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ABSTRACT

A new concept, carbon dioxide (CO2) transport in concrete, is
proposed in this paper to describe solute-transport processes.  Using
this concept, a new one-dimensional mathematical model was devel-
oped to describe the transport phenomena of carbon dioxide in con-
crete structures.  By treating transport phenomena as a concrete
carbonation process, a one-dimensional linear partial differential
equation was derived based on the principle of mass balance and
convective-dispersive equation and was found the analytical solution
by the separation of variables and the Laplace transform methods
combined with some substitution approaches.  The concrete carbon-
ation numerical results were determined using parameters, such as the
diffusion coefficient, CO2 concentration, carbonation depth and time,
occurring in concrete structures.  The numerical results are presented
to illustrate the practical applications of this model.  These results are
shown clearly that the proposed model may actually describe the
concrete carbonation process chemically and physically.  It is sug-
gested that experiment should be performed to select suitable param-
eters for numerical simulations.

INTRODUCTION

Carbonation in concrete regularly involves a chemi-
cal reaction between carbon dioxide (CO2) and the
products of cement hydration.  This reaction can result
in a significant reduction in the pH of the pore solution
due to the removal of the hydroxyl ions (OH−), which
may lead to steel depassivation and subsequent rein-
forcement corrosion.  While carbonation in temperate
climatic conditions may be related to environmental
pollution, in arid and semiarid regions it may be accen-
tuated by the elevated temperature and humidity.

Browne [3] used Fick’s second diffusion law to
make a family of curves for the chloride concentration

with distance from the surface with time for different
surface-chloride levels and chloride diffusion coeffi-
cients as a design nomogram.  This nomogram can
predict the service life of existing reinforced concrete
structures.  The literature is also rich in concrete car-
bonation investigations, aiming at developing empirical
or semiempirical relations for the prediction of the rate
of carbonation, and hence of the time required for
depassivation of the reinforcing steel [11, 23, 24, 25, 26,
27, 28, 29, 33, 34, 38] provided a general mathematical
model of all physicochemical processes involved in
concrete carbonation which was constructed and ex-
perimentally validated.  Approximate solutions for this
model allow quantitative prediction of the evolution of
carbonation with time.  This model helps in identifying
those material and environmental parameters that affect
the rate of carbonation and can be used for parametric
studies of their effect on this rate.

Although these studies have provided much valu-
able information on the relationship between material
and environmental factors, there are free of analytical
solution [22] and are still many factors that have not yet
been explored.  This paper describes a theoretical study
that is a one-dimentional linear diffusion equation with
initial and boundary conditions.  The mathematical
model considers the relationships among unsteady state
and diffusion, pore-water convective effect and chemi-
cal reaction and is shown in Table 1.  The results of this
study may be of importance to civil engineers and
scholars attempting to develop programming standards
and to researchers interested in the theoretical aspects
of computer programming.

THEORETICAL  MODELING  OF  CONCRETE
CARBONATION

The rate at which carbon dioxide (CO2) penetrates
into concrete structures can be determined using several
transport mechanisms.  These mechanisms often act
simultaneously on the concrete structures and may in-
clude such processes as convection, diffusion, dis-
persion, and first-order production [40] or decay.  The
general partial differential equation that relates these
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factors to a one-dimensional transport process can be
written as

   R∂C
∂t

= D s – v∂C
∂x – K TC – r (1)

where C is the concentration of carbon dioxide, Ds is the
diffusion coefficient, R is the retardation factor
(dimensionless), v is the pore-water velocity, KT is the
rate constant for first-order decay at a given tempera-
ture T, r is the rate constant for zero-order production

[40], x is space and t is time.  Equation (1) or the
appropriate simplification has also found widespread
application in soil science, chemical and environmental
engineering, and water resources.  A similar form has
also been proposed by Tchobanoglons [36] and Chen et
al. [5] for use in constructed wetlands.

