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ABSTRACT

In this paper, the calculation of the ultimate longitudinal strength
of the ship hull is revisited.  A simplified approach dealing with the
longitudinal ultimate strength of ship hull has been developed and an
effective numerical program is implemented based on the individual
components of ship structures.  It is, then, possible to find the ultimate
strength of the whole ship structure by evaluating those individual
components.  Comparisons of numerical results from the proposed
approach and published literatures are conducted for further validation.
Since relative errors of calculations of the current approach to the
literature with respect to the experimental data are within 3%, it is
shown that the proposed approach can be adopted for the estimation
of the ultimate bending strength of ship hull in sagging or hogging
condition with and without at fully plastic state.  In addition, a
comparison between the numerical result and the existing expression
for a very large crude carrier also shows that the proposed approach
is not only as accurate as those published literatures but also more
available.  Therefore, the proposed approach with the numerical
program is quite suitable to be adopted in the preliminary design of
ship structure due to its accuracy and simplicity.

INTRODUCTION

In the past three decades, a great deal of activity
has taken place for predicting, in a realistic manner, the
sea loads to which the ship hull girder is subjected.  The
main initiative behind these activities is the possible
deficiencies in the standard calculations of the longitu-
dinal bending moments, particularly under certain
circumstances.  The ultimate strength of ship structures
has been considered very important in the societies of
classification and academic research since the loads
acting on the ship hull are uncertain due to rough seas or
unusual loading and unloading of cargoes during
operations.  Several potential forms of catastrophic

“collapse” have been identified as responses to an ex-
cessive hull girder bending moment.  These may take
place, presumably, with but a single application of load
so that the possibility of their occurring must be weighted
against the extreme or worst likely load value.  In
additions, because aging ships may have suffered dam-
ages due to hull corrosion and fatigue, their structural
resistance may weaken and further collapse under ap-
plied loads even smaller than designed loads.

The conventional longitudinal strength calcula-
tion for a ship mainly concerns the elastic response of
hull girder due to an assumed wave load and then, the
elastic section modulus of hull girder, which is taken as
the primary surveying index of the longitudinal bending
strength, can be achieved by using the linear bending
theory.  However, this criterion may fail when two ships
having identical section modulus with the same materi-
als may have different bending strengths due to differ-
ing resistance to buckling of the compressed parts of
girder sections.

With the full scale structural tests, Vasta [44]
found that a close correlation between the ultimate
bending strength of the hull and the buckling strength of
the compressed parts of the hull plating exists and
proposed that the limiting bending moment of longitu-
dinally framed hull should be the product of the section
modulus and the ultimate stress of plating panels.  This
formula is simple; however, it takes no account of
buckling effects from compressed parts.  With a com-
parison to the conventional elastic bending theory,
Caldwell [5], therefore, developed the “limit design”
ideas and introduced the concept of a structural instabil-
ity strength reduction factor for strength calculations.
However, only calculation with a statical condition of
loading may not be conformity with the real dynamic
loading of the girder.  In additions, although the buck-
ling effect has been included in calculation, it may not
be permissible to replace the distribution of longitudi-
nal compression by an equivalent average ultimate lon-
gitudinal compression since the buckling phenomenon
depends on the stability of structures and has little or no
connection with a “mean stress”.  Nevertheless, when
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the buckling characteristics are found with more re-
searches in this field, a modification to the formulae
will enable the ultimate moment of resistance to be
found [5].  Cladwell [5] could be the first one to incor-
porate the buckling effects into the ship strength
assessment.  Since then, subsequent progress has been
made in the fields of buckling as well as final collapse
studies of structures [6, 11-13, 22, 30], and reliable
estimates [18, 19, 43] have been emerged for analyzing
the collapse strength and their post-collapse behaviors.
However, those algorithms, used for calculating the
ultimate longitudinal strength of the ship hull girder,
usually differ one another due to their different
assumptions, and lack of accurate modeling of the hull
girder results in unreliable results even in the case of an
experimental investigation [32].

Following with Caldwell’s research, Faulker et al.
[13] proposed a reasonable method to calculate the
structural instability strength reduction factor and im-
proved formulations became available for critical stress
corresponding to various modes of compression failures.
Progressive research on post-buckling strength of stiff-
ened panels inspired Dow et al. [10] to develop ways of
estimating average stress-strain characteristics up to
compressive strain.  By incorporating buckling behav-
ior models into an overall analysis of the hull girder as
the bending curvature increases, Smith [42] also pro-
posed the incremental curvature procedures to calculate
the derivation of moment-curvature relationship for a
complete hull.  Although some applications [4, 8] of this
approach have demonstrated its general feasibility with
comparisons to model experiments; however, in our
opinion, some calculating schemes, mainly based on the
finite element formulations, need much time consump-
tion and the plate element strength reached by way of
empirical curves might lead to inaccuracy.

An engineering approach [4] considering a simpli-
fied analysis model for each individual beam-column
element was proposed to calculate the strength of the
hull girder by the linear superposition of individual
contributions of elements.  Based on a flexural-tor-
sional buckling formulation, Adamahak [1] developed
an approximate method in a computer program and
obtained curves of moment-curvature for the calcula-
tion of ultimate strength of panels.  Therefore, at this
stage, the assessments on the longitudinal strength of
the ship girder were focused on the collapse strength of
an individual panel structure and the ability to predict
moment-curvature relationships.

