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ABSTRACT

This paper is aimed at investigating the dynamic response of a
compound beam subjected to moving loads at high speeds.  The
compound beam structure is composed of a simple beam and a two-
member truss connected by a set of rigid bars at the midpoint of the
beam.  Based on the nonlinear elastic theory of a symmetric two-
member truss under the action of a vertical tip load, and the incremen-
tal-iterative solution procedures for solving a nonlinear dynamic
system, the dynamic response of the compound beam structure under
the excitation of moving loads is studied.  According to the numerical
results, the nonlinear effect of vibration is not so obvious to the
response of the beam but the installation of a two-member truss
system in a simple beam may significantly results in smaller dynamic
response of the compound beam structure under the passage of
moving loads at high speeds.

INTRODUCTION

The dynamic response of beam-like structures
caused by a series of moving loads is an important
consideration in the vibration analysis of elevated bridges
to high-speed trains.  By modeling a bridge as a beam-
like structure and a vehicle as a moving load, moving
mass or moving sprung mass, numerous researchers [3,
4, 18, 21, 22] have analytically investigated the mov-
ing-vehicle induced vibration of the bridge. In the books
written by Fryba [3, 4], the author proposed many
theoretical models to study the dynamic problems of
railway bridges subjected to moving vehicles.  Recently,
Yang et al. [22] derived a closed form solution for the
dynamic response of simple beams subjected to a series
of moving loads.  In their studies, the phenomena of
resonance and cancellation of railway bridges caused by
moving trains and the optimized criteria of determining
the span length for high-speed railway bridges have

been carried out.  Considering the insertion of elastic
bearing into bridges, Yau et al. [26] analytically pre-
sented a closed form solution to explain the mechanism
of amplification for the train-induced resonance re-
sponse of an elastically supported beam. Such a reso-
nant phenomenon was also verified by experiments in
reference [19].  Moreover, Yau [24] performed the
finite element analysis to explore the effect of multiple
resonant peaks of continuous bridges subjected to high
speed trains.  The numerical results show that the coin-
cidence of some of the excitation frequencies implied
by the wheel loads moving at different speeds with any
of the natural frequencies of continuous bridges may
result in the resonance response of continuous railway
bridges.

For the sake of increasing the structural safety of
high speed railway bridges and the riding comfort of
passing trains, especially, the resonant conditions men-
tioned above is considered, it is necessary to mitigate
the dynamic responses of the bridges and vehicles
through strengthening the structural stiffness or using
vibration absorbers [9, 15, 27].  For the vibration reduc-
tion of a railway bridge due to moving trains, one of the
effective mechanisms for stiffness strengthening is to
install a truss system in the bridge so that the response
of the strengthened bridge can be mitigated below the
tolerance limit under the passage of high speed trains.
The main purpose of this paper is to investigate the
strengthening effect of attaching a two-member truss to
a simple beam and then to study the dynamic response
of such a compound beam structure under the excitation
of moving train loads at high speeds.  Based on the
nonlinear elastic theory of a symmetric two-member
truss subjected to a vertical tip load [20] and the incre-
mental-iterative procedures of solving a nonlinear dy-
namic system [16, 23], the dynamic response of the
compound beam caused by a series of moving loads
with identical weight and constant interval is studied.
According to the numerical results, increasing the as-
pect ratio of the height of a two-member truss with
respect to the beam span can result in smaller resonant
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response of a compound beam than that of a simple
beam.

