
Volume 11 Issue 1 Article 2 

Dynamics of Asymmetric Nonlinear Vibration Absorber Dynamics of Asymmetric Nonlinear Vibration Absorber 

Chiou-Fong Chung 
Department of Mechanical Engineering, National Central University, Chung-Li, Taiwan 32054 R.O.C. 

Chiang-Nan Chang 
Department of Mechanical Engineering, National Central University, Chung-Li, Taiwan 32054 R.O.C., 
changcnc@cc.ncu.edu.tw 

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal 

 Part of the Mechanical Engineering Commons 

Recommended Citation Recommended Citation 
Chung, Chiou-Fong and Chang, Chiang-Nan (2003) "Dynamics of Asymmetric Nonlinear Vibration Absorber," Journal 
of Marine Science and Technology: Vol. 11: Iss. 1, Article 2. 
DOI: 10.51400/2709-6998.2271 
Available at: https://jmstt.ntou.edu.tw/journal/vol11/iss1/2 

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been 
accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and 
Technology. 

https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/vol11
https://jmstt.ntou.edu.tw/journal/vol11/iss1
https://jmstt.ntou.edu.tw/journal/vol11/iss1/2
https://jmstt.ntou.edu.tw/journal?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol11%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol11%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jmstt.ntou.edu.tw/journal/vol11/iss1/2?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol11%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages


8 Journal of Marine Science and Technology,  Vol. 11, No. 1, pp. 8-19 (2003)

DYNAMICS  OF  ASYMMETRIC  NONLINEAR
VIBRATION  ABSORBER

Chiou-Fong Chung and Chiang-Nan Chang*

Paper Submitted 06/03/02, Accepted 07/19/02.  Author for Correspondence:
Chiang-Nan Chang.
*Department of Mechanical Engineering, National Central University,

Chung-Li, Taiwan 32054 R.O.C. E-mail: changcnc@cc.ncu.edu.tw.

Key words: bifurcation, absorber, harmonic balance, Floquet, subharmonic.

ABSTRACT

A dynamics of stability and bifurcation analysis of an asym-
metrically nonlinear absorber system that contains a main part and a
nonlinear spring is proposed.  For this study, the analytical works on
this nonlinear vibration absorber were performed by the harmonic
balance method and the Floquet theory.  Dynamic phenomena due to
changing of periodic excitation are analyzed.  The investigation
fulfils that the bifurcation sequences illustrate completely the com-
plex phenomena of system dynamics.  Furthermore, this study show
that the primary bifurcation orbit coexist with orbit of the secondary
responses via a saddle-node bifurcation in a specific period excitation
range.  The results demonstrate that the new phenomena occur in the
strongly nonlinear system.

INTRODUCTION

The computation of optimal design parameters for
a type of such linear classical system was discussed by
Hartog [3].  However, little work has been done on
damped vibration absorbers.  Rice and Craith [18] pro-
posed a nonlinear vibration absorber incorporating an
asymmetric nonlinear Duffing-type absorber into the
system.  Nissen et al. [14] found that the bandwidth of
a nonlinear vibration absorber with a strongly nonlinear
spring is wider than one for an absorber with weakly
nonlinear spring.  Through Hopf bifurcation, an un-
stable solution near the operating frequency was
generated.  The occurrence of this Hopf bifurcation
disrupts the performance of the nonlinear vibration
absorber due to the high vibration amplitude in this
unstable range.  In many works, vibration absorbers
with a cubic nonlinearity, and with variable rigidity due
to the hyperbolic sine law, as well as those with piece-
wise linear characteristics were investigated [1, 4, 16].
However, the study of the global dynamics behavior of

a nonlinear vibration absorber has been limited.
The jump phenomenon in the Duffing equation is

a phenomenon of cubic nonlinearity.  A saddle-node
bifurcation that a stable periodic orbit and an unstable
periodic orbit is coalesced or generated each other are
found in the Duffing equation.  Some investigations [11,
21] have studied the phenomenon.  Meanwhile, the
bifurcation is one of routes to chaos [19].  Another
saddle-node bifurcation that two unstable period orbits
are coalesced or generated each other is found in some
nonautonomous systems [2, 5], but so far the mecha-
nism of producing such a bifurcation has been poorly
understand from a theoretic point of view.

