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ABSTRACT

Marine hub-and-spoke networks have been applied to routing
containerships for over two decades, but few papers have devoted
their attention to these networks.  The marine network problems are
known as single assignment nonstrict hub location problems (SNHLPs),
which deal with the optimal location of hubs and allocation of spokes
to hubs in a network, allowing direct routes between some spokes.  In
this paper we present a satisfactory approach for solving SHNLPs.
The quadratic integer profit programming consists of two-stage com-
putational algorithms: a hub location model and a spoke allocation
model.  We apply a heuristic scheme based on the shortest distance
rule and an experimental case based on the Trans-Pacific Routes is
presented to illustrate the model’s formulation and solution methods.
The results indicate that the model is a concave function, exploiting
the economies of scale for total profit with respect to the number of
hubs.  The spoke allocation may change an optimal choice of hub
locations.

INTRODUCTION

A number of studies have recently been done on
the network design problem for hub-and-spoke patterns.
Although marine hub-and-spoke networks have been
applied to routing containerships for over two decades,
few papers have so far devoted their attention to these
networks.  Some papers formulated mathematical pro-
gramming models for routing containerships, but these
models neglect the characteristics of containerships’
routes.  Different systems require different models to
adequately portray scenario patterns based upon their
characteristic features (O’Kelly, 1998; Bryan and
O’Kelly, 1999).  The aim of this paper is to develop a

more adequate model for capturing the particular char-
acteristics of marine networks, while maximizing the
total transportation profit of the network.

Transportation networks, in which traffic moves
from its origin node to its destination node, are often
configured as hub-and-spoke systems.  In such systems,
hubs are special nodes that serve as consolidation and
switching points that connect many origins and
destinations.  The concept of these interacting hubs
arises frequently in many applications, such as air pas-
senger travel, telecommunication network, postal de-
livery systems, and containerships.  The major incen-
tive for employing a hub-and-spoke systems is that hubs
enjoy economies of scale achieved by larger consolidat-
ing traffic into smaller number of hub-to-hub links, thus
generating lower unit transportation cost on those links.
Hub-and-spoke networks usually consist of at least a
two-level system: hub level and spoke level.  The hub-
to-hub portion is usually discounted by a factor α (0 <
α ≤ 1) to account for the concept of hubbing economies.

The hub location problems (HLPs) are to deter-
mine an optimal number and location of hubs, and
allocation of spokes (non-hubs) to these hubs in a
network such that, typically, the total transportation
cost is minimized.  Since O’Kelly (1986a, 1986b, 1987)
first proposed a quadratic integer programming and two
heuristic algorithms for solving the HLPs, an increasing
number of studies have been done on this prototype of
the problems, such as Campbell (1994) and O’Kelly and
Miller (1994).  Campbell (1994) presented the HLPs
into four different basic categories: the p-hub median
problem, the uncapacitated hub location problem, p-
hub center problems, and hub covering problems.  Most
of work on HLPs has focused on the former two problems.
If the number of hubs is not given in a network, the p-
hub median problem is usually the HLP.  In uncapacitated
HLPs, there is a fixed cost for establishing a hub, but no
constraint on the number of hubs (Campbell, 1994;
Klincewicz, 1996; Ebery et al., 2000).  Different as-
sumptions may result in different problem structures
and network patterns.  For example, a single assignment
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is structured so that each spoke is assigned to only one
hub (O’Kelly, 1987, 1992; Klincewicz, 1991, 1992;
Campbell, 1994, 1996; Skorin-Kapov and Skorin-Kapov,
1994; Skorin-Kapov et al., 1996; Aykin, 1990, 1995;
Ernst and Krishnamoorthy, 1996; Kara, et al. 2003).  A
multiple assignment allows spokes to interact with
more than one hub (Campbell, 1994; O’Kelly and
Lao, 1991; Klincewicz, 1996; Skorin-Kapov et al., 1996;
Krishnamoorthy et al., 1998, 2000). Occasionally, there
is also a fixed cost to establish a hub (O’Kelly, 1992;
Campbell, 1994; Aykin, 1995; O’Kelly et al., 1996;
Sohn and Park, 1998).  In some cases, it is possible to
allow direct routes between some spokes, resulting in a
problem called “Nonstrict Hubbing Policy” (Aykin,
1994, 1995).