FORMULATION

Figure 1 shows a sequence of moving loads with
identical interval d and constant speed v along the
centerline of a simple beam with a two-member truss
connected by rigid bars.  To simplify the formulation of
theory, the rigid bar is modeled as a two-force member
and its inclination with respect to the perpendicular line
of the beam axis is assumed to be very small so that the
transmission of the horizontal force components from
the rigid bar to the main beam can be neglected, as
depicted in Figure 2.  Considering the nonlinear effect
of an elastic beam [2, 13, 14], the equations of motion
for a Bernoulli-Euler beam traveled by a series of mov-
ing loads with constant speed v and identical interval d
are written as

  mu – EA(u" + w'w") = 0

  mw + cw + EIw < 4 > – EA[w'u' + (w')3 / 2)]'

   + Fyδ(x – L / 2) = p(x, t) (1a, b)

where m = mass per unit length of the beam, u(x, t) =
axial displacement of the beam, w(x, t) = transverse
deflection of the beam, c = damping coefficient of the
beam, EA = axial rigidity, EI = flexural rigidity of the
beam, x = beam axis, L = span length, h = vertical
projection length of the rigid bar, and Fy = vertical
reaction transferred from the rigid bar supported by a
two-member truss system.  The notations ‘•’ and ‘'’
represent partial derivative of time t and length x,
respectively.  The load function p(x, t), which is used to
describe the moving effect of a series of moving loads
acting on the position x of the main beam at time t, is
expressed as [22, 26]

   p(x, t) = P δΣ
k = 1

N

[x – v(t – t k)] × [H(t – t k)

  – H(t – t k – L / v)] (2)

where δ = Dirac’s delta function, H(t) = unit step
function, N = total number of moving loads, and tk = (k
− 1)d/v = arriving time of the kth load on the beam. And
the boundary conditions of both ends for the compound
beam are

u(0, t) = u(L, t) = 0

w(0, t) = w(L, t) = 0

EIw"(0, t) = EIw"(L, t) = 0 (3a-c)

For the deformed truss members of the compound
beam shown in Figure 2, by considering a half portion of
the symmetric two-member truss subjected to the action
of a half of the vertical tip load, the joint displacement
and force equilibrium can be described in Figure 3.
According to Hook’s law for an elastic truss member,
the axial strain ex and the internal forces fx in the truss
member caused by the half vertical reaction force Fy/2
acting at the tip node are given by [17]

   
e x =

l t, 2
2 – l t, 0

2

2l t, 0
2

=
∆0

l t, 0
2 h + ∆0

2

  f x = EtAtex
l t, 2

l t, 0
(4a, b)

where h = the height of the two-member truss, ∆0 =
midpoint deflection of the beam, lt, 0 = undeformed
length of the truss member, and EtAt = axial rigidity of
truss member, lt, 2 = deformed length of the truss member,
and

  l t, 0 = (L / 2)2 + h 2

   l t, 2 = (L / 2)2 + (h + ∆0)
2 (5a-b)

Based on the force equilibrium in the vertical
direction shown in Figure 3, the vertical component Ry

of the internal force fx in the truss member can be
expressed in terms of ∆0 as [17]

   Ry = f x

h + ∆0

l t, 2
=

EtAtex

l t, 0
(h + ∆0) (6)

Fig. 1. Simply supported compound beam subjected to uniform mov-
ing loads. Fig. 2.  Deformed configuration.
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Substituting Equations (4) and (6b) into Equation (6a)
yields

   Ry =
EtAt

2l t, 0
3 ∆0(h + ∆0) (2h + ∆0) (7)

With the concept of lumped mass for the two-member
truss and the rigid bars attached to the tip node of the
truss, the reaction force Fy transferred from the two-
member truss system to the midpoint of the main beam
is written as [20]:

   Fy = M∆0 + c t∆0 +
EtAt

l t, 0
3 ∆0(h + ∆0) (2h + ∆0)

M = mtlt, 0 + mrh (8a, b)

where the subscript ‘t’ represents the truss and mt = the
mass per unit length, EtAt = axial rigidity, ct = damping
coefficient, and mr = the mass per unit length of the rigid
bar.