The periodic orbits of period-1 and the orbits that
bifurcate from the periodic orbits mainly construct the
dynamics of the system are called as primary responses
of the system.  The dynamics structure of nonautonomous
system that is output of the system may not belong to the
primary response [17, 20].  The output of the system is
a subharmonic orbits whose period is a multiple of the
period of the periodic excitation.  The subharmoic or-
bits that are called as secondary responses of system.
This orbits do not bifurcate from primary response.
Furthermore, the subharmonic orbits coexist with the
primary response.  The subharmonic orbits change their
stability due to some bifurcations.  Some researches [7,
22] studies the dynamics of the secondary response
alone.

The nonlinear behavior of this vibrating absorber
is asymmetric  nonautonomous system.  Periodic orbits
of the system are detected by the shooting method [9,
10].  Then the stability of the periodic orbits is per-
formed through Floquet theory [8, 13].  Based on the
parametric continuation algorithm, bifurcation points
and bifurcation lines constructed by the bifurcation
points are obtained with varying parameters of the
nonlinear system.  Besides, frequency responses are
calculated via the harmonic balance method.  The analy-
sis results provide information about the dynamics of
the system to study the mechanism of producing the
saddle-node bifurcation with the coalescence of two
unstable periodic orbits according to the bifurcation
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theory [6, 12] and show the coalescence of the primary
responses and the secondary responses.

FORMULATION  OF  THE  PROBLEM

Figure 1 shows a schematic diagram of an asym-
metric vibration absorber.  The system contains a main
rotating part, shown as m1, and an absorbing part, shown
as m2.  The force f(x) contains a nonlinear spring, and
thus have both linear and nonlinear stiffness.  The
viscous damper is designed for linearity.  The external
force comes from an eccentric mass that is fixed on the
rotating disk.  The equations of motion can be derived as
follows:

  m 1 x 1
" + c 1 x 1

' + ( k c1 x 1 + k c3 x 1
3) – c 2( x 2

' – x 1
' )

  – [ k a1( x 2 – x 1) + k a3( x 2 – x 1)
3]

   = f conc + m eR ω 2cos( ω ⋅ τ ) , (1a)

  m 2 x 2
" + c 2( x 2

' – x 1
' ) + [ k a1( x 2 – x 1)

  + k a3( x 2 – x 1)
3] = f conc , (1b)

where   x 1  and   x 2  are the displacements of the main
system and the vibration absorber respectively.  The
parameters of this system are

m1: the mass of the main system,
c1: the damping coefficient of the main system,

  k c1 : the linear stiffness coefficient of the main
system,

  k c3 : the triple stiffness coefficient of the main
system,

m2: the mass of the vibration absorber,
c2: the damping coefficient of the vibration

absorber,
  k a1: the linear stiffness coefficient of the vibra-

tion absorber,
  k a3 : the triple stiffness coefficient of the vibra-

tion absorber,
  m e : the rotating eccentric mass,

R: the eccentricity,
  ω : the rotating frequency of mass   m e ,

fconc: the constant force acting on the main system,
fcona: the constant force acting on the vibration

absorber,

where the prime denotes the differential with respect to
the time τ .  The constant forces acting on the main
system and the absorber are the gravity

fconc = −m1 • g, (2a)

fcona = −m2 • g. (2b)

The transfer functions of the coordinates   ( x 1, x 2)
and (x1, x2) are

   x 1 = x 1 – δx1 , (3a)

   x 2 = x 2 – δx2 , (3b)

The values of δx1 and δx2 can be determined from
the static equilibrium of the system; i.e.,   m e  = 0.  The
equilibrium equations are

   k c1 ⋅ δx1 + k c3 ⋅ δx1
3 = (m 1 + m 2 + m e) ⋅ g ,       (4a)

   k a1(δx2 – δx1) + k a3(δx2 – δx1)
3 = m 2 ⋅ g , (4b)