Later, two simplified expressions were further
proposed to explore the ultimate moment of the stiff-
ened panel in comparisons with experimental results by
introducing a dynamic relaxation method [29].  Besides,
in order to estimate the ultimate longitudinal bending

moment of ships, Hughes [25] proposed a simpler ap-
proximating method with a rationally based structure
design concept, which does not neglect any reserve of
panel compressive strength until its maximum resis-
tance has been reached.  The accuracy of this method,
based mainly on the panel strength analysis, was dem-
onstrated by a comparison with several experimental
results and it first led the optimal concept to ship
structural designs.  However, ignoring such a contribu-
tion of the post-collapse resistance of compressed pan-
els makes the evaluation of the ultimate strength of a
redundant structural system impossible.  It should be
noted that, in this method, discrete steps from one
element collapse to the next was suggested instead of
applying regular small increments of curvature.

By adopting most positive features of the above-
mentioned works with introducing new stress-strain
relationships, Rahman and Chowdhury [40] developed
a computing methodology for the ultimate value of the
longitudinal bending moment at any cross section of a
ship or a box girder.  The cross section was modeled as
one stiffener with its associate effective plating.  They
claimed that limit states of these panels, either tensile or
compressive, were modeled in an appropriate manner
since the ultimate strength of the girder section is mainly
governed by the behavior of panels under compression.
Special attention was also driven to the collapse and
post-collapse behavior of these panels.  The computing
program was ever validated by calculating the ultimate
longitudinal bending moment of a very large crude
carrier (VLCC) which “broke its back” during dis-
charge of oil in 1980.  The ultimate longitudinal strength
calculation, which put emphasis on modeling of the
buckling and post-buckling behavior of compressed
parts of the same actual ship, was also reported [41] and
showed that both the calculation and provision of longi-
tudinal strength are in excess of normal requirements
for the ship in both hogging and sagging conditions.
Following with previous studies [4, 18, 19, 41] and
especially with respect to plate strength and beam-
column behavior, Gordo et al. [17] also presented an
approximate assessment of the ultimate longitudinal
strength of the hull girder.  The method was also checked
by comparing its predictions with those of Ref. [41] for
the VLCC and then further used to study effects of
residual stresses, corrosion and combined bending for
illustrating its capability.  The proposed method reveals
sound results as compared to those obtained by using
finite element programs.

Since Smith [42] first proposed an approach, which
was a hybrid method of the finite element scheme with
the load-deformation curves, to calculate the perfor-
mance of each individual element for the hull girder and
as the numerical capability of a computer grows fast,
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alternative methods in the field to predict the ultimate
strength can be grouped into simplified methods or
methods of components [1, 4, 8, 10, 17, 23, 29, 35, 36,
38, 40, 41] and the finite element formulations [2, 24,
34, 46].  However, the latter were ever criticized by
Gordo et al. [16] since they were proven impractical for
the use of calculations at a design phase.  In their paper,
three important issues were emphasized; the first is that
the contribution of each structural element to the mo-
ment-curve relationship of the ship hull [17] and the
prediction of the method need to be validated by various
experimental results [15].  The second is that, for many
types of ships, the combined effect of the vertical and
horizontal bending moments needs to be considered
carefully since it deals with the collapse of ship hulls
under the combined load effects [14, 31, 37] and it can
accurately accounts for the load shortening contribution
of each plate and stiffener assembly.  The last is that
considering the case of biaxial compressive strength of
plates [20-21] leads to the proposal of the interaction
equations [14, 16, 31] to deal with the collapse of hull
section under combined load effects.

Basically, when a ship subjected to the loadings
and wave loads operates at sea, one can consider and
categorize all the loads into the vertical bending moment,
MV, horizontal bending moment, MH, vertical shear
force, QV, and twisting moment, MT, as shown in Fig. 1.
Although most structural designs for merchant ships
mainly concern their bending strengths owing to ratios
of their geometrical dimensions as a slender structure;
however, as the loading types change and oblique wave

arises, the other kinds of strength appear and play a
crucial role in the preliminary stage, such as the shear
strength for bulk carriers and the torsional strength for
containers with large openings.  Moreover, when the
age of an available ship increases, the structural strength
will reduce and how to monitor the longitudinal struc-
tural strength becomes vitally important.  Besides, when
the ship accident happens [45, 47], to evaluate or assess
residual strength after collision and grounding [39] in a
short time is necessary especially when the emergency
rescue is requested and following operations will be
implemented soon.  As a result, a simplified and accu-
rate approach to estimate the longitudinal strength of
ship hull is convenient as compared with the finite
element method (FEM).  Therefore, based on the as-
sumption that the strength of ship hull can be repre-
sented by the linear superposition of individual contri-
butions of elements [4, 41], in this paper, a simplified
approach with a self-developed numerical program is
proposed to deal with problems of the ultimate longitu-
dinal strength of the ship hull.  Several comparisons
including of a real VLCC example are also conducted to
validate the proposed approach.  The results show that
the current approach is not only simple but also accurate
enough when applying it in the preliminary phase of
ship structural design.

THEORETICAL  BACKGROUNDS

In general, the stresses arise due to ship hull sub-
jected to the internal and external loads can be grouped
into the compressive stress, tensile stress and shear
stress; therefore, causes for failure of ship hull compo-
nents can be summarized as: 1. the excessive compres-
sive stress leads to buckling failure mode since the
buckling stress of components is lower than yielding
stress of structural material and /or the initial conditions,
such as the initial imperfections, residual stress and
other more sensitive boundary conditions, have existed;
2. the excessive tensile stress results in yielding failure
mode owing to elasto-plastic behavior of the used
material; 3. the shear stress leads to shear buckling
failure mode.