Despite its widespread use, designing efficient
hub-and-spoke systems remains a challenging task.  A
primary difficulty lies in model formulations and solu-
tion algorithms for the characteristic of a particular
system.  As a result of the computational needs in
solving HLPs, previous studies primarily focused on
heuristic algorithms rather than exact solutions for
models.  O’Kelly (1987) was first to develop two enu-
meration-based heuristics using distance rule for solv-
ing the single assignment p-hub median problem, in
which every spoke is allocated to exactly one hub and
all hub linkages are fully interconnected (i.e., a pure
hub-and-spoke network).  Klincewicz (1991) proposed
two sets of heuristics for larger problems based on a
multi-criteria distance and flow rule rather than on
distance alone.  Klincewicz’s exchange heuristics first
determine the hub locations, and then assignment of
spokes to hubs, with changes the solution made by the
assignment of hubs to spokes.  The other clustering
heuristics divide the nodes into several groups and
assign a hub for each group.  In later work, Klincewicz
(1992) considered tabu search and greedy search proce-
dures to explore solutions beyond local optima.  Skorin-
Kapov and Skorin-Kapov (1994) developed other tabu
search heuristic, assigning equal importance to the loca-
tion and allocation portions of the problem.  Aykin
(1994) was first to consider the Langrangian relaxation
for the p-hub median problem with hub capacity.  Aykin
(1995) provided a branch-and-bound algorithm and a
simulated annealing based on greedy interchange heu-
ristic for investigating the effects of strict and nonstrict
on the HLPs.  In strict hubbing, all traffic must ship via
a set of hubs; nonstrict hubbing allows some direct trips
between some spokes. Klincewicz (1996) proposed a
dual ascent procedure for a sequence of uncapacitated
HLPs.  O’Kelly et al. (1995) presented algorithm to
determine two lower bounds on the optimal solution.
Skorin-Kapov et al. (1996) developed effective mixed
integer formulations with tight linear programming re-

laxations for the HLPs.  Campbell (1996) was first one
to formulate a greedy exchange heuristic to solve
uncapacitated, multiple assignment HLPs.  The
MAXFLO heuristic assigns spoke to hub by maximum
flow rule, whereas the ALLFLO’s purpose is to mini-
mize the total network cost.  By modifying Campbell’s
model (Campbell, 1996), Skorin-Kapov et al. (1996)
were first to propose mixed integer formulations for
finding exact solutions for the single and multiple as-
signment problems.  Ernst and Krishnamoorthy (1996)
also developed a two-stage approach to produce exact
solutions.  Sohn and Park (1998) provided a reduced
size formulation model for uncapacitated single and
multiple p-hub location problems.  Ernst and presented
exact and heuristic algorithms for the uncapacitated
multiple assignment HLPs, while Ebery et al. (2000)
presented mixed integer formulations using branch-
and-bound algorithm, based on the shortest path rule,
for the capacitated multiple assignment problem.  Boland
et al. (2004) considered pre-processing procedures and
tightening constraints with existing mixed integer lin-
ear programming model for multiple assignment
problem.

Recently, Kara and Tansel (2000) and Pamuk and
Sepil (2001) studied the p-hub center problem, and Kara
and Tansel (2003) have also investigated the hub cover-
ing problem.

Marine containership routes are hub-and-spoke
structures, in which containerships carry cargo from
their origin ports, through hub ports in the network, to
their destination ports.  In this paper, the problem is the
HLP as previously studied, but for different applications.
There are three fundamental differences: (1) In past
HLPs, hubs are fully interconnected, whereas in marine
problems, hubs are not fully networks; rather they are
more like shuttle patterns.  The hub connections are
sequential and in the same directional order (Hsieh and
Chang, 2001). (2) In past HLPs, traffic is shipped via set
of hubs, and each spoke connects to a hub.  In marine
problems, however, some spokes may bypass others to
connect to a hub (see Gilman, 1981; Pearson and Fossey,
1983).  In such an allocation, marine network problems
can be classified as nonstrict hubbing policy, as defined
by Aykin (1995). (3) In past HLPs, the interhub cost
counts by only cost with hub link.  In marine problems,
the interhub cost has to accumulate all cost on each
interhub link, reflecting the hub level structure.
Consequently, the definition of our problem having
such features to be discussed in this paper is referred to
as single assignment, nonstrict hub location problems
(SNHLPs).  These problems have not yet been studied in
previous literature.

Due to the increased traffic at hub ports, marine
liner operators can benefit from the scale economies of
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ship capacity utilized at hub ports (Chadwin et al.,
1990).  In order to take full advantage of this, however,
it is critical for liner operators to solve marine SNHLPs.
Yet these problems have received limited attention in
the literature.  Ronen (1993) reviewed literature from
the last decade regarding routing and scheduling prob-
lems and identified only a few that pertained to routing
containerships.  Rana and Vickson (1998, 1991) pro-
posed a mixed integer nonlinear programming com-
bined with decomposition to solve the optimal routing
problem.  Jaramillo and Perakis (1991), Cho and Perakis
(1996), and Powell and Perakis (1997) developed linear
programming to describe the routing containerships and
deployment scenario.  Christiansen and Nygreen (1998)
presented an optimal solution based on branch-and-
bound search with inventory constraints for ship routing
problems.