Equation (1) describes the one-dimensional trans-
port phenomena of concrete carbonation.  If R = 1 (This
means that the carbonation phenomenon is only con-
cerned in this present study) and r = 0 (This means that

Table 1.  A catalogue of one-dimensional linear diffusion equations

        Governing equations                                 Description           References

1 PDE    ∂C
∂t

= D s
∂2C
∂x 2 Consider the relationships between unsteady,    ∂C

∂t
, [3, 6, 7, 9, 12, 16, 17, 37, 38, 42]

IC C(x, 0) = Ci and diffusion,    D s
∂2C
∂x 2

.
BC C(0, t) = Cs

C(L, t) = Cf

2 PDE    ∂C
∂t

= D s
∂2C
∂x 2

– K TC Consider the relationships among unsteady,    ∂C
∂t

, [19, 37]

IC C(x, 0) = Ci and diffusion,    D s
∂2C
∂x 2

,  and chemical reaction, KTC.
BC C(0, t) = Cs

C(L, t) = Cf

3 PDE    ∂C
∂t

= D s
∂2C
∂x 2

– r Consider the relationships among unsteady,    ∂C
∂t

,  and [30, 32]

IC C(x, 0) = 0 diffusion,    D s
∂2C
∂x 2

,  and rate constant for zero-order
BC C(0, t) = Cs production,. r

   ∂C
∂n (0, t) = 0

4 PDE    ∂C
∂t

= D s
∂2C
∂x 2

– v ∂C
∂x Consider the relationships among unsteady,    ∂C

∂t
,  and [35]

IC C(x, 0) = 0 diffusion,    D s
∂2C
∂x 2  and pore-water convective effect,

BC C(0, t) = Cs    v ∂C
∂x

.
C(L, t) = 0

5 PDE Consider the relationships among unsteady,    ∂C
∂t

,  and [5, 18, 31]
   ∂C

∂t
= D s

∂2C
∂x 2

– v ∂C
∂x

– K TC diffusion,    D s
∂2C
∂x 2

,  pore-water convective effect,

IC C(x, 0) = Ci    v ∂C
∂x

,  and chemical reaction, KTC.
BC C(0, t) = Cs

C(L, t) = Cf

6 PDE Consider the relationships among unsteady,    ∂C
∂t

,  and [5, 36]
   ∂C

∂t
= D s

∂2C
∂x 2

– v ∂C
∂x – K TC – r diffusion,    D s

∂2C
∂x 2

,  pore-water convective effect,

IC C(x, 0) = Ci    v ∂C
∂x

,  chemical reaction, KTC, and rate constant for
BC C(0, t) = Cs zero-order production,. r
C(L, t) = Cf

Remark: C(x, t) is the concentration of CO2 at space x time t, Ci, Cs and Cf are the initial concentration of CO2 in concrete, on
the surface of concrete structure, and at the interface between concrete and steel, respectively, Ds is the diffusion coefficient,
KT is the rate constant for first-order decay at a given temperature T, v is the pore-water velocity, r is the rate constant for zero-
order production, x is space and t is time.  n represents the normal direction from the common boundary.
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in the carbonated zone the reduction of concrete ab-
sorbed CO2 has been finished, i.e., the absorbed CO2

mass pen unit volume per unit time equal zero), Eq. (1)
becomes

   ∂C
∂t

= D s
∂2C
∂x 2

– v∂C
∂x – K TC (2)

Initial and boundary conditions are

C(x, 0) = Ci (3)

C(0, t) = Cs (4)

C(L, t) = Cf (5)

where Ci, Cs and Cf are the initial concentration of
carbon dioxide in concrete, on the surface of the con-
crete structures, and at the interface between the con-
crete and steel, respectively.  L is the concrete cover
thickness on the reinforcing steel.

In order to solve the concrete carbonation problem
modeled by Eqs. (2)-(5), first of all one assumes

C(x, t) = eαx + βtφ(x, t) (6)

where α  and β are the constant parameters, and φ(x, t) is
a new function of CO2 concentration.

Substitution Eq. (6) into Eq. (2) gives

   ∂φ
∂t

= D s
∂2φ
∂x 2

+ (2αD s – v)
∂φ
∂x + (D sα 2 – vα – K T – β) φ

(7)

In order to reduce Eq. (7) as a standard form of the
one-dimensional diffusion equation, the coefficients of
the second and third terms on the right-hand side should
be equal to zero, i.e.,

2αDs − v = 0 (8)

Dsα2 − vα  − KT − β = 0 (9)

From Eq. (8), one has

   α = v
2D s

(10)

Substituting Eq. (10) into Eq. (9), one obtains

   β = – v 2

4D s
– K T (11)

The solution methods of Separation of Variables
and Laplace transform are described in the following.