Buckling failure modes

It is known that there exist four typical modes of
buckling failures for ship structural members as shown
in Figs. 2(a) to 2(c), of those are buckling of a plate,
flexural buckling of panel stiffeners, torsional buckling
or tripping of panel stiffeners, and overall buckling of
the grillage.  For simplification of analysis, tow basic
assumptions should be noted in the followings: First,
the buckling failure mode of web frame only concernsFig. 1.  Different loads applied to the hull section.
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the plate buckling and stiffener’s buckling since there
usually exist large transverse frames along the ship hull
such that no tripping effect arises; second, those plates
with stiffeners attached to the transverse frame are

subjected to axial compressive stress, σx, as shown in
Fig. 3 and their buckling modes can be represented by
the beam-column components as shown in Fig. 4.

Approaches used to analyze those buckling failures

Based on assumptions mentioned above, the avail-
able approaches have been proposed and can be further
grouped into (a) the semi-empirical formulae, such as
by Faulker [12], Faulker et al. [13], and Caelsen [6] and
(b) empirical formulae by Lin [29], Paik and Mansour
[35], Paik and Pedersen [36], Paik et al. [37], and Lee
[27].  The self-developed numerical program of this
paper is implemented by using the empirical formulae
and we will give a brief introduction for the reader’s
convenience as follows.

1. Lin’s formula (without effective breadth)

Lin [29] first proposed the dynamic relaxation
method to derive the reduction factor of the ultimate
strength of a plate with stiffeners and adopted the beam-
column element to analyze the strength of ship structure.
Among them, the width of a plate was considered effec-
tive and the section of the plate with stiffeners and the
simple supported boundary conditions as well as the
given loadings were described as shown in Fig. 5.  The
numerical calculation results are obtained by two
parameters, the slender ratios of a stiffener, λs, and of a
plate, β, respectively.  By using the least square method,
the buckling reduction factor containing the two param-
eters can be formulated by

   φu =
σu
σ y

= (c 1 + c 2λ s
2 + c 3β2 + c 4λ s

2β2 + c 5λ s
4)

– 0.5
,

(1)

in which    β = b
t

σ y

E
,     λ s = a

πr
σ y

E
, σu denotes the

ultimate stress of stiffened panel, σy denotes the aver-
age yielding stress of the plate-stiffener combination, E

Fig. 2.  Several buckling failure modes for different structural members.

Fig. 3.  A transverse frame attached with stiffened panel. Fig. 4.  Failure modes of beam-column components.
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the Young’s modulus, a the length of stiffeners’ span
between transverse girders, b the width of a plate, t the
thickness of a plate, and r the radius of gyration.  The
five constants in equation (1) are c1 = 0.960, c2 = 0.765,
c3 = 0.176, c4 = 0.131, c5 = 1.046, respectively.

2. Paik’s formula

Based on Lin’s work and with more numerical
data, Paik et al. [37] proposed the similar expressed
formula of the buckling reduction factor as

   φu =
σu
σ y

= (c 1 + c 2λ s
2 + c 3β2 + c 4λ s

2β2 + c 5λ s
4)

– 0.5
,

(2)

in which c1 = 0.995, c2 = 0.936, c3 = 0.170, c4 = 0.188,
c5 = −0.067, respectively.

3. Lee’s formula

Following with Lin’s research, Lee [27] adopted
the beam-column model and further applied the matrix
displacement method to deal with the nonlinear equilib-
rium equation of the elasto-plastic large deformation of
a plate with stiffeners.  In his work, a three-order
displacement function is adopted to deal with the bend-
ing deformation from the Euler beam theory and the

linear function is considered for the in-plane deforma-
tion.  Therefore, the buckling reduction factor can be
yielded as

   φu =
σu
σ y

= 1
f

(1 + 0.15β2)
– 0.5

, (3)

in which

   f = 1 + 0.209λ s
2 + 0.156λ s

4 0 ≤ λ s < 1.59

f = λ s
2 λ s ≥ 1.59

.

All the formulae listed above are used to calculate
the buckling failures of a plate with stiffeners.  As for
the estimation of that of a plate, the following formula
is adopted.

4. Davison’s formula

Davison [9] proposed an empirical formula to deal
with the buckling failure of a plate as

   σu
σ y

= 0.23 + 1.16
β – 0.48

β2
+ 0.09

β3
. (4)

It should be noted here that once the parameter, λs,
in equations (1) to (3) is set to be zero, then all of them
can be used to calculate the buckling failure of a plate
without stiffeners as equation (4).

Approach used to analyze yielding failure

When the structural members are subjected to
yielding loads, if there exists no crack in member, in
general, the elasto-plastic behavior can be illustrated as
Fig. 6(a).  Based on the assumption, the average yield-
ing stress used in the paper for the plate with stiffeners
can be yielded as

   σ ya =
σ yp ⋅ Ap + σ ys ⋅ As

As + Ap
, (5)

in which Ap and As represent the sectional areas of a
plate and a stiffener, respectively; σyp and σys denote the
yielding stresses of a plate and a stiffener, respectively.