Fagerholt (1999) identified optimal ship types, the
number for each type, and coherent routes for the liner
shipping problem.  Lu (2002) proposed a branch-and-
bound algorithm with cycle time and vessel constraints
for an optimal ship routing.  Chu et al. (2003) proposed
a mixed integer model to determine an optimal sequence
of port calls and container flow between demand ports
with cycle time constraints.  Azaron and Kianfar (2003)
applied a stochastic dynamic programming based on
semi-Markov decision processes and network flow
theory to find the dynamic shortest path for ship routing
problem.  These studies neglected the reality of marine
routing problem, resulting in models that were compli-
cated and possibly generated unrealistic solutions to
marine SNHLPs.  Recently, Mourao et al. (2002) devel-
oped an integer programming model to solve ship fleet
assignment with defined voyages based on hub-and-
spoke networks.  Hsieh and Chang (2001) proposed an
integer linear programming, which modified O’Kelly’s
model (O’Kelly, 1987), to solve marine SNHLPs.  In
later work, Hsieh and Wong (2003) proposed a qua-
dratic integer cost minimization model with heuristic
algorithms based on distance rule for the same problem.
In this paper we propose an extensive approach for
marine SNHLPs.  The model is larger and more compli-
cated than the cost minimization model of Hsieh and
Wong (2003) because: (1) the cost minimization model
considered only transportation cost, whereas this model
considers simultaneously the tradeoffs between rev-
enue and related costs (e.g., fixed cost, sailing cost, port
cost, operational cost, and bunker cost). (2) In cost
minimization model, no ship assignment is included.  In
this model, however, different ship sizes are deployed
to the two-level system, introducing additional sets of
constraints (e.g., load capacity, cargo carried when
vessel outgoing and returning, planning horizon). (3) In
this model, the frequency of service and the number of

vessels are viewed as decision variables.  With these
considerations, the model can more adequately repre-
sent the reality of the existing problems.  To the best of
our knowledge, this is the first work to provide a means
to explicitly address tradeoffs between revenue and cost
on the HLPs in the literature; even we can imagine many
similar applications.

Our approaches are tested on a data set from Trans-
Pacific Routes.  Parts of traffic flow are estimated from
various sources because real data are not generally
available.

The next section presents the problem formulation
for marine SNHLPs and the quadratic profit model.
Section Three provides the solution processes for both
the hub location model and the spoke allocation model.
Section Four implements an experimental case based on
the Trans-Pacific Routes data to illustrate the model’s
formulation and the solution methods.  Finally, we
discuss our conclusions and propose directions for fu-
ture research.

MODEL  FORMULATION

The model seeks to establish the basis for marine
network design by determining the optimal location of
hubs and allocation of feeder ports to these hubs, such
that the annual total profit is maximized.  The container-
ship service level consists of many elements, such as
service safety, pick-up and delivery time, and available
load capacity, but to make it quantitative, some vari-
ables in this formulation are available capacity, traffic
flow, traffic rate, ship size, sailing speed, voyage
distance, bunker price, and sailing frequency.

In marine hub-and-spoke networks, traffic flow
from origin node ino to destination node jnd usually has
three segments associated with it, denoted as con-
solidation, transshipment, and distribution.  Consolida-
tion represents the traffic from origin node ino to hub i
(spoke level), transshipment is traffic movement be-
tween hub i to hub j (hub level), and distribution reflects
traffic from hub j to destination node jnd (spoke level).
Each of these yields tradeoffs between revenue and
cost. For ship deployment problems, larger con-
tainerships are usually assigned to transshipment seg-
ments due to the economies of scale in larger consoli-
dating traffic, whereas smaller ones are assigned to
consolidation and distribution segments.  In reality,
there would be usually less than twenty ports serving a
network in both directions (Rana and Vickon, 1991).
The data used for examining the quadratic integer model
contains 12 ports.  Most existing formulations of HLPs
are based on an n × n symmetric data matrix, for example,
traffic flow Fji = Fij.  While this is not a restriction in our
study, we show how this property can be exploited if it
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exists.
A twofold computational algorithm is designed to

determine the network solution.  The hub location model
first chooses the number of hubs for transshipment
segments, under single assignment constraint, and then
the spoke allocation model assigns spokes to hubs for
consolidation and delivery segments, with nonstrict
hubbing policy.  Finally, the model compares all pos-
sible solutions of the two models’ combinations and
determines the optimal solution to marine SNHLPs,
while maximizing the total profit [i.e., Max (Z1 + Z2)].

1. The hub location model

(1) There are several postulates in this stage of formulation:

• The traffic flow between ports is given.
• The sailing cost of each voyage leg between ports is

given.
• The expenses for mother vessel wharfing and cargo

loading are given.
• The load capacity of a mother vessel is 5,000 TEU.
• The daily fixed cost of a mother vessel is given.
• The sequence for mother vessel shuttling between hub

ports is given.