Separation of Variables Method

Now the problem formulated by Eqs. (2)-(5)

changes into the control equation with initial and bound-
ary conditions

   ∂φ
∂t

= D s
∂2φ
∂x 2 (12)

φ(x, 0) = Cie
−αx (13)

φ(0, t) = Cse
−βt (14)

φ(L, t) = Cfe
−αL−βt (15)

For solving the problem of concrete carbonation
modeled by Eqs. (12)-(15), one assumes

φ(x, t) = Φ(x, t) + ϕ(x) (16)

Substitution Eq. (16) into Eqs. (12), (14), and (15)
yields

   ∂Φ
∂t

= D s
∂2Φ
∂x + D sϕ"(x) (17)

φ(0, t) = Φ(0, t) + ϕ(0) = Cse
−βt (18)

φ(L, t) = Φ(L, t) + ϕ(L) = Cfe
−αL−βt (19)

One chooses ϕ(x) as a solution of the problem

ϕ"(x) = 0; ϕ(0) = Cse
−βt, ϕ(L) = Cfe

−αL−βt (20)

Integrating twice to ϕ"(x) = 0, one obtains

ϕ(x) = Ax + B (21)

where A and B are integral constants.
Putting the boundary conditions in Eq. (20) into

Eq. (21), one obtains

   A = 1
L

(C fe
– αL – βt – C se

– βt)  and B = Cie
−ax.

Thus, one has

   ϕ(x) = 1
L

(C fe
– αL – βt – C se

– βt)x + C se
– βt (22)

With the choice of ϕ(x), the initial and boundary
value problem for Φ(x, t) is formulated as

   ∂Φ
∂t

= D s
∂2Φ
∂x 2

, 0 ≤ x ≤ L, t > 0 (23)

Φ(0, t) = 0 (24)

Φ(L, t) = 0 (25)

Φ(x, 0) = φ(x, 0) − ϕ(0) = Cie
−αx − ϕ(x) = f(x)

(26)
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In order to solve the concrete carbonation problem
modeled by Eqs. (23)-(26), the separation of variables
method is used, i. e.,

Φ(x, t) = X(x)T(t) (27)

where X(x) and T(t) are the functions of the independent
variables of x and t, respectively.  Substituted Eq. (27)
into Eq. (23), one obtains

  XT = D sX'T (28)

where the superscribe dot and prime indicate T and X of
the first and second partial derivative with respect to t
and x, respectively.

Equation (28) can be written as

  X"
X

=
T

D sT
= k (29)

where k is an unknown constant to be determined.
Equation (29) can be rewritten as two ordinary

differential equations

X" − kX = 0 (30)

  T – D skT = 0 (31)

At the present, one first solves Eq. (30).  However,
from Eqs. (24), (25) and (27), one knows

Φ(0, t) = X(0)T(t) = 0 (32)

Φ(L, t) = X(L)T(t) = 0 (33)

If T(t) in Eqs. (32) and (33), then Φ(x, t) should be
a trivial solution.  This is not an interesting result.
Hence, under the condition of T(t) ≠ 0, one discovers

X(0) = 0 (34)

X(L) = 0 (35)

If k = 0 in Eq. (30), then Eq. (30) becomes

X"(x) = 0 (36)

After doubling the integral, one has

X(x) = Dx + E (37)

where D and E are integral constants.
Substituting Eqs. (34) and (35) into Eq. (37), one

finds D = E = 0.  Moreover, X(x) = 0.  This is a trivial
solution.  Φ(x, t) is a corresponding trivial solution.

If k > 0, then set k = p2, where p > 0.  Equation (30)
is written as

X" − p2X = 0 (38)

The general solution for Eq. (38) is

X(x) = Fepx + Ge−px (39)

where F and G are constants.
Placing Eqs. (34) and (35) into Eq. (39), one has F

= G = 0, i. e. X(x) = 0.  This is again a trivial solution.
Φ(x, t) is again a corresponding trivial solution.