Approach used to analyze shearing failure

As for the buckling failure due to shear forces
existing in a panel member of rectangular section be-
tween two stiffeners as shown in Fig. 6(b), an assump-
tion should be noted that the sectional area of a plate
with stiffener remain unchanged until the buckling of
the panel subjected to shearing effects yields; therefore,
when the initial imperfection existing at the center of
the rectangular panel and the simple supported bound-

Fig. 5. An analytical model for the sectional area of a stiffened panel
with boundary conditions.
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ary conditions given at the edges of the panel are both
considered, the shear reduction factor can be yielded as
[37]

   
φuτ =

τ u
τ cr

= 0.9 ⋅ K 1 – K 2
2 – 4K 1K 3

2K 1
, (6)

in which τu and τ cr denote the ultimate and critical
shearing stresses, respectively; the constants, K1 =
0.0126τy, K2 = 0.1067τy + τcr, and K3 = 1.084τy, in which

   
τ y =

σ ya

3
 and σya is the average yielding stress as de

scribed in equation (5).  It should be noted that the
critical shearing stress, τcr, is yielded based on the
elastic shearing buckling effect and is obtained by modi-
fying the plastic coefficient, that is,

   

τ cr =
τ E, for

τ E
τ y

≤ 0.5

τ y(1 –
τ y

4τ E

), for
τ E
τ y

≤ 0.5
, (7)

in which the elastic shearing stress, τE, can be expressed
as

τE = kτ • σE. (8)

In equation (8),    σE = π2E
12(1 – υ)

( t
b '

)
2
 where E and υ

are the Young’s modulus and the Poisson’s ratio,
respectively; parameters t and b' are illustrated in Fig. 6
(b); kτ is defined as

   
k τ =

5.34 + 4.0 (b '
a )

2
, for a

b '
≥ 1

5.34 + 4.0 (a
b '

)2 , for a
b '

< 1
(9)

or

   k τ = π2

32α 2λ
. (10)

i n  w h i c h     α = a
b '

,  a n d    λ = α 4

81(1 + α 2)4
[1 + 81

625
+

  81
25

( 1 + α 2

1 + 9α 2
)
2

+ 81
25

(1 + α 2

9 + α 2
)
2
]
0.5

.   kτ is selected the smaller

among calculated values of the two equations.

Methods to calculate ultimate longitudinal strength

The problem of calculating the ultimate longitudi-
nal strength of ship hull is, basically, a kind of nonlinear
elasto-plastic behavior of structural members usually
with initial imperfection and residual stress.  Up date, to
deal with such a problem, the FEM is available; however,
the preprocessing with modeling and numerical calcula-
tions needs much time and expenditure such that a fast
assessment before an immediate rescue operation or
that at a preliminary design stage of ship hull becomes
unavailable.  Since Billingsley [4] proposed a simpli-
fied calculating procedure to fix such a problem, many
researchers have begun to develop the simplified ap-
proaches and carried out several experimental models to
validate their accuracy and reliability.  Based on beam
theory, these researches constructed the relationship of
bending moment and curvature, then, to calculate the
ultimate bending strength of ship hull.  More specifically,
the initial imperfection and residual stress are consid-
ered at specified plate with stiffeners of each member to
construct the stress-strain diagram, and then to calcu-
late the bending moment by giving the curvature of
section gradually.  Finally the ultimate bending moment
can be determined by way of the diagram of bending
moment and curvature.  Above all, based on the simpli-
fied procedure, Lin [29] further proposed a regression
formula, in which a reduction factor exists to represent
the popular and frequent used members of ship structures,
to calculate the ultimate bending strength of a box

Fig. 6. (a) The elasto-plastic behavior of the structural member, (b)
the shear forces existing in a panel member of rectangular
section.
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girder.  Following with Lin’s idea, Paik and Mansour
[35] further proposed an improved simplified method,
of which several useful formulae describing the ulti-
mate longitudinal bending moment strength under sag-
ging and hogging conditions and the ultimate horizontal
bending moment were derived.  In their methods, sec-
tions of structural members subjected to loadings are
assumed unchanged, the compressive and tensile load-
ing conditions adopt the ultimate stress and yielding
stress, respectively, and post-buckling effect is
neglected.

The present paper follows Paik et al’s simplified
procedures and further considers different buckling and
yielding stresses, shearing stress with related bending
moments, shearing stress and torsional stress due to free
torque for different types of ship’s sections as shown in
Figs. 7 to 9.  The basic assumptions for used simplified
calculating procedures are:
1. the ship is floating at upright condition;
2. the section of a calculating member is unchanged

when subjected to loadings;
3. the members are independent of each other when

calculating the various ultimate strengths of members;
4. calculations of bending moments only concern nor-

mal stresses such as buckling and yielding effects,
while those of shear and free torque effects consider
shear stress and shear flow, respectively.

Therefore, those formulae for calculating ultimate
vertical bending moments under sagging and hogging
conditions, ultimate horizontal bending moment, ulti-
mate shear strength and free torque assuming that no
longitudinal constraint exists in the closed channel of
ship section are revisited and can be yielded as follows.

1. Ultimate vertical and horizontal bending strengths

Based on the beam theory, the bending strength

Fig. 8.  Shear stress distributions for a container.
Fig. 7. (a) Normal stress distributions for a tanker, (b) shear stress

distributions for a tanker.
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only concerns the normal stresses; therefore, all the
stress distributions can be illustrated in Fig. 10 and the
related coordinate describing the hull section can be
shown in Fig. 11.  For lengthy of the paper, only used
formulae for calculating the ultimate vertical bending
moments of sagging and hogging conditions and ulti-
mate horizontal bending moment are described in the
following.  Detailed derivations of those formulae can

be found in Lee’s work [26] for the interested readers.

(1) Ultimate vertical bending moment at sagging
condition, MVus

The normal stress, σx, for calculating the vertical
bending moment in sagging is

Fig. 9. (a) Shear stress distributions for a bulk carrier, (b) torsional
stress distributions for a bulk carrier.

Fig. 10. Normal stress distributions for ultimate vertical and horizontal
bending moment conditions.