(2) Decision parameters

Pij = Freight rate per TEU from hub port i to hub port j,
Fij = Traffic flow from hub port i to hub port j,

 S ij
m

 = Sailing cost of a mother vessel on voyage leg (i, j),
 O i

m
 = Port cost for a mother vessel at hub port i,

 L i
m

 = Number of TEUs carried on a mother vessel be-
fore arriving hub port i,

 Wi
m

 = Wharfing fee of a mother vessel at hub port i,
Ui = Loading cost per TEU at hub port i,
Dm = Daily sailing cost of a mother vessel,
Cm = Daily fixed cost of a mother vessel,
Qm = Load capacity of a mother vessel,
Nm = Number of mother vessels deployed at the hub

level,
Rm = Frequency of service for a mother vessel within

one-year planning horizon.

(3) Mathematical models

Objective function

Max

   
Z1 = Σ

i = 1

n

Σ
j = 1

n

P ijF ijz ij – Σ
i = 1

n

Σ
j = 1

n

S ij
my ij – Σ

i = 1

n

O i
mx i

× Nm × Rm − 365 × Nm × Cm (1)

Subject to Outgoing voyage

   L i, o
m = Σ

p = 1

i

Σ
j = i + 1

n

Fpjz pjx i ≤ Q m
    i = 1, 2, ..., n.

(2)

Returning voyage

   L i, r
m = Σ

p = i

n

Σ
j = 1

i – 1

Fpjz pjx i ≤ Q m
    i = 1, 2, ..., n.

(3)

where the variables are defined as following: xi = 1 if a
mother vessel berths at hub port i, and xi = 0 if otherwise.
If hub port i is directly connected to hub port j, then yij

= 1, and yij = 0 if otherwise.  This guarantees that every
port is assigned to only one hub port.  If the node is a hub
port, then it is assigned to itself.  Thus, the problem is a
single assignment.  If a mother vessel berths at hub port
i and j, then zij = 1, and zij = 0 if otherwise.

The objective function (1) maximizes the total
profit for mother vessels on the hub level.  Constraints
(2) and (3) ensure that the cargo carried on a mother
vessel leaving or arriving at hub port i does not exceed
the load capacity Qm.  Two cost items in the model (1)
are formulated by:

   S ij
m = D m[d ij ÷ (vm × 24)]

i = 1, 2, ..., n, j = 1, 2, ..., n. (4)

and

   
O i

m = 2Wi
m + U i Σ

p = 1

n

Fpiz pi + Σ
p = 1

n

F ipz ip

i = 1, 2, ..., n. (5)

frequency of a mother vessel within one-year planning
horizon in the model (1) is given by:

   
Rm = 365 ÷ Σ

i = 1

n

Σ
j = 1

n

T ij
msy ij + Σ

i = 1

n

T i
mbx i (6)

where dij is the distance between hub port i and hub port
j in nautical miles, vm is the speed of a mother vessel in
knots,  T ij

ms
 is the sailing time of a mother vessel on

voyage leg (i, j), and  T i
mb

 is the berthing time of a
mother vessel at hub port i.

2. The spoke allocation model

(1) Postulates of this model are as follows:

• The traffic flow of every port is given.
• The traffic rate per TEU is given.
• The sailing cost of each leg for a feeder vessel is

given.
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• The wharfing and loading cost of each port is given.
• The load capacity of a feeder vessel is 1,000 TEU.

(2) Decision parameters

P(in)j = Freight rate per TEU from feeder port in to hub
port j,

Pj(in) = Freight rate per TEU from hub port j to feeder
port in,

P(ino)(jnd) = Freight rate per TEU from feeder port ino to
feeder port jnd,

F(in)j = Traffic flow from feeder port in to hub port j,
Fj(in) = Traffic flow from hub port j to feeder port in,
F(in)(jn) = Traffic flow from feeder port in to feeder port

jn,
  S (in o) (jn d)

f
 = Sailing cost of a feeder vessel on voyage

leg (ino, jnd),
 O in

f
 = Port cost for a feeder vessel at feeder port in,

 O i
f

 = Port cost for a feeder vessel at hub port i,
 U i

f
 = Loading cost of a feeder vessel at hub port i,

 L in
fa

 = Number of TEUs carried on a feeder vessel arriv-
ing feeder port in,

 L i
fl

 = Number of TEUs carried on a feeder vessel leav-
ing hub port i,

 Win
f

 = Wharfing fee of a feeder vessel at feeder port in,
Uin = Loading cost per TEU at feeder port in,
Df = Daily fixed cost of a feeder vessel,
Cf = Daily sailing cost of a feeder vessel,
Qf = Load capacity of a feeder vessel,

 N i
f

 = Number of feeder vessels deployed to spoke level,
 R i

f
 = Frequency of service for a feeder vessel within

one-year planning horizon.

where i is the location of hub ports, and in is the n-th
feeder port assigned to hub port i (e.g., in = 11, 21, 22,
32, ..., nm).  The two-digit number describes the assign-
ment order of feeder ports to hub ports.  For example,
when in = 21, this port is the first feeder port assigned
to the second hub port in a network.  When in = 22, this
port is the second feeder port assigned to the second hub
port, and so on.