The equations of motion of the system can be
rewritten by substituting eqs. (2a), (2b), (3a), (3b) into
eqs. (1a) and (1b) as follows:

   m 1x 1
" + c 1x 1

' + [ k c1x 1 + k c3(x 1
3 – 3δx1 ⋅ x 1

2 + 3δx1
2 ⋅ x 1)]

  – c 2(x 2
' – x 1

' ) – { k a1(x 2 – x 1) + k a3[(x 2 – x 1)
3

   + 3(δx1 – δx2)
2(x 2 – x 1) + 3(δx1 – δx2) (x 2 – x 1)

2]}

   = m eR ω 2cos( ω 2 ⋅ τ ) , (5a)

  m 2x 2
" + c 2(x 2

' – x 1
' ) + { k a1(x 2 – x 1) + k a3[(x 2 – x 1)

3

   – 3(δx2 – δx1) (x 2 – x 1)
2 + 3(δx2 – δx1)

2 (x 2 – x 1)]}

= 0. (5b)

We can simplify eqs. (5a) and (5b) by dividing m1

and m2 respectively

   x 1
" + c 1x 1

' + [ k c1x 1 + k c3(x 1
3 – 3δx1 ⋅ x 1

2 + 3δx1
2 ⋅ x 1)]

   – µ ⋅ c 2(x 2
' – x 1

' ) – µ{ k a1(x 2 – x 1) + k a3[(x 2 – x 1)
3

   + 3(δx1 – δx2)
2(x 2 – x 1) + 3(δx1 – δx2) (x 2 – x 1)

2]}

   = m eR ω 2cos( ω 2 ⋅ τ ) , (6a)

  x 2
" + c 2(x 2

' – x 1
' ) + { k a1(x 2 – x 1) + k a3[(x 2 – x 1)

3

   – 3(δx2 – δx1) (x 2 – x 1)
2 + 3(δx2 – δx1)

2(x 2 – x 1)]}

= 0, (6b)

w h e r e  
  c 1 =

c 1
m 1

, c 2 =
c 2
m 2

, k c1 =
k c1
m 1

, k c3 =
k c3
m 1

,
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   k a1 =
k a1
m 2

, k a3 =
k a3
m 2

, m e =
m e

m 1
, µ =

m 1

m 2
.

Rescaling the dimension of time, the equations of
motion are rewritten as,

   x 1 + λ cx 1 + [k c1x 1 + k c3(x 1
3 – 3δx1 ⋅ x 1

2 + 3δx1
2 ⋅ x 1)]

   – µ ⋅ λ a(x 2 – x 1) – µ{k a1(x 2 – x 1) + k a3[(x 2 – x 1)
3

   + 3(δx1 – δx2)
2(x 2 – x 1) + 3(δx1 – δx2) (x 2 – x 1)

2]}

   = rω2 cos(ω ⋅ t) , (7a)

   x 2 + λ a(x 2 – x 1) + {k a1(x 2 – x 1) + k a3[(x 2 – x 1)
3

   – 3(δx2 – δx1) (x 2 – x 1)
2 + 3(δx2 – δx1)

2(x 2 – x 1)]}

= 0, (7b)

where    ωn
2 = k c1 – 2δx1 k c2 + 3δx1

2 k c3 + µ( k a1 + 2(δx1 –

   δx2) k a1 + 3(δx1 – δx2)
2 k a3 , τ = ωn ⋅ t , x 1 = x 1

'

ωn

, x 1 = x 1
"

ωn
2

,

   x 2 = x 2
'

ωn

, x 2 = x 2
"

ωn
2

, λ c =
c 1

ωn

, λ a =
c 2

ωn

, k c1 =
k c1

ωn
2

,

   k c3 =
k c3

ωn
2

, k a1 =
k a1

ωn
2

, k a3 =
k a3

ωn
2

, ω = ω
ωn

, r = m eR .