Fig. 11. The coordinate system of a hull section for calculating the
ultimate vertical and horizontal bending moments.
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σ x =

σ yB , for y = y1 = 0 (outer bottom)

– 1
H

[(σuSU + σ ySL) y – Hσ ySL] , for 0 ≤ y ≤ H

– σuSU , for H ≤ y ≤ D

– 1
H

[(σuSU + σ ySL) yi – Hσ ySL] , for y = yi, i = 2, 3, ..., (m – 1)

– σuD , for y = ym

,

(11)

in which σyB represents the mean yielding stress of the
outer bottom, and σuD represents the ultimate buckling
stress of deck.  It should be noted that the two param-
eters have a linear relationship when they are gradually
approaching to the neutral axis as shown in Fig. 10(a);
therefore, σySL represents the yielding stress of a repre-
sentative member between the bottom and neutral axis,
and σuSU represents the compressive stress of a repre-
sentative member between the deck and neutral axis.

Besides,    σ xdA = 0, it means the summation of normal

loads due to the normal stress applying on the section is
equal to zero and thus, the position of neutral axis, g, can
be yielded as

   
g =

σ ySL ⋅ H
σuSU + σ ySL

, (12)

and

  H = C 1D + C 1
2D 2 + 2C 2D , (13a)

in which

   

C 1 =
(σuDAym + σuSU Σ

j = 1

n

Az j
– σ yBAy 1

– σ ySL Σ
i = 2

m – 1

Ay i
)

(σuSU + σ ySL) Σ
j = 1

n

Az j
(13b)

and

   

C 2 =
Σ

i = 2

m – 1

(Ay i
y i)

Σ
j = 1

n

Az j

, (13c)

in which yi, zj, Ayi and Azj represent the coordinates of
horizontal and vertical members and their correspond-
ing area, respectively, and D the height of section.
Therefore, the ultimate vertical bending moment in
sagging can be yielded as [35]

   
MVus = – AymσuD(D – g) + 1

H
(σuSU + σ ySL) Σ

i = 2

m – 1

Ay i
(gyi – y i

2)

   
+ σ ySL Σ

i = 2

m – 1

Ay i
(y i – g) – 1

2D Σ
j = 1

n

Az j
(D – H) (D

   + H – 2g) σuSU – Ay1σyB ⋅ g – H
6D Σ

j = 1

n

Az j
[(2H – 3g) σuSU

   – (H – 3g) σ ySL] (14)

(2) Ultimate vertical bending moment at hogging
condition, MVuh

Again at the hogging condition, the normal stress,
σx, for calculating the vertical bending moment can be
expressed as

   

σ x =

σ yD , for y = ym = 0 (at deck)

– 1
H

[(σuSL + σ ySU) y – Hσ ySU] , for 0 ≤ y ≤ H

– σuSL , for H ≤ y ≤ D

– 1
H

[(σuSL + σ ySU) yi – Hσ ySL] , for y = yi, i = 3, 4, ..., (m – 1)

– σulB , for y = y2 (inner bottom)
– σuB , for y = y1 (outer bottom)

,

(15)

in which σyD represents the mean yielding stress of the
deck, and σulB as well as σuB represent the ultimate
buckling stresses of the inner and outer bottoms,
respectively.  Since a linear relationship exists when
they are gradually approaching to the neutral axis as
shown in Fig. 10(b); therefore, σySU represents the yield-
ing stress of a representative member between the deck
and neutral axis, and σuSL represents the compressive
stress of a representative member between the inner
bottom and neutral axis.  The position of neutral axis, g,
can, thus, be yielded again as

   
g =

σ ySU ⋅ H
σuSL + σ ySU

, (16)

and

  H = C 1D + C 1
2D 2 + 2C 2D , (17a)

in which

   

C 1 =
(σuBA y 1

+ σulBA y 2
+ σuSL Σ

j = 1

n
A z j

– σ yDA y m
– σ ySU Σ

i = 3

m – 1
A y i

)

(σuSL + σ yUL) Σ
j = 1

n
A z j

(17b)

and

   

C 2 =
Σ

i = 3

m – 1

Ay i
(D– y i)

Σ
j = 1

n

Az j

. (17c)

Therefore, the ultimate vertical bending moment
in hogging can be yielded as [35]
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   MVuh = – Ay 1
σuB(D – g) + Ay 2

σulB(D – y 2 – g)

   
– 1

H
(σuSL + σ ySU) Σ

i = 3

m – 1

Ay i
[g(D – y i) – (D – y i)

2]

   
– σ ySU Σ

i = 3

m – 1

Ay i
(D – y i – g) – Ay m

σyD ⋅ g

   – 1
2D

(Σ
j = 1

n

Az j
) (D – H) (D + H – 2g) σuSL

   – H
6D

(Σ
j = 1

n

Az j
)[(2H – 3g) σuSL – (H – 3g) σ ySU]

(18)

(3) Ultimate horizontal bending moment,

Based on the same procedures illustrated above,
the stress distribution for calculating the ultimate hori-
zontal bending moment can be expressed as

   

σ x =

σ yS , for z = zn = 0 (starboardside outer)

– 1
H

[(σuH + σ yH) z – Hσ yH] , for 0 ≤ z ≤ H

– σuH , for H ≤ z ≤ B

– 1
H

[(σuH + σ yH) z j – Hσ yH] , for z = z j, j = 3, 4, ..., (n – 1)

– σulS , for z = z2 (port side inner)
– σuS , for z = z1 (port side outer)