(3) Mathematical models (Hsieh et al., 2002)

Objective function

Max

   
Z2 = Σ

i = 1

n

Σ
n = 1

m i

Σ
j = 1

n

P (in) jF (in) jx ijz ij

   
+ Σ

i = 1

n

Σ
j = 1

n

Σ
n = 1

m j

P i(jn)Fi(jn)x jnz ij

   
+ Σ

i = 1

n

Σ
n o = 1

m i

Σ
j = 1

n

Σ
n d = 1

m j

P
(in o) (jn d)

F
(in o) (jn d)

Z
(in o) (jn d)

z ij

   
– Σ

i = 1

n

L i
fx i × N m × Rm – Σ

i = 1

n

Σ
n o = 0

m i

Σ
n d = 1

m i + 1

N i
f

   × Ri
f × S (in o) (jn d)

f y (in o) (jn d)
f x i – Σ

i = 1

n

Σ
n = 1

m i

O in
f x inx i

   – 365 × C f × Σ
i = 1

n

N i
fx i (7)

Subject to

Outgoing voyage

   
L i, o

m = Σ
p = 1

i

Σ
j = j + 1

n

Fpjz pj + Σ
p = 1

i

Σ
j = j + 1

n

Σ
n d = 1

m j

Fp(jn d)x (jn d)z pj

   
+ Σ

p = 1

i

Σ
n o = 1

m p

Σ
j = j + 1

n

F (pn o) jx (pn o)z pj

   
+ Σ

p = 1

i

Σ
n o = 1

m p

Σ
j = j + 1

n

Σ
n d = 1

m j

F (pn o) (jn d)z (pn o) (jn d)z pj

   ≤ Q m
      i = 1, 2, ..., n. (8)

Returning voyage

   
L i, r

m = Σ
p = 1

i

Σ
j = i

i – 1

Fpjz pj + Σ
p = 1

i

Σ
j = 1

i – 1

Σ
n d = 1

m j

Fp(jn d)x (jn d)z pj

   
+ Σ

p = 1

i

Σ
n o = 1

m p

Σ
j = 1

j – 1

F (pn o) jx pn oz pj

   
+ Σ

p = 1

i

Σ
n o = 1

m p

Σ
j = j + 1

n

Σ
n d = 1

m j

F (pn o) (jn d)z (pn o) (jn d)z pj

   ≤ Q m
    i = 1, 2, ..., n. (9)

   L in
fa = Σ

p = 1

i

Σ
n d = n + 1

m i

Fp(in d)x in dz pi

   
+ Σ

p = 1

i

Σ
n o = 1

m p

Σ
n d = n + 1

m i

F (pn o) (in d)z (pn o) (in d)z pi

   + Σ
n o = 1

n

Σ
p = i

n

F (in o) px in oz ip

   
+ Σ

n o = 1

n

Σ
p = i + 1

n

Σ
n d = 1

m p

F (in o) (pn d)z (in o) (pn d)z ip

i = 1, 2, ..., n, j = 1, 2, ..., mj. (10)

   L i
fl = Σ

p = 1

i

Σ
n d = 1

m i

Fp(in d)x in dz pi
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+ Σ

p = 1

i

Σ
n o = 1

m p

Σ
n d = 1

m i

F (pn o) (in d)z (pn o) (in d)z pi ≤ Q f

i = 1, 2, ..., n. (11)

where xin = 1 if a feeder vessel berths at feeder port in,
and xin = 0 if otherwise.  If feeder ports in and jn are
connected directly, then y(in)(jn) = 1; if a feeder vessel
berths in both port in and jn, then z(in)(jn) = 1.  Both
decision variables of y(in)(jn) and z(in)(jn) reflect the
nonstrict hubbing policy.

The objective function (7) indicates the maximum
profit available for a feeder vessel on the spoke level.
Constraints (8) and (9) ensure that the load capacity of
a mother vessel leaving or arriving at a hub port is less
than Qm.  Constraint (10) is the load capacity limit of a
feeder vessel at each of its feeder ports.  Constraint (11)
indicates that the amount of cargo carried on a feeder
vessel should be less than Qf when departing from a hub
port for feeder ports.  The port cost of feeder vessels at
hub port   (O i

f)  is related to the number of feeder vessels
and their number of port calls at feeder ports within a
one-year planning horizon.  In a hub and spoke network,
the increased loading costs at the hub port are a result of
the additional loading activities of feeder vessels.  Some
cost parameters in the model (7) are formulated as
following:
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   S (in) (jn)
f = D f d (in o) (jn d) ÷ (v f × 24)

i = 1, 2, ..., n, no = 1, 2, ..., mi,

nd = 1, 2, ..., mi, n
o < nd. (15)

frequency of a feeder vessel within one-year planning
horizon in the model (7) is given by:

   
R i

f = 365 ÷ Σ
n o = 1

m i

Σ
n d = 1

m i = 1 + 1

T (in o) (in d)
fs y (in o) (in d) + Σ

n = 1

m i

T in
fbx in

(16)

where d(ino)(jnd) is the sailing distance between feeder
port ino and feeder port ind, vf represents the average
sailing speed of a feeder vessel,   T (in o) (jn d)

fs
 is the sailing

time of a feeder vessel on voyage leg (ino, ind), and  T in
fb

is the berthing time of a feeder vessel at feeder port in.