THEORETICAL  ANALYSIS

The theoretical analysis includes an approxima-
tion of the periodic response, the frequency response
and the stability.  In order to approximate the periodic
response of this system, we employ the analysis method.
A nonautonomous system in which a periodic excitation
is involved is illustrated as,

    x = F(x, ωt) , (8)

where ω denotes the frequency of the periodic excitation.
The shooting method [9, 10] is an approach of detecting
periodic orbits of period-1 and subharmonic orbits of
period-k of the system via a Poincaré section that stro-
boscopically samples a point on a trajectory of the
system per period of the orbit.  The orbits correspond to
fixed points on the section.  In the following, the fixed
points are detected through a Poincaré map that is
mapping of an intersection point of a trajectory with the
Poincaré section onto the subsequent intersection point.
Selecting some values y0 as the staring point of the
procedure of the detection corresponding to the time t =
0, the Poincaré map G(y0) of the point y0 is obtained by
numerically integrating eq. (8) with a initial value y0

and computing the solution x(t, y0) at the period kT,

    G: R n → R n; y 0 → G(y 0) = x(kT, y 0) , (9)

where T is the period of the harmonic excitation.  A
fixed point y* that corresponds to a periodic orbit or a
subharmonic orbit  x  of eq. (8) on the Poincaré section
can be determined through zeros of the equation given
below,

  G(y) = G(y) – y . (10)

The orbit  x  is accounted by numerically integrat-
ing eq. (8) with the initial value y* among one period kT.

The harmonic balance method is another approach
to approximate the periodic orbits and subharmonic
orbits of the system.  The periodic orbit of period-1 or
the subharmonic orbit of period-k is approximated by
truncated trigonometric functions,   

x l(t) = α0l + Σ
i = 1

N
α i

k
l
cos( i

k
⋅ ω ⋅ t + β i

k
l
) , l = 1 ~ n,

(11)

where xl is the l-th element of x and α0l, 
   

α i
k

l
, and 

   
β i

k
l

Fig. 1. The schematic diagram of the non-linear dynamic vibration absorber.

Where stiffness force    f 1(x) = k c1 ⋅ x 1 + k c3 ⋅ x 1
3

 and   f 2(x) =

  k a1( x 2 – x 1) + k a3( x 2 – x 1)3
.
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are n • (2N + 1) unknown Fourier coefficients.  The
value of the positive integer N depends on the required
accuracy of the approximation.  Substitution of eq. (11)
into eq. (8) and balancing the coefficients of each of the
harmonic terms produce n • (2N + 1) nonlinear algebra
equations in terms of the n • (2N + 1) unknown Fourier
coefficients.  Using those n • (2N + 1) equations, the
Fourier coefficients can be numerically calculated.  In
this study, frequency responses of the system are ob-
tained via the harmonic balance method.

This study obtains the stability of periodic orbits
and subharmonic orbits via Floquet theory [8, 13].
Small perturbation to a periodic orbit or a subharmonic
orbit determines the stability of the orbit by linearlizing
the full equations of motion in relation to the orbit.  The
result of the linearization is a linear, time variant differ-
ential equation.

To perturb a orbit  x , this study substitutes x =
   x + x   into eq. (8).   x  represents small perturbation

of the orbit  x .  The orbit  x  was evaluated through the
shooting method or the harmonic balance method which
is described in the previous section.  Preserving only the
linear terms of the equation, the perturbed system can be
described as follows,

    x = A(t) x , (12)

where A(t) is a matrix of time-periodic coefficients.  The
transition matrix      T λ( x ) , which determines the stability
of the orbit  x , is calculated numerically from the
matrix A(t) with a Runge-Kutta scheme [4].  The char-
acteristic equation of      T λ( x )  is written as follows,

     χ( x , λ, µ) = det(µI – T λ( x ))

   = µn + a 1 ⋅ µn – 1 + + a n – 1 ⋅ µ + a n = 0 , (13)

where I is an n × n identify matrix, µ is a eigenvalue of
the matrix      T λ( x ) , and λ  is the system parameter.  Ac-
cording to the Floquet theory, the orbit  x  is stable if all
eigenvalues of its transition matrix have modules less
than unity; otherwise it is unstable.  A bifurcation
occurs in the eigenvalues passing through the unit circle
of the complex plane; i.e., one or more the eigenvalues
of the transition matrix have unity modulus,

µ = cosθ + j • sinθ, 0 ≤ θ ≤ 2π, (14)

where j =  – 1 .  Three types of instabilities are: (i) θ =
π, period doubling bifurcation occurs; (ii) θ = 0, saddle-
node bifurcation, pitchfork bifurcation or transcritical
bifurcation occurs; (iii) θ  ≠ 0 and θ  ≠ π, Hopf bifurca-
tion occurs.  Substituting eq. (14) into eq. (13), bifurca-
tion points are obtained by the detection methods and

the parametric continuation algorithm [15].