In general, the transverse vibration of a simple
beam caused by moving loads, as depicted in Figure 1,
is mainly concerned in practice.  Therfore, Equation (1)
can be reduced to a single differential equation by
neglecting the inertial effect in the longitudinal direc-
tion of the main beam.  This leads Equation (1a) to

EA(u" + w'w") = 0 (9)

Integrating Equation (9) twice with respect to x and
taking into account the boundary conditions shown in
Equation (3a), one can derive the following relations:

  u = – 1
2

(w')2

0

x

dx + x
2L (w')2

0

L

dx

  u' = – (w')2

2
+ 1

2L (w')2

0

L

dx (10a, b)

The substitution of the expression of axial displacement
in Equation (10) and the reaction force Fy in Equaiton
(8) into Equation (1b) yields

  mw + cw + EIw < 4 > – EA
2L

w" (w')2

0

L

dx

   
+ M∆0 + c t∆0 +

EtAt

l t, 0
3 ∆0(h + ∆0) (2h + ∆0) δ(x – L / 2)

= p(x, t) (11)

Equation (11) describes the nonlinear transverse vibra-
tion of a simple beam installed with a two-member truss
system to moving loads.  It is noted that there exist
highly nonlinear terms related to the midpoint deflec-
tion ∆0 of the main beam, which is in general relevant to
the maximum displacement and bending moment re-
sponses of a simple beam.  On the other hand, the forth

term in Eq. (11), i.e., 
   

EA / 2L × [w" (w')2

0

L

dx] , is a non-

linearly high order term, its influence to the response of
the beam system might not be so obvious in comparison
with that of the installation of two-truss members.
Without loss of generality, the contribution of such a
high order term is also taken into account in the dynamic
analysis of the beam system subjected to sequential
moving loads in this study.

VIBRATION  ANALYSIS

To solve the equation of motion in Equation (10),
the virtual work method is suggested in this study.
Based on the boundary conditions of simple supports
shown in Equations (3b) and (3c), one can use the
function sin(nπx/L) to represent the deformed shape of
the main beam. Therefore, the displacement w(x, t) and
midpoint deflection ∆0[= w(L/2, t)] of the main beam
and the integration term in Equation (11) can be repre-
sented in a series form as

   w(x, t) = q nΣ
n = 1

∞
(t)sin

nπx
L

   ∆0 = w L
2

, t = q nΣ
n = 1

∞

(t) sin
nπx

L

   
(w')2

0

L

dx = L
2
Σ

j = 1

∞
jπ
L

q j(t)
2

(12a-c)

where qn(t) denotes the generalized coordinate associ-
ated with the nth vibration shape function sin(nπx/L).
By substituting the preceding expression of deforma-
tion w(x, t) in Equation (12a) into Equation (11), multi-
plying both sides of Equation (1) by the shape functionFig. 3.  Joint displacement and force equilibrium.
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sin(nπx/L), and then integrating with respect to the
beam length L, one can derive the generalized equation
of motion for the beam with two-member trusses as

   q 2 + 2ξnωnq n + ωn
2q n + F n(t),  n = 1, 2, 3 ...    (13)

and

   ωn = nπ
L

2 EI
m

   ξn =
c

2mωn

   Fn(t) = 2P
mL Σ

k = 1

N

sin
nπv(t – t k)

L

   
× H(t – t k) – ( – 1)nH(t – t k – L

v )

   
F n(t) =

2Fy

mL
sin

nπ
2 + EA

m
nπ
L

2

Σ
j = 1

∞ jπ
L

q j

2
q n

(14a-d)

where ωn = the nth frequency of a simple beam, ξn =
damping ratio, and Fn(t) = generalized forcing function
for representing the moving effect of the train loads
over the main beam of the vibrating system.  Equation
(14d) shows that the internal force term   F n(t)  gives a
stiffness strengthening effect to the main beam struc-
ture through the installation of a two-member truss
system.  On account of the strengthening effect of
attaching a two-member truss to the beam structure, the
dynamic response of the compound beam induced by
the train-loads moving at resonant speeds mentioned in
reference [22, 26] will be implemented in the following
section.