,

(19)

in which σuS and σulS represent the compressive stresses
of representative members locating at port sides inner
and outer (at z = z1 and z = z2), respectively; σyS

represents the yielding stress of those members locating
at outer starboard side (at z = zn); σuH and σyH represent
the stresses of those between port to neutral axis and
starboard to neutral axis, respectively, since both of
them have a linear variation relationship when approach-
ing to the neutral axis as shown in Fig. 10(c).  The
position of neutral axis can be easily yielded as

   
g =

σ yH ⋅ H
σuH + σ yH

, (20)

in which

  H = C 1B + C 1
2B2 + 2C 2B , (21a)

   

C 1 =
σuSA z 1

+ σulSA z 2
+ σuH Σ

i = 1

m
A y i

– σ yH Σ
j = 3

n – 1
A z j

– σ ySA z n

(σuH + σ yH) Σ
i = 1

m
A y i

(21b)

and

   

C 2 =
Σ

j = 3

n – 1

Az j
(B – z j)

Σ
i = 1

m

Ay i

, (21c)

in which B represents the breadth of the section.  The
ultimate horizontal bending moment can, thus, be yielded
as [35]

   MHu = – Az1σuS(B – g) + Az2σulS(B – z 2 – g)

   
– 1

H
(σuH + σ yH) Σ

j = 3

n – 1

Az j
{g(B – z i) – (B – z i)

2}

   
– σ yh Σ

j = 3

n – 1

Az j
(B – z i – g) – Az n

σ sD ⋅ g

   – 1
2B Σ

i = 1

m

Ay i
(B – H) (B + H – 2g) σuH

   – H
6B Σ

i = 1

m

Ay i
[(2H – 3g) σuH – (H – 3g) σ yH]

(22)

2. Ultimate shear strength

Based on the numerical calculations of shear dis-
tributions of hull sections for the container, oil tanker
and bulk carrier, it is found that the maximum shear
stress almost exists in the side shell or longitudinal
bulkhead as shown in Figs. 7(b), 8, and 9(a); therefore,
these parts of hull sections are mainly considered to
calculate the ultimate shearing strength and thus, the
ultimate vertical shearing strength can be expressed as

QuV = τu • AV, (23)

in which τu denotes the ultimate shear stress and AV

represents the summed sectional areas of side shell and
longitudinal bulkhead.  Similarly, the ultimate horizon-
tal shearing strength can be represented as

QuH = τu • AH, (24)

in which AH represents the summed sectional areas of
bottom shell and the closed deck.

3. Ultimate free torque strength

It is known that for a ship with large hatch openings,
the torsion rigidity is mainly attributed to and contrib-
uted by its inner closed channels, as shown in Fig. 9(b);
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therefore, the present paper only concerns the free
torque due to the sectional closed channels without
longitudinal constraints and it can be represented as a
sum of strengths of all the inner closed channels, that is,

   MuT = 2Σ
i = 1

n

Ωiq u , (25)

in which Ωi represents the area enclosed by the center
line of channel walls for the i-th channel, and qu denotes
the ultimate shear flow of the representative plate.

4. Fully plastic capacity of sectional area

The fully plastic capacity of hull section is usually
considered for different hull materials; therefore, in this
paper, the vertical and horizontal bending moment,
shear force and free torque, under fully plastic state, are
put into implementation.  For the calculation of vertical
fully plastic bending moment, as shown in Fig. 12, the
neutral axis of the hull section is first determined by
setting the area of upper part of the cross sectional to the
effective neutral axis equal to that of lower part to the
effective neutral axis.  Then, the fully plastic capacity
state is reached when the stresses for upper and lower
areas of the neutral axis are both approaching to the
yielding state and the representative yielding stress for
fully plastic vertical bending moment is, thus, obtained
by choosing the maximum yielding stress value at the
deck component.  Similarly, the representative yielding
stress for fully plastic horizontal bending moment is
determined from the maximum yielding stress at the
side shell component.  As for those representative shear
force and free torque, they are determined from the
maximum shear stress of the related shear section and
the maximum shear flow existing in the closed channels.

COMPARISONS  AND  VALIDATION

Comparisons of various formulae for buckling failure

As mentioned in the above section, three formulae
[27, 29, 31] for calculating the buckling reduction fac-
tor of stiffened panels and one [9] for that of a plate have
been proposed as a simplified approach; however, their
adaptable ranges of applications and comparisons of
each other are not clear and seldom found in the literature.
Therefore, comparisons of those formulae are conducted
and the results are discussed in the following.

According to the suggested dimensions and initial
condition of stiffened panel from British Standard [7]
and Det Norske Veritas (DNV) rules [28] and assuming
that the residual stress, σr, is 20% of the yielding stress,
σy; the initial imperfection of the plate, δp, is 0.5% of the
breadth (b, as shown in Fig. 5) of stiffened panel; the
initial imperfection of the stiffener, δs, is 0.15% of
the longitudinal length (a, as shown in Fig. 5) of calcu-
lated stiffened panel; no tripping effect exists; then, the
contour lines showing the relationship of two slender
ratio parameters, λ s and β for three formulae as de-
scribed in equations (1) to (3) can be obtained and
illustrated in Figs. 13 to 15.  It is found that to estimate
the reduction factor, φu, Lin’s and Lee’s formulae are
more similar especially when the slender ratio of a
stiffener, λ s, ≤ 1.59. At the range of λ s ≤ 1.0, the
contours of the three formulae are similar.  However,
when λ s ≥ 1.5, the contour plots of Paik’s formula
disperse unreasonably as shown in Fig. 14 and are quite

Fig. 12. An effective neutral axis of a sectional area for the fully plastic
state.
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different from those of the other twos.  It means Paik’s
formula becomes inadequate to adopt especially when
λ s ≥ 2.0.