If k < 0, then put k = −p2, where p > 0.  Equation
(30) is changed as

X" + p2X = 0 (40)

The general solution for Eq. (40) is

X(x) = H cos(px) + I sin(px) (41)

Substituting Eq. (34) into Eq. (41), one discovers
H = 0.  Placing Eq. (35) into Eq. (41), one obtains

I sin(px) = 0 (42)

If I = 0, then X(x) = 0, i.e., Φ(x, t) = 0.  This is a
trivial solution.  One puts I = 0 into the discard.  Now
consider

sin(px) = 0 (43)

From Eq. (43), one knows

pL = nπ, p > 0, n = 1, 2, 3.... (44)

Thus, for each positive integer n, one obtains the
eigenvalue of the initial and boundary value problem for
Φ(x, t), i.e.,

   k n = n 2π2

L 2 (45)

The corresponding eigenfunction is

   Xn(x) = Insin (nπx
L

) (46)

At present, one should solve Eq. (31).  Equation
(31) is changed into

   T +
n 2π2D s

L 2
T = 0 ,  n = 1, 2, 3... (47)

The solution for Eq. (47) is

   T n = J n exp ( –
n 2π2D st

L 2
) (48)
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where Jn is a constant.
Substituting Eqs. (47) and (48) into Eq. (27), one

obtains

   Φn(x, t) = K n sin (nπx
L

) exp (–
n 2π2D st

L 2
) ,

n = 1, 2, 3... (49)

where Kn = InJn is a constant.
Since Eq. (23) is linear and homogeneous, one

obtains the solution using the principle of superposition

   Φn(x, t) = K nΣ
n = 1

∞
sin (nπx

L
) exp (–

n 2π2D st

L 2
)        (50)

Placing Eq. (26) into Eq. (50), one has

   Φn(x, 0) = f(x) = C ie
– αx – ϕ(x) = K nΣ

n = 1

∞
sin (nπx

L
)
(51)

Eq. (51) is the Fourier sine series. Thus, one chooses

   
K n = 2

L
f

0

L
(x) sin (nπx

L
) dx

   
= 2

L
[

0

L
C ie

– αx – ϕ(x)] sin (nπx
L

) dx (52)

Substituting Eq. (52) into Eq. (50), one has

   Φn(x, t) = 2
L

{Σ
n = 1

∞
[

0

L
C ie

– αξ

   – ϕ(ξ)] sin (
nπξ

L
) dξ} sin (nπx

L
) exp (

– n 2π2D st

L 2
)

(53)

The substitution of Eqs. (22)and (53) into Eq. (16)
yields

   Φn(x, t) = 2
L

{Σ
n = 1

∞
[

0

L
C ie

– αξ

   – ϕ(ξ)] sin (
nπξ
L

) dξ} sin (nπx
L

) exp (
– n 2π2D st

L 2
)

   + 1
L

(C fe
– αL – βt – C se

– βt) x + C se
– βt (54)

Finally, putting Eq. (54) into Eq. (6), one obtains
the analytical solution for the original problem

   
C(x, t) = a αx + βt{2

L
{Σ

n = 1

∞
[

0

L
C ie

– αξ

   – ϕ(ξ)] sin (
nπξ
L

) dξ} sin (nπx
L

) exp (
– n 2π2D st

L 2
)

   + 1
L

(C fe
– αL – βt – C se

– βt) x + C se
– βt} (55)

Laplace Transform Method

Now the problem formulated by Eqs. (2)-(5)
changes to the following governing equation with initial

and boundary conditions

   ∂φ
∂t

= D s
∂2φ
∂x 2 (56)

φ(x, 0) = Cie
−αx (57)

φ(0, t) = Cse
−βt (58)

φ(L → ∞, t) = 0  (φ(L, t) = Cfe
−αL−βt) (59)

Taking the Laplace transform of Eq. (56), one
obtains

   Φ" – s
D s

Φ = –
C i

D s
e – αx (60)

The complementary function of Eq. (60) is
   

Φc(x, s) = c 1e
s

D s
x

+ c 2e
– s

D s
x

(61)

One now assumes that the particular integral of Eq.
(60) can be expressed by

Φp(x, s) = me−αx (62)

where m is a constant.
Substituting Eq. (62) into Eq. (60), one has

  m =
C i

s – v2

4D s

(63)

Therefore, the general solution to Eq. (60) is given
by

   
Φ(x, s) = Φc(x, s) + Φp(x, s) = c 1e

s
D s

x
+ c 2e

– s
D s

x

   +
C i

s – v2

4D s

e – αx (64)