ANALYTICAL  RESULTS

In this study, dynamic phenomena which is due to
the changing of periodic excitation is analyzed.  Table
I shows the fixed parameter values of the eqs. (1a) and
(1b).  Some investigations [17, 20] found that the
subharmonic orbits of the primary responses coexist
with the subharmonic orbits of the secondary responses
in some nonautonomous systems.  Two subharmonic
orbits that belong to the same type of the responses are
coalesced each other.  This study shows a new phenom-
enon that a subharmonic orbit of the primary responses
coalesces with a subharmonic orbit of the secondary
responses via a saddle-node bifurcation in a specific
parameter range.  For analyzing the dynamics of the
asymmetric system, this study is performed by using all
fixed parameters of eqs. (7a) and (7b) except the forcing
frequency ω.  Figure 2 portrays a bifurcation diagram on
a parameter plane (ω, r).  Figures 3a, 3b, and 3c portray
the frequency response at r = 0.00108.  Bifurcation
lines Lpd,a, Lpd,b, Lsn1,a, Lsn2, Lsn2,a, Lsn2,ma, Lsn2,mb, LH2,a,
LH2,b, LH2,c, and LH2,d are constructed by period doubling
bifurcation points, Ppd,a and Ppd,b, saddle-node bifurca-
tion points, Psn1,a, Psn1,b, Psn2, Psn2,a, and Psn2,b, and Hopf
bifurcation points, PH2,a,  PH2,b,  PH2,c,  and PH2,d,
respectively.  Solid lines and dashed lines present the
bifurcation lines of subharmonic orbits and those of
periodic orbits, respectively.  Pc2,a, Pc2,b, Pc2,c, Pc2,d and
Pc2,e denote points where a bifurcation line merges with
another bifurcation line.  To describe transparently the
dynamics and to understand clearly the portrayals in the
bifurcation diagram, a frequency response along one
dash dot line L1, are illustrated in the following.

Figure 3(a) illustrates the frequency response of
the primary responeses of the coupled asymmetric sys-
tem at r = 0.00108.  α 11 and 

  
α 1

2
1
 are the Fourier

Table 1.  The fixed parameter values of the eqs. (1a) and (1b).

System parameters Values

m1(kg) 1.25
c1(N•s/m) 0.5

  k c1(N/m) 196
  k c3 (N/m3) 98000
δx1(m) 0.04608
m2(kg) 0.6

c2(N•s/m) 0.3
  k a1(N/m) 196
  k a3(N/m3) 98000
δx2(m) 0.03959
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coefficients of a periodic orbit of period-1 and a
subharmonic orbit of period-2, respectively.  Two saddle-
node bifurcation points, Psn1,a and Psn1,b, divide a reso-
nance of the primary responses into three branches: (i)
the upper branch, stable periodic orbits of large
amplitude; (ii) the middle branch, unstable periodic
orbits; (iii) the lower branch, stable periodic orbits of
small amplitude.  Meanwhile, a subcritical period dou-
bling bifurcation point Ppd,a and a supercritical period
doubling bifurcation point Ppd,b are on the upper and
lower branches, respectively.  Subharmonic orbits of
period-2 bifurcate from the period doubling bifurcation
points Ppd,a and Ppd,b.  Furthermore, there are some
bifurcations in the subharmonic orbits.  The stable
subharmonic orbit of period-2 which bifurcates from
the period doubling bifurcation point Ppd,b and the un-
stable subharmonic orbit of period-2 which bifurcates
from the period doubling bifurcation point Ppd,a coa-
lesce each other at a saddle-node bifurcation point Psn2.
Besides, the stable subharmonic orbits loss their stabil-
ity at Hopf bifurcation points PH2,a and PH2,b.  To
classify the bifurcation points of the periodic orbits of
period-1 and the points of the subharmonic orbits of
period-2, the symbol ‘ ’ denotes the bifurcation points
of the periodic orbits of period-1 and the symbol ‘ ’
represents the bifurcation points of the subharmonic
orbits of period-2.