PHENOMENON  OF  RESONANCE

To clearly demonstrate the resonance phenom-
enon of a simply supported compound beam subjected
to moving train-loads, let us neglect the damping effect
of the beam with two-member trusses and the nonlinear
terms of the midpoint deflection such as  ∆0

2  and  ∆0
3  in

Equations (13) and (14), then the nonlinear differential
equation of motion in Equation (13) is reduced to:

   
q n + ωn

2q n + 2
mL M∆0 + c t∆0 +

2EtAth
2

l t, 0
3 ∆0 sin

nπ
2

  = Fn(t) (15)

Moreover, let us consider only the midpoint deflection

response of the compound beam, Equation (15) can be
further approximately expressed in terms of the first
generalized coordinate q1 as:

   
1 + 2M

mL
q 1 + ω1

2 +
4EtAth

2

mLl t, 0
3

q 1

   
= 2P

mL Σ
k = 1

N

sin
πv(t – t k)

L
× H(t – t k) + H(t – t k – L

v )

(16)

By following the same analytical procedure for finding
the dynamic response of a simple beam traveled by the
moving train-loads with equidistant intervals in refer-
ence [22], one can derive a closed form solution of
Equation (16) in the form:

q1 = ∆st × [Q1(v, t)H(t − tN)

+ Q2(v, t)H(t − tN − L/v)]

   
∆st = 2PL 3

π 4EI
1 +

4EtAtL
2(sin α × sin 2α)
π 4EI

– 1

   
Q 1(v, t) =

sin Ω(t – t N) – S sin ω0(t – t N)

1 – S 2

   

Q 2(v, t) = –
2 S cos

ω0L
2v

1 – S 2
× sin ω0 t – L

2v

   
+ sin ω0 t –

t N + L / v
2

×
sin [(N – 2)ω0d / 2v

sin (ω0d / 2v)

   ω0 = ω1
1 + 4EtAtL

2(sin α × sin 2α) / (π 4EI)
1 + 2M / mL

(17a-e)

where ∆st = the approximate static deflection of a simple
beams with two-member trusses under the action of a
concentrated force P at the midpoint of the main beam,
ω0 = the fundamental frequency, α = the angle between
the main beam and the inclined truss member, that is,
tanα = 2h/L, and  S  = the speed parameter that repre-
sents the ratio of the driving frequency Ω(= πv/L) to the
fundamental frequency ω0 shown in Equation (17e),
that is,

   S = Ω / ω0 = πv / (ω0L) (18)
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Equation (17e) shows that the expression of the funda-
mental frequency is dependent upon the rigidity ratio
EtAtL

2/EI, the aspect ratio (h/L) and the mass ratio
M/mL.

According to the displacement response in Equa-
tion (17), it is seen that the term Q1(v, t) is associated
with H(t − tN), which represents the dynamic response
induced by the Nth moving load acting on the beam, and
the term Q2(v, t) is associated with H(t − tN − 1 − L/v),
which represents the residual response induced by the
N − 1 moving loads that have passed through the beam.
Meanwhile, for the special case with M = 0 and α = 0 in
Equation (17), which implies that the response of the
compound beam reduces to that of the corresponding
simple beams [22].

On the other hand, the mathematical expression of
the dynamic factor Q2(v, t) shown in Equation (17d)
will become an indeterminate form when the value of
denominator sin(ω0d/2v) approaches to zero, or

  S res = d / (2jL)
j = 1, 2, 3 ... .  This is exactly the resonance

condition for a simply supported compound beam sub-
jected to a series of moving loads with identical intervals.
Correspondingly, when j is set to be 1, the resonance
response is called the main resonant peaks and the
resonant speed is denoted as vres in the present study.  By
L’Hospital rule, the dynamic factor Q2(vres, t) for reso-
nance in Equation (17d) can be manipulated to yield
[22, 26]:

   
Q 2(vres, t) = 2(N – 1) – S res

cos (ω0L / 2vres)

1 – S res
2

   × sin ω0 t – L
2vres

(19)

where the subscript res means resonance.  The preced-
ing equation indicates that larger response will be in-
duced on the main beam of the compound beam when
there are more loads moving at resonant speed vres, as
implied by (N − 1) in Equation (19).  And it is concluded
that due to the repetitive nature of train-loads when the
excitation circular-frequency v/d caused by the running
speed of the moving train loads is close to the funda-
mental circular-frequency ωo/2π of the compound beam,
the resonant speed is equal to vres = ω0d/2π.  It is worthy
to mention that the resonant condition for railway bridges
subjected to the train loads moving at high speeds has
also been presented in related papers [7, 8, 10, 11].