SOLUTION  METHODS

As a result of the computational need for solving
HLPs, past studies primarily focused on heuristic
algorithms rather than exact solutions for models.
O’Kelly (1987) expressed that the HLPs algorithm is
NP-hard, which means the lack of a simple rule for
solving the assignment of spokes to hubs.  It is ex-
tremely difficult to obtain an exact solution to this NP-
hard problem using the enumeration method (Parker
and Rardin 1982a, 1982b).  In previous literature, there
were two main approaches in dealing with the discrete
optimization solution for HLPs (Bryan and O’Kelly,
1999).  One was a heuristic, or non-exact, rule (O’Kelly,
1987; Aykin, 1990, 1994, 1995; Klincewicz, 1991, 1992,
1996; Skorin-Kapov and Skorin-Kapov, 1994; Skorin-
Kapov et al.,  1996; Campbell,  1996; Ernst and
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Krishnamoorthy, 1996, 1998) used to obtain the upper
or lower boundary in order to ascertain a solution for the
objective function.  The other was to employ a lineariza-
tion method, (Campbell, 1994; Skorin-Kapov et al.,
1996; Sohn and Park, 1998; Hsieh and Chang, 2001)
making the original model simple and easily calculable.
Yet there are at least three shortcomings to using a
linear programming model to solve HLPs.  First, the
solution to the number of hubs may not be an integer,
and so does not meet the research requirements.  Second,
it increases the number of variables in the model, and is
not appropriate for a large-scale network.  Third, it is
not suitable for the model’s algorithms because it must
fix the hub location at the beginning of each iteration.

In practice, hub ports are usually fixed for some
time because of long-term contract, the limited hub
candidates, and transfer cost of a hub (Sohn and Park,
1998).  In this situation, the decision of optimal hub
locations is important for economic consideration.  But,
the problem received limited attention in the literature.
Most previous studies on HLPs assume the number of
hubs to be constant (no more than four hubs); therefore,
these models are unable to provide for the purposes of
locating hubs.  This paper applies a heuristic algorithm
to simplify simple assignment of spokes to hubs.  The
concept, based on the shortest distance rule, allows each
feeder port is assigned to its nearest hub port. Such an
approach would possibly find an optimal solution to
locate hubs, however, it still has computational com-
plexity (e.g., for larger n-node problems there will be

 C p
n

 possible ways of locating p sets of hubs).  We only
consider five sets of hubs p (i.e., the number of hubs to
be located) in our model for design, and then form a
group with each one to further examine the spoke allo-
cation model.  In other words, the number of hub ports
is given exogenously, whereas the model endogenously
determines the location for hub ports.

In our earlier work, we indicated that there are
three fundamental types of feeder route for spoke level:
“shuttle,” “direct,” and “loop.”  Other variants can be
derived from these basic types.  This study adopts the
assignment of “loop + direct” type as the basis for
nonstrict hubbing policy since it reflects the reality of
feeder routes and generates the maximum traffic flow
(Hsieh and Wong, 2003).  Hub ports are determined at
the first stage, then the spoke allocation model tests all
types of feeder routes based on single assignment with
spokes to their nearest hubs chosen at first stage output.

When there is a new spoke allocation whose total profit
is larger than that of a hub location model, then the
allocation pattern with the largest total profit will be the
best solution for that group.  In this situation, a new
spoke allocation is determined, but the “number” of hub
ports remains the same.  For each optimal set of the hubs
chosen at the first stage, the spoke allocation model
provides a basis to discern the best assignment of feeder
route by the one with largest objective value.  The
solution procedure for the marine SNHLPs is shown in
Figure 1.

COMPUTATIONAL  RESULTS

This section summarizes the computational results
obtained for the quadratic integer profit programming
model with shortest-distance allocation schemes.  The
model was tested on a Trans-Pacific Routes with 12
major ports1.  Estimates of online sources2 from certain
harbor authorities are used because traffic flow data is
not entirely available, and the transportation costs are

1 Ports: 1. Singapore (SGSIN), 2. Manila (PHMNL), 3. Hong Kong (HKHKG), 4. Shanghai (CNSHA), 5. Kaoshiung (TWKHH), 6. Keelung (TWKEL), 7. Pusan
(KRPUS), 8. Kobe (JPUKB), 9. Yokohama (JPYOK), 10. Tokyo (JPTYO), 11. Los Angeles (USLAX), 12. Long Beach (USLGB).

2 Sources: (1) Key Indicators 2003: Education for Global Participation, Asia Development Bank 2003, (2) Official U.S. Waterborne Transportation Statistics,
Maritime Administration, Department of Transportation, 2003, (3) Containerization International Yearbook 2003, (4) Institute of Transportation, Ministry
of Transportation and Communciations, Taiwan, R.O.C.