By taking the Laplace transform of Eqs. (58) and
(59) and using Eq. (64), one obtains

   Φ(0, s) =
C s

s + β = c 1 + c 2 +
C i

s – v2

4D s

(65)

   
Φ(∞, s) = 0 = c1e

s
D s

∞
(66)

In order to obtain a bounded solution to Eq. (60),
let c1 = 0 in Eq. (66).  Thus, one obtains

   c 2 =
C s

s + β –
C i

s – v2

4D s

(67)

Hence Eq. (64) can be written as
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Φ(x, s) = (

C s
s + β –

C i

s – v2

4D s

) e
– s

D s
x

+
C i

s – v2

4D s

e – αx

(68)

in terms of Ci and Cs.  The following inverse Laplace
transforms can be found from the table [1]   

L – 1{e
– s

D s
x
} = x

2 πD st
3

e
– x 2

4D st (69)

  

L – 1{
C s

s –
v 2 + 4K TD s

4D s

} = C se
v 2 + 4K TD s

4D s
t

(70)

  

L – 1{
C i

s – v2

4D s

} = C ie
v 2

4D s
t

(71)

   

L – 1{
C i

s – v2

4D s

e
– v

2D s
x
} = C ie

v 2

4D s
t
⋅ e

– v
2D s

x
= C ie

v 2

4D s
t – ν

2D s
x

(72)

  

L – 1{(
C s

s –
v 2 + 4K TD s

4D s

–
C i

s – v2

4D s

) e
– s

D s
x
}

   

=
0

t x
2 πD sτ 3

e
– x 2

4D sτ (C se
v 2 + 4K TD s

4D s
(t – τ )

   

– C ie
v 2

4D sτ
(t – τ )

) dτ (73)

Note that Eq. (73) has used the convolution
theorem.  Taking the Laplace transform to Eq. (68), one
obtains    

φ(x, t) =
0

t x
22 πD sτ 3

e
– x 2

4D sτ (C se
v 2 + 4K TD s

4D s
(t – τ )

   

– C ie
v 2

4D sτ
(t – τ )

) dτ + C ie
v 2

4D s
t – v

2D s
x

(74)

Finally, inserting Eq. (74) into Eq. (5), one obtains
the analytical solution for the original problem

   

C(x, t) = e
v

2D s
x –

v 2 + 4K TD s
4D s

t

0

t x
2 πD sτ 3

e
– x 2

4D sτ

   

(C se
v 2 + 4K TD s

4D s
(t – τ )

– C ie
v 2

4D s
(t – τ )

) dτ + C ie
– K Tt

(75)

NUMERICAL  RESULTS  AND  PPLICATIONS

The computer package “Mathematica” [41] was
used to show the closed form solution of Eqs. (55) and
(75).  The relationships between carbonation depth

and time at Ds = 10-11 m2/s, Ds = 10-12 m2/s and Ds =
10-13 m2/s are displayed in Figs. 1 to 3, respectively.  The
concentration-time relationships at Ds = 10-11 m2/s, Ds =
10-12  m2/s and Ds = 10-13 m2/s are manifested in Figs. 4
to 6, respectively.  The relation between concentration
and carbonation depth at Ds = 10-11 m2/s, Ds = 10-12 m2/s
and Ds = 10-13 m2/s are disclosed in Figs. 7 to 9,
respectively. The diffusion coefficient-time relation-
ships at x = 0.01 m, x = 0.02 m and x = 0.03 m are shown
in Figs. 10 to 12, respectively.

Assume that a reinforced concrete structure
has Ci = 0.0 g/m3, Cs = 0.7 g/m3, Cf = 0.2 g/m3, v =
10-12 m/s, KT = 10-10 1/s, and L = 0.05 m.  From Fig. 1, one
knows the carbonation depth x = 0.025 m after t = 688
days with C(x, t) = 0.35 g/m3 and Ds = 10-11 m2/s.  For Ds

= 10-13 m2/s and C(x, t) = 0.3 g/m3, one needs t = 8000
days at x = 0.01 m from Fig. 6.  If one knows Ds = 10-12

m2/s and C(x, t) = 0.4 g/m3, one obtains x = 0.014 m after
t = 3000 days from Fig. 8.