INCREAMENTAL-ITERATIVE  METHOD

Since the expression of the reaction force Fy, which
applies to the main beam, is highly nonlinear in terms of
the midpoint displacement ∆0 in Equation (8) and the

summation term    Σ
j = 1

∞
(jπq j / L)2

 in Equation (14d), an

incremental-iterative method for computing the nonlin-
ear dynamic response of Equation (13) is proposed in
this section.

Substituting the expression of Fy in terms of ∆0 in
Equation (8) into Equation (13) yields

   q n + 2ξnωnq n + ωn
2q n + F n(t) = Fn(t)

   
F n(t) = 2

mL
M∆0 + c t∆0 +

EtAt

l t, 0
3

∆0(h + ∆0) (2h + ∆0)

   
× sin nπ

2
+ EA

m
nπ
L

2 Σ
j = 1

∞ jπ
L

q j

2

q n

   ∆0 = Σ
n = 1

∞
q n(t) sin nπ

2 (20a-c)

Equation (20) shows that it is a set of highly non-linear-
coupled differential equations in terms of the general-
ized displacements qn and the midpoint displacement ∆0

of the main beam.  The solution of such simultaneously
nonlinear equations can be performed by the Newmark-
β finite difference scheme and incremental-iterative
method.  The Newmark-β method is employed to
discretize the differential equation of motion into an
equivalent incremental equation, and the incremental-
iterative procedure is divided into three phases:
predictor, corrector and equilibrium checking, for solv-
ing the nonlinear equations.  The predictor phase is
concerned with the solution of structural response in-
crements based on structural equation, as it is well
known for iterative schemes, the tangent stiffness ma-
trix used in the predictor phase need not be exact [6, 23].
Therefore, the same (approximate) tangent stiffness
matrix is used by the modified Newton-Raphson method
[17] for all the iterative steps performed at each incre-
mental step in the present study.  As for the corrector
phase, the accurately internal force recovery from the
displacement increments calculated by the predictor
phase is mainly concerned.  Finally, the equilibrium
phase deals with the force equilibrium checking be-
tween the internal forces of structures and the external
exciting forces.  The force equilibrium phase deter-
mines the unbalanced forces for the nonlinear vibrating
structures by comparing the internal forces with the
external loads.  Once the unbalanced forces do not
satisfy the non-negligible level, iterations for structural
equilibrium involving the predictor and corrector phases
are repeated until the tolerance of convergence is
reached.  Therefore, the solution of the nonlinear coupled
equations given in Equation (20) is usually attempted by
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the incremental-iterative method, which is character-
ized by three major phases described below.

1. Predictor phase

Consider the differential equation of Equation (20)
and let qn, t + ∆t denote the total generalized coordinate at
the time t + ∆t and ∆qn the increments from time t to t +
∆t, that is, qn, t + ∆t = qn, t + ∆qn.  Equation (20) can be
rewritten as

   q n, t + ∆t + 2ξnωnq n, t + ∆t + ωn
2(q n, t + ∆q n) + F n(t + ∆t)

   = Fn(t + ∆t)

   
F n(t + ∆t) = 2

mL
EtAt

l t, 0
3

∆0, t + ∆t(h + ∆0, t + ∆t) (2h + ∆0, t + ∆t)

   + M∆0, t + ∆t + c t∆0, t + ∆t sin nπ
2

   
+ EA

m
nπ
L

2 Σ
j = 1

∞ jπ
L

q j, t + ∆t

2

q n, t + ∆t

   ∆0, t + ∆t = Σ
n = 1

∞
q n, t + ∆t sin nπ

2 (21a-c)