As for comparisons of the reduction factors of a
plate, setting every λ s in equations (1) to (3) to be zero
can be used to compute the plate’s reduction factors and
further compare with that of Davison’s formula as de-
scribed in equation (4).  All calculating results from
their respective formulae are illustrated in Fig. 16 and it

is shown that when 1.0 ≤ β ≤ 1.5, formulae of Lin’s,
Paik’s, and Lee’s show the same tendency and nearly
approaching together.  When β ≤ 1.5, formulae of Lee
and Paik are quite similar while at β ≥ 1.5, those of Lin’s
and Paik’s are approaching together and Lee’s formula
shows the largest among the reduction factors.  However,
when β ≤ 0.5, the reduction factor from Lin’s formula is
greater than 1, it seems unreasonable.  As for Davison’s
formula, it is suitable at the range of β ≥ 1.0 and
comparison results show that its reduction factor is the
smallest among all when 1.3 ≤ β ≤ 4.5.

Validation of the proposed simplified approach

Preprocessing and main frame of the numerical program

To make use of the proposed simplified approach,
some preprocessing procedures for the developed nu-
merical program are necessary and summarized as
follows:
1. Members in hull section can be categorized into cor-

ner members, stiffened plate members and plate mem-
bers as shown in Fig. 17.  It should be noted that those
areas of the deck, inner and outer bottom shells join-
ing with side shell or bulkhead, and two end points of
stiffened plate are considered as corner member.

2. A z − y coordinate system as shown in Fig. 11 is set up
in the hull section.

3. Numbering all members and classifying them with
suitable type labels.

4. Numbering end joints of a member should correspond
to the z − y coordinate system.
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Fig. 14.  Contour lines of λs and β for Paik’s formula.
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5. Geometry of every type of members is illustrated in
Fig. 18.

All the needed input data are processed by the
Excel software and stored in an xls format.  Since the
Excel has the graphic function, all input data can be
shown graphically to check positions of nodal points of
the model.  The calculating and output sections are
implemented by the FORTRAN language.  The flow
chart of the main program is shown in Fig. 19.

Comparisons of numerical results with experiments

To validate the proposed simplified approach, ex-
periment results conducted by Nishihara [33] are used
for comparison.  Those experimental models with di-
mensions are illustrated in Fig. 20.  In this figure, model
label MST represents Model of Ship Tanker, MSD
represents Model of Ship Double-bottom, MSB repre-
sents Model of Ship Bulk Carrier, and MSC represents
Model of Container, respectively.  Besides, a simplified
approach proposed by Beghin et al. [3] is also included
for further comparison.  Characteristics of material used
in the experimental models are listed in Table 1.  With
sagging and/or hogging conditions, there are eight kinds
of testing models for calculations, and results with
comparisons for buckling strength are shown in Table 2.
It is shown that the present approach for calculating
buckling strength at fully plastic state is as accurate as
Beghin et al. [3] from results compared with each other.
Relative errors of calculations of the present approach
to the Beghin [3] with respect to the experimental data
are all within 3%.  However, as comparing both of them
with the experimental data, results from MSB model
with sagging and hogging cases both show a dominant

Fig. 17. Hull section members are categorized as corner, stiffened panel
and plate components.

Fig. 18.  The geometry of the calculated member.

Fig. 19.  The flow chart of the main program.
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error.  Such an error is, in our opinion, due to the un-
uniform scantlings of the hull section.  More specifically,
the MSB model is a typical kind of hull section arrange-
ment of a bulk carrier and for calculation of the buckling
strength, geometry of hull section members is very
sensitive to the results especially when the wing tanks
exist in the corner of hull section of a bulk carrier.
Besides, it is remembered that parameters λ s and β

originally describing the slender ratios of a stiffener and
a plate, respectively, now are quite hard to describe the
behavior like a wing tank structures.  Therefore, those
methods including the present one need to be modified
when dealing with the buckling strength calculation of
a bulk carrier.

Lin [29] also proposed an empirical formula to
calculate the ultimate vertical bending moment for hull
section of box-type.  The empirical formula is also used
here for comparison and described in the following:

   MVus

MP
= – 0.172 + 1.548φu – 0.368φu

2 , for sagging condition

MVuh

MP
= 0.003 + 1.459φu – 0.461φu

2 , for hogging condition
,

(26)

in which φu and MP represent the reduction factor and
the vertical bending moment, respectively.  Results of
ultimate bending moment calculations as well as com-
parisons with the literature are listed in Tables 3 and 4,
respectively.  It should be noted that the present ap-
proach takes different reduction factors from Lin, Paik
and Lee into consideration; therefore, there can have
three alternatives for selection in the present method to
calculate the ultimate vertical bending moments.  In
table 3, it is shown that results from the present methods
are accurate for cases 1 to 5 and most of them are little
smaller than the experimental data except for case 5.
Such a phenomenon is due to considerations of initial
imperfection and residual stress in the methods and it
makes the original structural members weakened espe-
cially for cases 6 to 8.  In Table 4, although those results
from Lin’s empirical formula (at about 0.6% error of
average only) are the most accurate, then Nishihara’s
(1.113%) and Beghin’s (5.71%), to the present methods,
however, it does not mean the present methods fail
because some important assumptions, such like the
initial imperfections of the plate and stiffener, and
the residual stress, have been made in the present
methods.

Fig. 20.  Four experimental models with their corresponding geometry.

Table 1.  Material characteristics used in experimental models

t (unit: mm) σy (Kg/mm2) E (Kg/mm2) v
thickness of palte yielding stress Young’s modulus Poisson’s ratio

3.05 29.3 2.11 × 104 0.277
4.35 26.9 2.12 × 104 0.281
5.60 32.1 2.11 × 104 0.289

Note: The material used in experimental models is mild steel.



