  2. Hsia, T.C., System Identification: Least Squares Methods,
Lexington Book, Lexington, Massachusetts, U.S. A.
(1977).

  3. IEEE, IEEE Standard Definition for Excitation System
for Synchronous Machines, Standard 421.1, New York,
U.S.A. (1986).

Table 5.  Eigenvalues of generator system

Parameters of
excitation Original setting Temporary setting Final setting

system

Light load -999.98 -999.99 -999.98
(P = 0.2, Q = 0.05) -333.54 -333.44 -333.5

-6.9 -7.02 -17.78
-1.02 -1.05 -8.14
-1.35 ± j6.83* -1.24 ± j5.84* -1.53 ± j5.58*
-2.15 ± j4.56+ -2.18 ± j3.48+ -1.13 ± j0.48+

Full load -999.98 -999.99 -999.99
(P = 0.52, Q = 0.05) -333.48 -333.41 -333.45

-8.69 -8.87 -18.36
-1.06 -1.14 -9.94
-0.09 ± j6.54* -0.44 ± j6.31* -0.65 ± j6.53*
-2.52 ± j4.9+ -2.02 ± j3.31+ -0.84 ± j0.75+

*: Electromechanical mode; +: Exciter mode.



C.J. Wu & Y.S. Chuang: A Practical Experience About Dynamic Performance and Stability Improvement of Synchronous Generators 173

  4. IEEE, IEEE Guide for Identification, Testing, and Evalu-
ation of The Dynamic Performance of Excitation Con-
trol System, Standard 421.2, New York, U.S.A. (1990).

  5. Koessler, R.J., “Techniques for Tuning Excitation Sys-
tem Parameters,” IEEE Trans. Energy Convers., Vol. 3,
pp. 785-791 (1988).

  6. Kundur, P., Klein, M., Rogers, G.J., and Zywno, M.S.,
“Application of Power System Stabilizers for Enhance-
ment of Overall System Stability,” IEEE Trans. Power
Syst., Vol. 4, pp. 614-626 (1989).

  7. Lawrence, P.J. and Pogers, G.J., “Sequential Transfer-
function Synthesis from Measured Data,” IEE Proc.,
Vol. 126, pp. 104-106 (1979).

  8. Liou, T.S., Liou, Y.S., and Chang, J.L., “Measurement
and Analysis of Dynamic Response of Excitation
System for TPC Generation Units,” Taipower, PRI
Res. Report, Taiwan, R.O.C. (1993).

  9. Liu, C.S., Hsu, Y.Y., Jeng, L.H., Lin, C.J., Huang, C.T.,
Liu, A.H., and Li, T.H., “Identification of Exciter Con-
stants Using a Coherence Function Based Weighted
Least Squares Approach,” IEEE Trans. Energy Con-
vers., Vol. 8, pp. 460-467 (1993).

10. Machowski, J., Bialek, J.W., Robak, S., and Bumby,
J.R., “Excitation Control System for Use with Synchro-
nous Generators,” IEE Proc. C, Vol. 145, pp. 537-546
(1998).

11. Merchant, R.W. and Gibbard, M.J., “Identification
of Synchronous Machine Parameters from Standstill
Tests Using Recursive Estimation with the Bilinear

Operator,” IEE Proc. C, Vol. 139, pp. 157-165 (1992).
12. Tumageanian, A. and Keyhani, A., “Identification of

Synchronous Machine Linear Parameters from Stand-
still Step Voltage Input Data,” IEEE Trans. Energy
Convers., Vol. 10, pp. 232-240 (1995).

13. Wrate, C.A. and Wozniak, L., “Hydrogenerator System
Identification Using a Simple Genetic Algorithm,” IEEE
Trans. Energy Convers., Vol. 12, pp. 60-65 (1997).

14. Wu, C.J., Yen, S.S., Chang, W.N., and Guo, T.Y.,
“Enhancement of Static Excitation System Performance
for Generators Near Electric Arc Furnace Loads,” IEEE
Trans. Energy Convers., Vol. 14, pp. 225-231(1999).

15. Zhao, Z., Xu, L., and Jiang, J., “On-line Estimation of
Variable Parameters of Synchronous Machines Using a
Novel Adaptive Algorithm-principles and Procedures,”
IEEE Trans. Energy Convers., Vol. 12, pp. 193-199
(1997)

APPENDIX

System data (pu, except as indicated)
The two-axis model describes the generator.  The

parameters are obtained from the machine manual [1].
The base values are 115.75 MVA and 13.8 kV.

Generator: Xd = 2.599; Xq = 2.504; X’d = X’q =
0.513; T’do = 3.163 sec

T’qo = 0.339 sec; Ra = 0.006; H = 4.76 sec
Exciter: Vmax = 7.3; Vmin = -7.3
Transformer: Xtr = 0.15
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