DISCUSSION

The numerical results obtained from both the
Laplace transform and separation of variables methods
are compared as shown in Figs. 1 to 12.  Intuitively, as
the same concrete carbonation problem, however, the
numerical results reveal the obvious differences be-
tween the Laplace transform method and the separation
of variables method.  This is due to Cf = 0.2 g/m3 without
appearing in Eq. (75) but with in Eq. (55).  This means
that the value of Cf is varied with time for the Laplace
transform method while Cf is the constant value as just

Fig. 1.  Relationship between carbonation depth and time at Ds = 10-11 m2/s.
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given for the separation of variables method.
Guirguis [10] and Mallett [21] pointed out that a

general expression for the depth of carbonation, x, to the
quality of concrete and time of exposure, t, can be given
in the form

  x = K t (76)

where K is related to the rate of carbonation and is
dependent upon the properties of the concrete.

Now consider the one-dimensional diffusion equa-

tion with initial and boundary conditions

   ∂C
∂t

= D s
∂2C
∂x 2 (77a)

C(x, 0) = Ci (77b)

C(0, t) = Cs, C(L, t) = Cf = Ci (77c)

Taking the Laplace transform method, the analyti-

Fig. 2.  Relationship between carbonation depth and time at Ds = 10-12 m2/s.

Fig. 3.  Relationship between carbonation depth and time at Ds = 10-13 m2/s.

Fig. 4.  Concentration-time relationships at Ds = 10-11 m2/s.

Fig. 5.  Concentration-time relationships at Ds = 10-12 m2/s.

Fig. 6.  Concentration-time relationships at Ds = 10-13 m2/s.
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cal solution for Eq. (77) is

  C(x, t) = C i + (C s – C i) erfc ( x
4D st

) (78)

where erfc(•) is the complementary error function.

Equation (78) may be written as [20]

  x = K t (76)

where   K = 4D s erfc– 1(
C – C i

C s – C i
) .

An empirical formula for the natural concrete car-
bonation process was established by Ju [14] and is
expressed as

Fig. 7. Relation between concentration and carbonation depth at Ds =
10-11 m2/s.

Fig. 8. Relation between concentration and carbonation depth at Ds =
10-12 m2/s.

Fig. 9. Relation between concentration and carbonation depth at Ds =
10-13 m2/s.

Fig. 10.  Diffusion coefficient-time relationships at x = 0.04 m.

Fig. 11.  Diffusion coefficient-time relationships at x = 0.02 m.
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Fig. 12.  Diffusion coefficient-time relationships at x = 0.03 m.

  x = r 1r 2r 3(12.1 W
C '

– 3.2) t (79)

where x is the carbonation depth (mm), t is time (year),
W/C' is water-cement ratio of concrete, r1 is the cement
type influence factor, which for pozzolanic cement r1 =
1.0, and for Portland cement, r1 = 0.5~0.7, and r2 is the
fly ash influence factor.  If the value of the replaced
cement is not larger than 15%, then take r2 = 1.1.  r3 is
the atmospheric influence factor, for a wet region, r3 =
0.5~0.8, and for a dry region, r3 = 1.1~1.2, while be-
tween wet and dry regions, one takes r3 = 1.0.

Wang [39] has applied artificial neural networks
to analyze the carbonation depth of concrete and
compared it with the experimental results (see Table 2).
The experimental results were employed for comparing
the results obtained from Eqs. (76) and (79).  For Eqs.
(76) and (79), C, Ci, Cs, r1, r2 and r3 are set to 0.3 g/m3,
0.0 g/m3, 0.7 g/m3 [27], 1.0 [14, 39], 1.1, and 1.0,
respectively.  These results are disclosed in Figs. 13~18.
Clearly, the calculated values are in good agreement
with the experimental results.