The other responses of the coupled system are the
secondary responses as shown in Fig. 3(b).  Subharmonic
orbits of period-2 are located between saddle-node bi-
furcation points Psn2,a and Psn2,b.  There are some bifur-

Fig. 2.  Bifurcation diagram on a parameter plane (ω, r).

cations of the subharmonic orbits in the figure.  The
stable subharmonic orbits of the secondary responses
change to be unstable at Hopf bifurcation points PH2,c

and PH2,d.  The subharmonic orbits coexist with the
primary responses as shown in Fig. 3(c) as the descrip-
tions of some investigations [17, 20].

SIMULATIONS  AND  DISCUSSION

Through the preceding theoretical analysis results,
Table 2 and Table 3 show that the bifurcation sequences
for r = 0.00108 by increasing forcing frequency from ω
= 1.09 of region R1 to ω = 1.25 of region R11.  The
bifurcation sequences are shown in Fig. 2.  Phase por-
traits in each region corresponding to that labeled in
Fig.2 are listed in Tables 2 and 3.  To verify these
theoretical analysis results in § 4, we carry out a series
of numerical simulations from eqs. (7a) and (7b).  The
commercial package DIVPRK of IMSL in FORTRAN
subroutines for mathematics applications is used to
solve ordinary differential equations.  Return to Fig. 2
and Figs. 3a to 3c, we will discuss the bifurcation
sequences of regions R1 to R11 again.  When the forcing
frequency ω is less than about 1.096, the dynamics of
the system shows only a stable period-1.  Figure 4
displays the result.  As the parameter ω arrives at Lsn2,
the stable and the unstable subharmonic orbit of period-
2 coalesce each other at this saddle-node bifurcation
line Lsn2.  If the forcing frequency ω passes through
regions R1 into R2, a stable periodic orbit of period-1
coexists with a stable subharmonic orbit of period-2,
shown as Fig. 5.  The converged solution completely
depends on initial conditions.  Then as the forcing
frequency ω is varied and enters to region R3, a periodic
orbit  of period-1 sti l l  maintain and the stable
subharmonic orbit of period-2 undergoes a supercritical
Hopf bifurcation line LH2,a or changes to a torus orbit
and an unstable period-2 orbits.  In other words, a
period-2 stable subharmonic oscillation loses its stabil-
ity and becomes a quasi-periodic motion, namely “torus
motion” that produces by two incommensurate
frequencies, shown as in Fig. 6.  On line LSN2,a, the
subharmonic orbit of period-2 occur saddle-node
bifurcation.  As the forcing frequency continues to
increase and falls in the region R4, a stable period orbit
of period-1, a quasi-periodic orbit and a stable
subharmonic orbit of period-2 are coexistent.  In other
words, when the forcing frequency ω varied from region
R4 to region R3, the period-2 stable and unstable
subharmonic motions disappear in region R3.  These
phase portraits of region R4 are shown in Figs. 7a to 7c.
In region R5, there exists a period-1 and two toruses.
Beyond supercritical Hopf bifurcation line LH2,c, a pe-
riod-2 stable subharmonic motion loses its stability and
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becomes a quasi-periodic motion, shown in Figs. 8a to
8c.  The supercritical Hopf bifurcation appears again at
line LH2,d.  Due to the supercritical Hopf bifurcation, in
region R5 has one of toruses that comes from a period-
2 stable subharmonic motion in region R6.  Thus, the
motions of region R6 have a period orbit of period-1,
torus and a period-2 stable subharmonic orbit, shown as
in Figs. 9a to 9c.  The subcritical period doubling occurs

Fig. 3. Frequency response of system: (a) the primary responses, (b) the
secondary responses, (c) the coalescence.

Fig. 4. Phase portrait of region R1, at ω = 1.09, Period-1, and x1 = x1, dx1
=   x1.