Journal of Marine Science and Technology, Vol. 11, No. 3 (2003)144

Validation of the proposed approach with a VLCC

To further validate the proposed approach for a
practical ship, a real case study of a VLCC, namely
“Energy Concentration”, in [41] is used here for com-
parison and validation.  The principal dimensions of the
VLCC are illustrated in Table 5.  The geometry of
stiffeners at hull section of this ship is shown in Fig. 21.
Two hundreds and eighty five elements with 291 nodes
are used in modeling for calculations.  The output

results from the self-developed program include ulti-
mate vertical bending moments with hogging and
sagging, fully plastic vertical and horizontal bending
moments, ultimate vertical and horizontal shear stresses,
fully plastic vertical and horizontal shear stresses and
ultimate free torque of hull section.  These results are
also used to compare with those from previous studies
[17, 41, 35] and they are listed in Table 6.  It is shown
that except for the result of ultimate vertical bending
moment in hogging, those of others are quite closed to

Table 2.  Results and comparisons of ultimate strength at vertical fully plastic state

Model Model Label Experimental Béghin [3] Present Béghin [3]/ Present/
No. data [33] (ton-m) (ton-m) (ton-m) Experiment Experiment

1 MST-1sag/hog   94.5 110.00 109.95 1.164 1.163
2 MST-2sag/hog   58.8   58.90 58.97 1.001 1.003
3 MSD-sagging   60.5   97.30 97.96 1.608 1.619
4 MSD-hogging   85.5   97.30 97.96 1.138 1.146
5 MSB-sagging   49.1   86.60 88.03 1.764 1.793
6 MSB-hogging   68.5   86.60 88.03 1.264 1.285
7 MSC-sagging 113.5 104.20 103.9 0.918 0.915
8 MSC-hogging   88.0 104.20 103.9 1.184 1.181

Table 3.  Calculation results of ultimate vertical bending moments

Model Experimental Nishihara [33] Béghin [3] Present with Present wth Present with Lin’s empirical
No. data [33] (ton-m) (ton-m) (ton-m) Lin (ton-m) Paik (ton-m) Lee (ton-m) formula (ton-m)

1   94.5 92.9   95.0 89.98 89.58 91.8 89.8s/(95.0)h

2   58.8 59.1   64.2 57.65 57.29 56.89 58.8s/(65.0)h

3   60.5 61.2   64.1 58.22 59.63 59.91 73.50
4   85.5 80.8   87.3 76.31 76.10 77.48 81.28
5   49.1 52.6   58.2 49.78 49.94 51.33 61.70
6   68.5 74.0   77.2 45.94 45.93 45.82 68.16
7 113.5 96.8 103.0 89.84 89.56 90.43 76.30
8   88.0 84.5   93.2 69.88 69.76 70.44 84.29

Note: s: sagging condition; h: hogging condition.

Table 4.  Comparisons of various ultimate vertical bending moment calculations

Model Nishihara [33] Béghin [3] Present-Lin Present-Paik Present-Lee Lin’s formula
No / Experiment / Experiment / Experiment / Experiment / Experiment / Experiment

1 0.983 1.005 0.952 0.948 0.971 1.005
2 1.005 1.092 0.980 0.923 0.951 1.000
3 1.012 1.060 0.962 0.986 0.990 1.215
4 0.945 1.021 0.893 0.890 0.906 0.951
5 1.071 1.185 1.014 1.017 1.045 1.257
6 1.080 1.127 0.671 0.671 0.669 0.995
7 0.853 0.907 0.792 0.789 0.797 0.672
8 0.960 1.059 0.794 0.793 0.800 0.958
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those of published literatures.  It should be note that the
calculating errors of the present approach to Paik’s
approach [35] are within 5.2% except for the case of
ultimate vertical bending moment in hogging (12.28%).
Besides, the current approach is more available as com-
pared with the literatures [17, 41, 35] since it can be
used to calculate other related longitudinal strengths.

CONCLUSIONS

In this paper, a simplified approach combined with
a numerical program has been successfully developed
to predict the longitudinal ultimate strength of ships.  A
comparison of buckling strength calculations with ex-
perimental data and published literatures has shown the
adaptability and limitation of those available formulae
used in ship structural design.  Comparisons of ultimate
strength calculation results obtained from the proposed
approach with experimental data and those from pub-
lished literatures have shown that the current approach
is acceptable for estimations of ultimate bending mo-
ments in sagging or hogging with and without at fully
plastic state.  A further comparison of the current ap-
proach with published literatures for a practical very
large crude carrier has not only validated the proposed
simplified approach but also shown its accuracy.  The
proposed approach with the available program can,
thus, be used as a fast-evaluated tool to estimate the
longitudinal ultimate strength of ships especially at the
preliminary stage of structural designs due to its
simplicity.  In addition, further studies, such as estima-
tions of residual strength of ships after grounding or
collision and the corrosion strength assessment of aging
ships, can be carried out based on the current approach.
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Table 5.  Principal dimensions of a VLCC

VLCC  “Energy Concentration”

Length, overall 326.75 m
Length, between perpendiculars 313.0 m
Breadth, molded 48.19 m
Depth, molded 25.2 m
Draft, summer extreme 19.597 m
Gross tonnage 98,894 tons
Deadweight 216,269 tons
Machinery Steam turbine

Fig. 21. (a) The geometry of hull section of a very large crude carrier
[41], (b) the geometry of stiffeners at hull section of a very large
crude carrier [41].
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