If the environment changes with time, then the
surface carbon dioxide (CO2) concentration also changes
with time.  To gain a relationship that permits a surface
build-up of CO2, another equation may be used due to
the changes in boundary conditions.  The equation
necessary is one that solves Eq. (77a), with the follow-
ing initial and boundary conditions for a semi-infinite
solid [2]:

C(x, 0) = 0 (80)

C(0, t) = λ(t), C(L, t) = 0 (81)

where λ(t) is any function of the variable time.  Though
there has yet to be discovered any conclusive proof for
what this function should be assigned to λ(t), there is
some intuitive support for a linear or a square root build-
up of CO2 over time.  For the case λ(t) = σt, where σ is
a constant, the solution to Eqs. (77a), (80), and (81)
simplifies to [4]:   

C(x, t) = σt{(1 + x 2

2D st
) erfc ( x

2 D st
) – x

πD st
e

– x 2

4D st }

(82)

Table 2.  Concrete carbonation depth experimental results [39]

Carbonation concrete exposure time t (years)
depth (mm)

water-cement cement content
5 10 15 20 25 30

ratio   W
C ' (kg/m3)

0.40 C' = 450 2.73 3.86 4.73 5.46 6.11 6.69
C' = 400 3.06 4.32 5.29 6.11 6.84 7.83

0.45 C' = 400 4.18 5.92 7.24 8.37 9.37 10.25
C' = 350 4.75 6.72 8.22 9.47 10.63 11.64

0.50 C' = 350 6.03 8.53 10.45 12.07 13.49 14.77
C' = 325 6.47 9.15 11.21 12.95 14.47 15.86

0.55 C' = 325 7.85 11.10 13.59 15.69 17.55 19.22
C' = 300 8.47 11.98 14.68 16.94 18.94 20.74

0.60 C' = 300 9.95 14.08 17.23 19.92 22.27 24.38
C' = 275 10.82 15.30 18.73 21.64 24.19 26.49

0.65 C' = 275 12.42 17.57 21.53 24.85 27.79 30.42
C' = 250 13.61 19.24 23.57 27.21 30.44 33.32
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For the case 

   
λ(t) = σt

1
2 ,  in which σ is a constant,

the solution to Eqs. (77a), (80), and (81) simplifies to
[4]:

   

C(x, t) = σ t {e
– x 2

4D st – [ x π
2 D st

erfc ( x
2 D st

)]}   (83)

Equations (78), (82), and (83) are solutions to
Fick’s second law, Eq. (77a), which permits for a linear
and a square root buildup of CO2 on the surface of a
concrete structure, respectively.  Equations (78), (82),
and (83) assume that Ds is constant and is independent
of the concentration, time, or position.  For this reason,
in order to determine at what time corrosion initiates, it

is necessary to survey or assume Ds, x, Ci, Cs, and λ(t).
The concrete carbonation problem is described as

a result of a chemical diffusion process due to CO2

penetrating into concrete.  The carbon dioxide content
can be predicted by means of a diffusion equation.
Consider the one-dimensional diffusion equation [8]
with initial and boundary conditions

   ∂C
∂t

= D s
∂2C
∂x 2

– K TC (84a)

C(x, 0) = Ci (84b)

C(0, t) = Cs, C(L, t) = Cf = Ci (84c)

Fig. 13.  Carbonation depth-time relationships at W/C' = 0.40.

Fig. 14.  Carbonation depth-time relationships at W/C' = 0.45.

Fig. 15.  Carbonation depth-time relationships at W/C' = 0.50.

Fig. 16.  Carbonation depth-time relationships at W/C' = 0.55.

Fig. 17.  Carbonation depth-time relationships at W/C' = 0.60.

Fig. 18.  Carbonation depth-time relationships at W/C' = 0.65.
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where KT is a constant.
Putting 

  
C = C e

– K Tt
 [4], where   C  is a new CO2

content variable, and employing the Laplace transform
method to Eqs. (84a), (84b) and (84c), one obtain an
analytical solution [19]:

  
C(x, t) = [C i + (C se

K Tt
– C i) erfc ( x

4D st
)] e

– K Tt

(85)

Consider the one-dimensional linear diffusion
equation with initial and boundary conditions

   ∂C
∂t

= D s
∂2C
∂x 2

– v∂C
∂x (86a)

C(x, 0) = Ci (86b)

C(0, t) = Cs, C(L, t) = Cf (86c)

Applying the Laplace transform method, gives the
analytical solution for Eqs. (86a), (86b) and (86c):   

C(x, t) = e
v

2D s
x – v 2

4D s
t

0

t x
2 πD sτ 3

   

e
– x 2

4D sτ (C s – C i) e
v 2

4D s
(t – τ )

dτ + C i (87)