With the previous description that the tangent stiffness
matrix used in the predictor phase need not be exact
during the iterative stage, as shown in Equation (21a),
let us bring the force term    F n(t + ∆t)  to the right side of
the equal sign and then use the Newmark finite differ-
ence scheme with constant average acceleration [12] to
discretize the differential equations at predictor phase,
the equivalent incremental equations at the time t + ∆t
are described by the following form:

   a 0 + a 1
c
m + ωn

2 ∆q n = ∆Fn(t + ∆t)

   ∆Fn(t + ∆t) = Fn(t + ∆t) – F n(t + ∆t) – [ωn
2q n, t

  + (a 2q n, t + a 3q n, t)

   + 2ξnωn(a 4q n, t + a 5q n, t)] (22a, b)

Here, the coefficients ai referred from the reference [12]
are expressed as

   a 0 = 1
β ⋅ ∆t 2

; a 1 =
γ

β ⋅ ∆t
; a 2 = 1

β ⋅ ∆t
; a 3 = 1

2β
– 1;

   a 4 =
γ
β – 1; a 5 = ∆t

2
γ
β – 2 ; a6 = (1 − γ)∆t;

a7 = γ • ∆t

where the parameters β = 0.25 and γ = 0.5.  It is noted
that the effective force increment ∆Fn(t + ∆t) in Equa-
tion (22b) is not exact due to the approximately force
term    F n(t + ∆t)  in association with the nonlinear ex-
pressions of the generalized displacements qn, t + ∆t and
the midpoint displacement ∆0, t + ∆t, as shown in Equa-
tion (21b).  Therefore, an iterative procedure of correc-
tor phase for solving the nonlinear equations is de-
scribed in the following section.

2. Corrector phase

For the purpose of carrying out the incremental-
iterative procedure, the equivalent stiffness equation of
the incremental generalized displacements ∆qn at the ith
iteration of time t + ∆t in Equation (22) is expressed as
[16, 17, 23]

   a 0 + a 1
c
m + ωn

2 ∆q n = ∆Fn
i – 1

   ∆Fn
i – 1 = Fn(t + ∆t) – Fn, int

i – 1 (t + ∆t)

   Fn, int
i – 1 (t + ∆t) = ωn

2q n, t + ∆t
i – 1 + (a 2q n, t + ∆t

i – 1 + a 3q n, t + ∆t
i – 1 )

   + 2ξnωn(a 4q n, t + ∆t
i – 1 + a 5q n, t + ∆t

i – 1 ) + F n
i – 1(t + ∆t)

(23a-c)

Here the right superscript i indicates the current number
of iterations. The term ∆   Fn

i – 1
 in Equation (23b) repre-

sents the load increment and    Fn, int
i – 1 (t + ∆t)  the internal

force obtained from Equation (23c).  Accordingly, the
responses of displacement, acceleration and velocity of
the generalized system for the ith current iterative step
at the time t + ∆t are respectively given as [21]

   q n, t + ∆t
i = q n, t + ∆t

i – 1 + ∆q n

   q n, t + ∆t
i = a 0∆q n

i – a 2q n, t + ∆t
i – 1 – a 3q n, t + ∆t

i – 1

   q n, t + ∆t
i = q n, t + ∆t

i + a 6q n, t + ∆t
i – 1 + a 7q n, t + ∆t

i (24a-c)

Once the responses    (q n, t + ∆t
i , q n, t + ∆t

i , q n, t + ∆t
i )  of the gen-

eralized system at the ith iteration of the time t + ∆t are
made available, the internal force    Fn, int

i – 1 (t – ∆t)  of the
generalized system, as given in Equation (23c), can be
computed. Substituting Equation (24) into Equation
(23c), one can update the new internal force term

   Fn, int
i (t + ∆t) .  Next, let    Fn, int

i – 1 (t + ∆t) = Fn, int
i (t + ∆t)  and

find the unbalanced force ∆   Fn
i – 1

 shown in Equation
(23b), the equilibrium checking phase can be carried
out.
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3. Equilibrium checking phase

In this phase, updating the total responses of gen-
eralized coordinates shown in Equation (24), calculat-
ing the internal forces from Equation (23c), and com-
paring the internal forces with the external loads, one
can compute the unbalanced forces    ∆Fn

i – 1
 shown in

Equation (23b).  Whenever the unbalanced forces are
larger than a preset tolerance, iterations for equilibrium
of the structure involving the two phases, i.e., predictor
and corrector, are repeated until the condition of force
equilibrium is convergent to an allowable tolerance.
Then, the moving load-induced response of the com-
pound beam can be calculated by the conventional
procedure of direct integration method [1].

