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ABSTRACT

The vortex-induced nonlinear vibration of casing pipes in the
deep water is studied considering the loads of current and combined
wave-current.  The vortex-induced vibration equation of a casing pipe
is set up with considering the beam mode and Morison’s nonlinear
fluid damp as well as the vortex-excited loads.  The approach of
calculating vortex-excited nonlinear vibration by Galerkin’s method
is proposed.  The natural vibration characteristics and the vortex-
excited vibration response of 170m long casing pipe in the 160m depth
of water are investigated, the resonance induced by wave and the
resonance under combined wave-current were investigated, which is
shown that the method is practical.

INTRODUCTION

As depth of water reaches to 100m or more than
100m, the relative stiffness of a casing pipe is reduced,
the natural frequency of a casing pipe may be close to
shedding frequency of vortex, so the resonance will
occur.  Because the diameter of casing pipe is much less
than length, so a casing pipe can be simplified into the
beam model.  The interaction between the currents was
discussed when the fluid flows through the cylinder,
and the wake oscillator-model, correlation-model, and
statistical-model were presented for the prediction of
dynamics response of cylinders in the uniform flow [7].
Also the wake oscillator-model was employed to pre-
dict the vibration of cylinders in the non-uniform flow
[3].  The analytical method in the time domain for a riser

of TLP was developed through simplifying the nonlin-
ear term in the Morison’s formula into linear term [4, 6].
The nonlinear vortex-excited response was calculated
for the riser of TLP using the nonlinear fluid damp force
and the simple beam model [2].  Based on the beam
model with the upper moveable support and fixed sup-
port at the bottom, the dynamics response of a riser of
TLP was investigated [5].  However the less investiga-
tions of vortex-excited vibration have been done for
casing pipes in the wave-current, the response mecha-
nisms induced by current and combined wave-current
for casing pipes have not been fully understood up to
date.  The achievements in this paper developed the
calculating method of vibration induced by current and
combined wave-current for the casing pipe in the deep
water, and the vibration behavior of casing pipes are
described.

VIBRATION  EQUATIONS  AND  NATURAL
MODES

It is assumed that wave and current flow in same
direction x, and the cross-section of casing pipe is
uniform.  The coordinate original point is at the bottom
of seas.  The analytical model is illustrated in Fig. 1, the
upper support represents the link between the lower
deck and the casing pipe.

According to Fig. 1, the vibration equation of a

Fig.1.  Coordinate system and model.
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casing pipe can be yielded as following

   EI
∂4y

∂z 4
+ m

∂2y

∂t 2
+ c

∂y
∂t

= Fy(z, t) (1)

where, E and I are Young’s elastic modulu and bending
inertial moment of a casing pipe, respectively; m is the
structural mass per unit length; l is the height of a casing
pipe; c denotes the damping coefficient; Fy(z, t) is the
total fluid force per unit length, and

Fy(z, t) = FL(z, t) − Fr(z, t) (2)

where, FL(z, t) and Fr(z, t) denote the vortex-excited
force and the fluid damp force due to motion of a casing
pipe in the direction y, respectively.

   FL(z, t) = 1
2

ρD(Vc + u)2 C Lcos ωst

= KL(z) CL cos ωst (3)

and

   K L(z) = 1
2

ρD(Vc + u)2
(4)

where, ρ is the density of water; D denotes the diameter
of casing pipe; u is the wave velocity in any depth of
water; CL and ωs are the lift force coefficient and the
shedding frequency of vortex, respectively; Vc is the
current velocity in linear variation with the depth of
water, i.e.

Vc = a + bz (5)

where, a represents the current velocity on the bottom of
sea; b is the coefficient of current velocity.

The nonlinear fluid damp force in the direction y
can be expressed in the Morison’s formula [2, 3]

  Fr(z, t) = K dC d sgn (y) y 2 + m'y (6)

where, Kd = ρD/2; m' is the added water mass per unit
length, and m' = ρCa • ρD2/4; sgn = + 1 or −1 depend on
the negative sign or positive sign of y .  Cd and Ca are the
coefficients of fluid damp and added water mass,
respectively.  Here in, CL = 0.6 ~ 2.4 , Cd = 0.4 ~ 2.0, Ca

= 1.0 [4, 7].
As the vibration modes are expressed by Korolov

function based on Galerkin’s method [1], the vibration
deflection can be expanded as following

   y(z, t) = Σ
n = 1

n

yn(t)(Eλ nlC λ nz – D λ nz) (7)

where, Cλnz and Dλnz are called as the Korolov function;
Eλnl = Bλnl/Aλnl, Aλnl and Bλnl denote the value of Korolov

function as z = l [1]; yn(t) is the nth mode coordinate.
The natural frequencies and vibration mode can be
determined according to the boundary conditions of two
ends of a casing pipe.