To emphasize the effects of using various equa-
tions (75), (78), (82), (83), (85) and (87), Figs. 19-22
illustrate the differences.  The carbonation depth in a
concrete whose carbon dioxide diffusion coefficient
was determined to be 10-12 m2/s was plotted as a function
of time in Figs. 19-22.  For Eq. (75), Ci, Cs, v and KT

were set to be 0.1 g/m3, 0.7 g/m3, 10-12 m/s and 10-10 1/s,
respectively.  For Eq. (78), Ci and Cs were set to be
0.1 g/m3 and 0.7 g/m3, respectively.  For Eqs. (82) and
(83), σ was determined either assuming the linear or
square root buildup.  Both Eqs. (82) and (83) used σt
and σt1/2 values respectively, which were forced to a
maximum equivalent of Cs after 30 years.  For Eq. (85),
Ci, Cs, and KT were set to be 0.1 g/m3, 0.7 g/m3 and
10-10 1/s, respectively.  For Eq. (87), Ci, Cs, Cf, and v
were set to be 0.1 g/m3, 0.7 g/m3, 0.2 g/m3, and 10-12

m/s, respectively.  From Figs. 19~22, it is obvious that
Eq. (75) in general is more suitable than Eqs. (78), (82),
(83), (85) and (87), which give a significant underesti-
mation and overestimation of the carbonation depth or
service life.

For illustration of Eq. (76), one draws Figs. 23-25,
obtained from Figs. 1-3.  From Figs. 23-25, one sees that
the rate of carbonation velocity is really not constant.
This shows that it is not easy to reduce Eq. (75) into Eq.
(76).  It is evident that Eq. (76) is not the general
expression of concrete carbonation.  However, from
Figs. 1-3 one may express the relationship between

carbonation depth and time as [13, 15]

x = atb (88)

where a and b are the influence coefficients.  Both a and
b depend on concrete quality and environmental factors

Fig. 19. Effect of using various equations [Eqs. (75), (78), (82), (83), (85),
and (87)] to evaluate the carbon dioxide transport behavior in
concrete of constant diffusion coefficient Ds = 10-12 m2/s and
concentration C = 0.2 g/m3.

Fig. 20. Effect of using various equations [Eqs. (75), (78), (82), (83), (85),
and (87)] to evaluate the carbon dioxide transport behavior in
concrete of constant diffusion coefficient Ds = 10-12 m2/s and
concentration C = 0.25 g/m3.
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such as the diffusion coefficient, carbon dioxide con-
centration, temperature and relative humidity.

CONCLUSIONS

The concrete carbonation problem is one of the

chemical contamination phenomena of reinforced con-
crete structures.  The new concept of CO2 transport in
concrete, a solute-transport process, has been expressed.
The analytical solution for the one-dimensional convec-
tive-dispersive equation can be solved by means of the
separation of variables and the Laplace transform method
associated with the substitution technique.  Dealing
with the CO2 transport phenomena as a concrete struc-
ture carbonation process, the proposed mathematical
model obtained from the Laplace transform method
express more accurately the solute-transport processes

Fig. 21. Effect of using various equations [Eqs. (75), (78), (82), (83), (85),
and (87)] to evaluate the carbon dioxide transport behavior in
concrete of constant diffusion coefficient Ds = 10-12 m2/s and
concentration C = 0.3 g/m3.

Fig. 22. Effect of using various equations [Eqs. (75), (78), (82), (83), (85),
and (87)] to evaluate the carbon dioxide transport behavior in
concrete of constant diffusion coefficient Ds = 10-12 m2/s and
concentration C = 0.35 g/m3.

Fig. 23. Carbonation depth-time square root relationships at Ds = 10-11 m2/s.

Fig. 24. Carbonation depth-time square root relationships at Ds = 10-12 m2/s.
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than those of both the currently used Fick’s second law
and the analytical solution obtained from the separation
of variables method.  The proposed mathematical model
obtained from the Laplace transform method is suitable
for treating a nonuniform diffusion system with vari-
able parameters such as the concentration, diffusion and
chemical reaction of CO2 and pore-water velocity.  The
relationships among concentration, carbonation depth
and time that can be used to state a carbonation transport
phenomena in concrete structures is examined merely
by the diffusion coefficient, pore-water velocity, chemi-
cal reaction constant rate, CO2 concentration and cover
thickness.  However, it is suggested that experiments
should be carried out for choosing suitable parameters
for the numerical simulation.
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