DYNAMIC  RESPONSE  FACTOR  AND  SPEED
PARAMETER

In this study, dynamic response factor DRF is used
to account for the amplification effect of a simply
supported beam installed with a two-members truss
system to moving train-loads. It is defined as follows

  DRF =
Rd(x)
Rs(x) (25)

where Rd(x) = the maximum dynamic response of the
simple beams with two-member trusses calculated at
position x and Rx(x) = the maximum static response of a
simply supported beam.  On the other hand, the speed
parameter S is defined as the ratio of the excitation
frequency of moving loads, i.e., πv/L, with v denoting
the vehicle speed and L the span length, to the funda-
mental frequency ω1 of the simply supported beam, i.e.,
S = πv/ω1L.  Therefore, in this study, the relationship
between DRF and S is named as DRF-S plot.

ILLUSTRATIVE  EXAMPLE

For the purpose of illustration, let us consider a
simply supported beam, which is made of steel, the
properties of the simple beam are listed in Table 1.  A

damping ratio ξn = 1.5% is assumed for the steel beam
in this study [5, 6].  Moreover, an undamped two-
member steel truss is considered and installed in the
main beam through the connection of a set of rigid bars,
as shown in Figure 1.  The properties of the two-member
truss system are shown in Table 2.  The traveling load
model is assumed to have N = 20 and constant interval
d = 18 m, and the weight of lumped moving load is set
to be P = 270 kN.

1. Resonance of simple beams with two-member trusses

This example is to illustrate the phenomenon of
resonance of a simple beam subjected to moving loads
and the effect of strengthening by installing a two-
member truss system in the main beam. Using the
properties shown in Tables 1 and 2, and considering the
aspect ratio h/L = 0.15 for the compound beam of which
the fundamental frequency ω0 is equal to 1.14 ω1 com-
puted from Equation (17e), the DRF-S plots of midpoint
displacement response for the simple beam and the
compound beam are drawn in Figure 4, respectively.
The numerical results indicate that the main resonant
response of the simple beam traveled by the moving
loads can be found at the resonant speed parameter
Sres, 1 = 0.375 (vres = 292 km/h), which agrees exactly
with the resonant condition mentioned previously,
that is, Sres,1 = d/2L = 18/(2*24) = 0.375.  On the other
hand, another resonant peak of the compound beam with
the aspect ratio h/L = 0.15 is also found at the resonant
speed parameter Sres, 2 = 0.426, which is equal to Sres, 1

× ω0/ω1 = 0.426 (vres = 333 km/h).  As can be seen from
the time history response resonance plotted in Figure 5,
it shows that the midpoint displacement response of the
simple beam is larger than that of the compound beam.
Here, ∆smp is denoted the maximum midpoint static
deflection of the simply supported beam under the
action of a concentrated force applying to the midpoint

Table 1.  Properties of the simply supported beam

L(m) m(t/m) EI(kN-m2) ξn EA(kN) ω1(rad/s)

24 11 2.5 × 107 1.5% 2 × 107 25.83

Table 2.  Properties of the truss member and rigid bar

EtAt(kN) mt(t/m) mr(t/m) ct(kN-s/m)

2 × 106 0.1 0.2 0.0
Fig. 4.  Dynamic response factor DRF vs. speed parameter S.
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of the beam.  This is mainly due to the strengthening
effect of installing a two-member truss system in the
main beam.