(5 sets) 

(5 sets) 

• Traffic flow, costs, sequence of sailing 
•  Capacity constraint 
•  Profit maximization 
•  Single assignment 

Hub location model 

•  Optimal number of hub ports 
•  Shortest distance allocation 
•  Objective values (I) 

Spoke allocation model 

•  Optimal location of hubs  
•  Nonstrict hubbing policy 
•  Objective values (II) 

Determine an optimal solution 
with the largest total value (I+II) 

•  Number and location of hubs 
•
•

  Allocation of feeder ports to hubs 
  Frequency of service, number of ships 
•  An optimal hub-and-spoke network 

Fig. 1. The solution procedures of quadratic integer profit model for
marine SNHLPs.
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provided by an international shipping company.  This
paper applies software Mathematica 4.0 to implement
the solution algorithms.

In the first stage, for simplification, we deal with
five networks with four to eight hub ports.  Based on the
shortest distance rule for single assignment, the five
largest objective values in each group are selected for
next phase of calculation.  For example, consider a four-
hub network, the five largest values in this group are:
{59.6850, 53.7269, 43.2166, 41.3481, 41.3005}.  Each
value of them represents a network with different hub
locations, respectively.  These networks listed in de-
scending order are: {3, 4, 11, 12}, {3, 4, 7, 11}, {3, 4, 5,
11}, {3, 4, 6, 11}, {3, 4, 10, 11}.  The rest of other
networks with five to eight hub ports can be examined
in the same way.  The largest objective value in each
group by hub location model is shown in Table 1.

In the second stage, the model examines location
of hubs and allocation of feeder ports to hubs.  Those

ports in each network that are not selected as hubs will
be assigned to hubs nearest to them to form feeder
networks, i.e., the spoke level.  For example, the four-
hub network with hubs {3, 4, 7, 11} has a single assign-
ment pattern of {(1, 3), (2, 4), (5, 4), (6, 7), (8, 7), (9, 7),
(10, 7), (11, 7)}.  Based on loop route type, this stage
obtains the objective values for feeder network deter-
mined in the first stage.  The five largest values for hour-
hub network are: {34.8803, 20.6635, 16.5496, 15.6017,
4.8501}.  That means the network with five hubs listed
in descending order are: {3, 4, 6, 11}, {2, 3, 4, 11}, {3,
4, 7, 11}, {3, 4, 11, 12}, {3, 4, 5, 1}.  The rest of other
networks with five to eight hub ports can be obtained in
the same way. The largest objective value in each group
by spoke allocation model is shown in Table 2.

Table 3 indicates that the five-hub network gener-
ates the largest objective value, followed by the six-
hub, seven-hub, eight-hub, and four-hub network in
descending order.  That means the model endogenously

Table 1.  The best solution in each group by hub location model for Trans-Pacific Routes

Objective Number Frequency of                                        Locations of Hubs
Value (106) of Hubs Mother Vessels

59.6850 4 11.7 HKHKG, TWKHH, USLAX, USLGB
69.6204 5 10.8 HKHKG, TWKHH, KRPU, USLAX, USLGB
70.8051 6 10.5 HKHKG, TWKHH, TWKEL, KRPU, USLAX, USLGB
70.6257 7 9.7 PHMNL, HKHKG, TWKHH, TWKEL, KRPU, USLAX, USLGB
68.5595 8 9.0 PHMNL, HKHKG, TWKHH, TWKEL, CNSHA, KRPU, USLAX, USLGB

Table 2.  The best solution in each group by spoke allocation model for Trans-Pacific Routes

Objective Number Frequency of                                        Locations of Hubs
Value (106) of Hubs Feeder Vessels

34.8803 4 6 HKHKG, TWKHH, CNSHA, USLAX
35.8838 5 5 HKHKG, TWKHH, CNSHA, USLAX, USLGB
14.0180 6 3 HKHKG, TWKHH, CNSHA, KRPU, USLAX, USLGB
11.1096 7 3 HKHKG, TWKHH, CNSHA, KRPU, USLAX, USLAX, USLGB
7.7633 8 2 PHMNL, HKHKG, TWKHH, CNSHA, KRPU, USLAX, USLAX, USLGB

Table 3.  The best five solutions by quadratic integer model for Trans-Pacific Routes

Total Hub Spoke Number
Rank Objective Location Allocation                                 Locations of Hubsof Hubs