CALCULATION  METHOD  OF  DYNAMICS
RESPONSE

The formula (1) can be simplified into the linear
equations  employing the Galerkin’s method.  Substitut-
ing the formulas (3 -7) into formula (1), and multiplied
by (EλnlCλnz − Dλnz), to integrate the equation in the
region (0, l) for the two sides of equation, we have

   yn + λ Bn
2 yn +

C n
m yn + 1

m l n
D n

   
=

C L

m l n
cos ωst

0

l
K L(z) (Eλ nlC λ nz – D λ nz) dz

(n = 1, 2, ..., N) (8)

and

   C L

m l n
cos ωst

0

l
K L(z) (Eλ nlC λ nz – D λ nz) dz

   = Accos ωst + (Aw cos 2ωwt + 2Acwcos ωwt) cosωst
(9)

where,  ωw is  the wave frequency;   m = m + m' ;
   C n = 2 m λ nζ s , ζ s is the structural damp ratio; and

   λ Bn
2 = EI

m
λ n

4, l n = (
0

l
Eλ nlC λ nz – D λ nz) dz (10)
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C LK d

m l n
(

0

l
a + bz)2 Eλ nlC λ nz – D λ nz) dz

   
+ 1

2
(πH
T w

)
2

0

l
e 2kz'(Eλ nlC λ nz – D λ nz) dz        (11)

   
Aw =

C LK d

2 m l n
(πH
T w

)
2

0

l
e 2kz'(Eλ nlC λ nz – D λ nz) dz  (12)

   Acw =
C LK d

2 m l n
(πH
T w

)
2

   ×
0

l
(a + bz) ekz' (Eλ nlC λ nz – D λ nz) dz (13)

   
D n = K dC d

0

l
sgn (y) y 2 (Eλ nlC λ nz – D λ nz) dz    (14)

The dynamics deflection can be obtained solving
the formula (8) by the numerical integration of Runge-
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Kutta.  The sgn   [y(z, t)]  will change with time t and
position z in process of integrating Dn, so sgn   [y(z, t)]  at
(i + 1) step is determined by the   y(z, t)  at i step, and Dn

is solved by the numerical integration.

CALCULATIONS  OF  EXAMPLE

The parameters of the example are as following:
a = 0.4 (m/s); b = 0.001286 (m/s); Wave length Lw =
300 m; Wave frequency ωw = 0.437 (1/s); Distance
from the lower deck to the bottom l = 170 m; Diameter
D = 0.75 m; Thickness of wall t = 0.02 m; Mass per
unit length m = 636 (Kg/m); Bending stiffness EI =
0.642 × 106 kN • m2; Structural damp ratio ζ s = 1.8 ×
10−3.  In order to solve the dynamics response employ-
ing Galerkin’s method, the natural frequencies of
casing pipe are calculated and shown in Table 1.

The resonance response excited by current was
calculated as only the first term in the right side of
formula (9) is considered when ωs = 0.437 (rad/s), and
CL = 2.4, CD = 0.6.  The mode responses y1(t), y2(t), y3

(t) and y4(t)  are shown in Fig. 2.
The first mode response y1(t) is larger than

the response of other modes from Fig. 2 as ωs = λ1.  If
ωs = λ2, y2(t) is larger than one of other modes, but
the response amplitude of second harmonic resonance
is less than the amplitudes of first harmonic resonance.

The Fig. 3 shows the vortex-excited resonance
induced by combined wave-current when ωs = ωw = λ1.

It is known from Fig. 3 that the modes response
induced by wave-current greatly increase, and the non-
linear behaviors of response are very complicated, which
can be explained based on formula (9).  Only if current
is considered, the resonance frequency is ωs; but when
the combined wave-current is considered, the resonance
frequencies are  ωs, 2ωw ± ωs according to the formula
(9), 2ωw ± ωs are called as the frequencies of composite
resonance.  The frequencies of composite resonance
result in the increase in the response induced by com-
bined wave-current.

The mode responses of bending moment at the
bottom for combined wave-current are illustrated in
Fig. 4.

The ratios of higher order mode (Order No. >
1) responses to first mode response are 20%, 4%, 1.2%,
respectively from Fig. 3 for deflection response.
But the ratios of higher order mode responses to
first mode response are 64%, 28% and 17% respectively
from Fig. 4 for bending moment response, which is
shown that the effect of higher modes on bending
moment is more important than one of higher modes
on the deflection.  The history responses curves
of bending moment and shear force are presented in Fig.
5.

CONCLUSIONS

The analytical model of nonlinear vortex-excited
vibration is suggested for the casing pipes in the deep
water, and the calculation approach using Galerkin’s

Fig. 2.  First harmonic resonance induced by current.

Table 1.  Natural frequencies (R/s)

Order λ1 λ2 λ3 λ4

Frequency 0.437 1.415 2.951 5.045
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Fig. 3.  Resonance induced by wave-current (ωs = ωw = λ1). Fig. 4.  Mode responses of bending moments under combined wave-current.

method is put forward.  The follow conclusions are
drawn in this paper.

(1) The response of casing pipe greatly increases
under combined wave-current due to the composite
frequency resonance in combined wave-current.

(2) The combined wave-current should be consid-
ered for the calculation of dynamics response as the
shedding frequency of vortex is close to the wave

frequency.
(3) In order to get the same accurate both the

deflection and the internal forces, the chosen modes for
calculation of bending moment should be more than the
modes for calculation of deflection.

(4) The paper provides the practical approach for
analyzing  dynamics strength of casing pipes.
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Fig. 5.  Response of bending moment and shear force at the bottom.
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