Fig. 5. Phase portrait of region R2, at ω = 1.1125, Period-1 and Period-2,
and x1 = x1, dx1 =   x1.
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Table 2.  Phase portraits in regions R1 to R7 corresponding to that labeled in Fig. 2.

on line Lpd,a.  As the forcing frequency varied from
region 7 to region 6, a period-1 unstable harmonic
motion of region 7 bifurcates and becomes a stable
period-1 and unstable period-2 motion of region 6.  In
other words, the motions of a stable period-2 and a torus
subharmonic orbit are shown in region R7.  Figures 10a
and 10b display the simulation results.  On line LH2,b, a
supercritical Hopf bifurcation occurs at period-2
subharmonic motion.  Hence, as the forcing frequency
varied from region R8 to region R7, the stable period-2
subharmonic motion changes to be unstable and gener-
ates a torus.  In region R8, there exists two distinct

stable period-2 subharmonic orbits, shown in Figs. 11a
and 11b.  The saddle-node bifurcation line LSN1,a is
constructed by the coalescence of two unstable period
orbits.  Hence, three unstable period-1 harmonic motions,
two stable period-2 subharmonic motions and an un-
stable period-2 subharmonic motion appear in region
R9.  The stable orbits shown as in Figs. 12a and 12b.  On
line Lpd,b the supercritical period doubling bifurcation
occurs.  As the forcing frequency transverse from re-
gions 10 to 9 which crosses line Lpd,b, a stable period-1
orbit in region 10 losses its stability and becomes to a
stable period-2 orbit in region 9.  So, two unstable and
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Table 3.  Phase portraits in regions R8 to R11 corresponding to that labeled in Fig. 2.

one stable period-1 harmonic motions as well as one
unstable and one stable period-2 subharmonic motions
exist in region R10 as shown in Fig. 13.  Beyond the
frequency shown in Fig. 2, region R11 is located in Fig.
3c.  The forcing frequency is located between points
Psn1,b and Psn2,b.  A saddle-node bifurcation is generated
by coalescence of two unstable period orbits.  As the
forcing frequency operated in region R11, Fig. 14 shows
a stable period-1 and a stable period-2 subharmonic
motion.

CONCLUSIONS

In this paper, we analyzed a new type of nonlinear
vibration absorber with static deflection.  It is worth
mentioning that when unstable periodic motion occurs
in the main rotating system, the dynamics of the system
may become complexity and out of control.  For the
stability analysis, the bifurcation points were obtained
and the bifurcation lines were constructed as the param-
eters were changed.  The saddle-node bifurcation line

Fig. 6. Phase portrait of region R3, at ω = 1.117, Period-1 and Torus, and
x1 = x1, dx1 =   x1.
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Fig. 7. Phase portraits of region R4, at ω = 1.118: (a) Period-1, (b) Period-
2, (c) Torus, and x1 = x1, dx1 =  

x1 .
Fig. 8. Phase portraits of region R5, at ω = 1.1185: (a) Period-1, (b) Torus

one, (c) Torus two, and x1 = x1, dx1 =  
x1 .
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Fig. 9. Phase portraits of region R6, at ω = 1.120: (a) Period-1, (b) Torus,
(c) Period-2, and x1 = x1, dx1 =   x1.

Fig. 10. Phase portraits of region R7, at ω = 1.125: (a) Period-2, (b) Torus,
and x1 = x1, dx1 =   x1.

and period doubling bifurcation line are constructed to
form a bifurcation set.  From the bifurcation set, the
mechanism of producing the saddle-node bifurcation
with the coalescence of two periodic orbits is clearly
illustrated.  However, this paper studied that a
subharmonic orbit that bifurcates from the primary re-
sponses coalesces with a subharmonic orbit of the sec-
ondary responses via a saddle-node bifurcation in the
nonautonomous system.  The investigation fulfils that
the bifurcation sequence illustrate completely the com-
plex phenomena of system dynamics.  The results dem-
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Fig. 11. Phase portraits of region R8, at ω = 1.135: (a) Period-2, (b) Torus,
and x1 = x1, dx1 =   x1.

Fig. 12. Phase portraits of region R9, at ω = 1.1385: (a) Period-2, (b) Period-
2, and x1 = x1, dx1 =   x1.

onstrate that the new phenomena occur in the strongly
nonlinear system.
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