Value (106) Model Model

1 91.8068 55.9320 35.8838 5 HKHKG, CNSHA, TWKEL, USLAX, USLGB
2 82.3502 68.3316 14.0186 6 HKHKG, CNSHA, TWKEL, KRPUS, USLAX, USLGB
3 79.3634 68.2538 11.1096 7 HKHKG, CNSHA, TWKHH, TWKEL, KRPUS, USLAX, USLGB
4 76.3228 68.5595 7.7633 8 PHMNL, HKHKG, CNSHA, TWKHH, TWKEL, KRPUS, USLAX, USLGB
5 75.2867 59.6850 15.6017 4 HKHKG, CNSHA, USLAX, USLGB
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determines the five ports {3, 4, 6, 11, 12} as the optimal
location of hubs.  The optimal hub-and-spoke network
for the study case of Trans-Pacific Routes is shown in
Figure 3.  Three findings in this process of calculation
worth to be noted: (1) With same number of hub ports,
the profit generated by mother vessels is greater than
that of feeder vessels.  The hubbing structure allows
larger vessels to take advantage of scale economies,
resulting in lower cost per container for mother vessels
compared to feeder vessels. (2) With same number of
hub ports, the location for hub ports, which generates
the largest profit on hub level (e.g., {3, 4, 11, 12}), may
not produce the largest profit on spoke level (e.g., {3, 4,
6, 11}) because different types of feeder route affect the
traffic flow at a hub port. (3) As the number of hub ports
increases, the frequency of mother vessels and the num-
ber of feeder vessels decrease.  Also, when the number
of hub ports increases, the sailing distance of mother
vessels increases as well, meaning the reduction of the
frequency of mother vessels.  Furthermore, the number
of feeder vessels also decreases due to the decrease of
feeder ports.

The total objective value of the network is ob-
tained by the sum of respective objective value in two
stages.  The significance of total objective value lies in
the fact that it represents an optimal hub-and-spoke
network for routing containerships, while determining
the number and the location of hub port, an assignment
of feeder ports to hubs, the frequency of service, and the
number of vessels deployed.  The findings from solution
process are as follows: (1) The maximal total objective
value is not the sum of the maximal objective value of
respective models, but the maximal objective value of

Fig. 2. The objective values by quadratic integer model with different
number of hubs.

Fig. 3. An optimal hub-and-spoke network with the largest total profit
for the data from Trans-Pacific Routes.

the combined computation of the two models.  This
means that optimal allocations depend on the hub
locations, and the optimal location of the hubs also
depends on allocation decision. (2) The total objective
value increases with the increase of the number of hub
ports to the stationary point and then decreases as the
number of the hub port further increases.  This indicates
that the model is a form of concave function and the
economies of scale exist in the relationship between
total profit and the number of hubs, as shown in Figure
2. (3) The total profit of the network lies in the selection
of hub locations.  This implies that the proper design for
feeder routes would increase the total profit because
spoke allocation model would change an optimal choice
of hub locations. (4) The port cost and the loading cost
of a port are factors in the selection of hub port.  For
example, CNSHA does not have much traffic flow, yet
it is selected as a hub port due to its lower port cost and
loading cost. (5) The ports with larger traffic flow are
usually selected as hub ports in this model, (e.g.,
HKHKG, TWKHH, USLAX, and USLGB). It is able to
interpret the economies of scale that result from hubbing.

CONCLUSIONS

In this paper we propose a new model to ad-
equately capture the characteristics for routing
containerships.  The routing structure is far from a pure
hub-and-spoke network.  The problems involved with
routing containerships are defined as SNHLPs.  A qua-
dratic integer programming model associated with ad-
ditional constraints is formulated for solving the
problems.  The model consists of two-stage computa-
tional algorithms, a hub location model and a spoke
allocation model.  The location of hubs, the frequency
of service, and the number of vessels included in the
model are decision variables.  Other aspects of the
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problem are the objective function of profit maximiza-
tion, the asymmetry of the demand matrix, and the loop
type for feeder routes.

Employing the heuristic algorithms based on short-
est distance to simply single assignment, it is possible to
compute solutions to the model.  It is tested on data sets
from Trans-Pacific Routes to illustrate its formulation
and solution algorithms.  The results indicate that opti-
mal allocation of spokes to hubs depends on hub
locations, and optimal location of the hubs also depends
on allocation decision.  Another results demonstrate
that the objective function of the model is a form of
concave function, exploiting the economies of scale in
the relationship between the total profit and the number
of hubs.

Implementing hub-and-spoke networks benefits
liner operators the scale economies from hubbing.  This
paper proposes mathematical models of hub systems in
as effort to enhance understanding of marine SHNLPs.
One advantage of the model studied in the paper could
be considered for liner operators to relocate or add hubs
to an existing network when choosing strategic ship
routes.  Also, the model could serve as a reminder of the
impact of feeder routes on location of hubs for a net-
work design.

A heuristic scheme allows us to find solutions to
this problem.  Yet this restriction for single assignment
does not guarantee that it is the optimal way.  Future
researches may attempt using total enumeration method
for an exact solution to marine problems (under 20
nodes).  Moreover, future researches may modify the
model by relaxing the assumption of the problem, such
as multiple assignment and hub capacity.  Finally, addi-
tional research needs to be conducted on sensitivity
analysis of the model’s behavior, especially the dis-
count factor.
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