On the other hand, to comprehend the influence of
nonlinear effect on the behavior of truss members, the
dynamic responses of internal force fx in the truss mem-
bers attached to the main beam with an aspect ratio h/L
= 0.15 are plotted in Figure 6.  The numerical results
indicate that the response with the consideration of
nonlinear vibration is slightly larger than that with only
considering linear effect.  According to the present
study, although the nonlinear effect of truss members is
not so significant to the moving-load induced response
of the compound beam, it is necessary to take into
account the nonlinear vibration for accurately comput-
ing the response of truss member in a compound beam
structure subjected to moving-train loads in this study.
Moreover, to investigate the train-induced response of
a simple beam installed with different two-member
trusses, a further investigation of the effect of strength-
ening by aspect ratio (h/L) will be demonstrated in the

next example.

2. Effect of strengthening of two-member trusses on
simple beams

To illustrate the dynamic strengthening effect of
the two-member truss on a simply supported beam,
different aspect ratios (h/L) ranging from 0 to 0.5 are
considered in this study.  Based on the incremental-
iterative procedure, the numerical results are given in
Figure 7, which the dynamic response factor DRF com-
puted for the midpoint displacement of the main beam
has been plotted against the speed parameter S and the
aspect ratio h/L.  As can be seen at the main resonant
speed parameter, the larger the aspect ratio of the com-
pound beam, the smaller the displacement response of
the main beam will be.  Meanwhile, there is a trend of
the smaller values of DRF as increasing the aspect ratio.
This means that increasing the aspect ratio (h/L) may
give a more dynamic strengthening effect to the com-
pound beam.

CONCLUDING  REMARKS

This study presents the dynamic response of a
simple beam with a two-member truss system to mov-
ing-train loads.  Based on the nonlinear theory of a
symmetric two-member truss subjected to a vertical tip
load and the incremental-iterative solution procedures
for solving a nonlinear dynamic system, the dynamic

Fig. 5.  Time history responses at resonant speeds.

Fig. 7.  Effect of aspect ratio h/L on DRF-S plot.
Fig. 6. Time history responses of internal force of truss member at

resonant speed.
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response of a compound beam under moving load exci-
tations can be computed.  Although the nonlinear effect
of vibration is not so obvious to the response of the
beam, but the numerical examples demonstrated that
increasing the aspect ratio h/L could effectively reduce
the main resonant response of the compound beam due
to moving loads.
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NOMENCLATURE

ai coefficients of Newmark finite dif-
ference scheme

c damping coefficient of the beam
ct damping coefficient of the truss

member,
ex the axial strain
DRF dynamic response factor
EA axial rigidity
EtAt axial rigidity of truss member
EI flexural rigidity of the beam

fx the vertical component of internal
force in the truss mmeber

Fn(t) generalized forcing function
  F n(t) internal force defined in Equation

(20b)
   Fn, int

i – 1 (t + ∆t) internal force defined in Equation
(23c)

Fy reaction force
h the height of two-member truss
H(t) unit step function

lt, 0 undeformed length of the truss mem-
ber

lt, 2 deformed length of the truss mem-
ber

L span length
m mass per unit length of the beam

mr the mass per unit length of the rigid
bar

mt the mass per unit length of the truss
member

N total number of moving loads

p(x, t) load function
qn(t) the generalized coordinate
Q1(v, t), Q2(v, t) dynamic factor
Rd(x) the maximum dynamic response
Rs(x) the maximum static response

Ry the internal force acting on the tip
node

S speed parameter = πv/ω1L
  S res speed parameter = d/2jL|j = 1, 2, 3...

tk = (k − 1)d/v arriving time of the kth load on the
beam

u(x, t) axial displacement of the beam
vres resonant speed
w(x, t) transverse deflection of the beam
x beam axis
α tan−1(2h/L)
δ Dirac’s delta function
∆0 midpoint deflection of the beam
∆st the maximum static deflection

   ∆Fn
i – 1

the load increment at the ith itera-
tion step

ξn damping ratio
ω0 the fundamental frequency
ωn the nth frequency of a simple beam
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