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ABSTRACT

In this paper, a hybrid method combining the evolution and
simplex algorithms is proposed to deal with the global optimization
problems of two-dimensional multi-minimum functions.  Basically,
the simplex method offers a search scheme without the gradient
information and thus, it owns the merit of a better search speed for a
local optimization problem and results in the deficiency of searching
ability for the global one.  In contrast, the evolution method has the
better searching ability for the global problem but needs much more
time.  Therefore, the proposed hybrid method adopts the search
technique of the simplex method and the concept of all population
information.  For an n-dimensional problem, the populations of equal
to or greater than (n + 1) are taken with their all information of the
respective generation to decide the next searching point.  The pro-
posed method has a better searching ability for the global optimization
problem because this hybrid method has the characteristics of inten-
sity and diversity during the evolution of populations moving stage.
The searching ability for the global optimum is demonstrated by a
benchmark testing example of multi-minimum function.  Finally,
several testing examples show that the success rate of global minimi-
zation approaches to 98%.

INTRODUCTION

An effective optimization algorithm is dependent
on its searching ability for global optimum solution and
its accuracy.  In recent years, to enhance the global
optimization searching ability, the genetic algorithm
(GA) [5] has been applied to the biotechnical field [2].

While the simplex method [10] and GA are both catego-
rized into the primitive stage, that is, both of them are a
direct search method without gradient information.  Thus,
it has a fast searching ability and has been widely
applied to improve conditions for chemical reactions
[9].  In 1962, Spendley et al. [13] proposed the basic
simplex method and then, Nelder and Mead [10] further
presented the modified simplex method (MSM), in which
the simplex can adjust its size and shape to the response
surface and this leads to the basis for further applications.
It means the MSM can have the directional fast search-
ing ability to the local optimization without the need of
gradient information; however, its global optimization
searching ability depends on whether the initial point is
located on the nearby of the point or not.  Thus, the
success rate of searching minimization is not satisfied.

To improve the search capability to achieve global
optimization for the simplex method, Huang et al. [6]
proposed the multi-start downhill simplex method, in
which the multi-start search technique was adopted to
enhance the global optimization ability.  In 1989,
Torczon [14] further presented the multi-directional
search technique to fix this problem.  In this method, the
simplex is generated with the multi-directional aspects,
and the search technique is starting from the initial point
as the center and then to expand outward for the optimal
solution.  Thereafter, in 2003, Xiong and Jutan [15]
proposed a dynamic simplex method, which makes the
size of the simplex changeable during the search pro-
cess and it leads to the increasing global optimization
ability of the simplex method.  However, the simplex
method itself has the inherent directional search and
naturally results in the better solution for the local
optimization during the iteration process.  Thus it is
inevitably trapped into the local optimal solution when
the global optimization search is triggered.  To own
both the merits of the better local searching ability from
the simplex method and the global searching ability
from the evolutionary algorithm, a combined use of the
two algorithms, such as Chelouah’s continuous hybrid
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algorithm (CHA) [4], was developed.  In this hybrid
method, the GA in conjunction with the simplex method
are combined together to have the better local and
global optimization searching abilities simultaneously.
More specifically, this hybrid method makes use of the
GA to localize a “promising area” containing a global
minimum and then, aimed at the area, adopts the MSM
to forward the local search. The basic ideal of this
hybrid method combining the GA and MSM retains the
algorithms’ framework but allows some parameters be
determined for the GA and MSM, respectively.
Therefore, the key point for resolving this issue is to
find a set of optimal parameters with respect to different
requirements of the problems and this needs efforts for
adjusting the parameters.

Based on currently reviewed papers as above and
several studies by the first author [7, 8], a hybrid of GA
and MSM can be used to improve the drawbacks of the
simplex method for the global optimization problems.
Although the CHA is a good candidate to be adopted;
however, many setting parameters are needed.  Thus, we
proposed a hybrid of simplex and evolution algorithm
(SEA) to revisit this problem.  In the SEA, only two
setting parameters, population size and population re-
new number, are necessary and this merit is also vali-
dated through several testing examples.  Basically, the
SEA adopts the population evolution mechanism of the
GA, and the new individuals in the new generation are
generated by the search mechanism of the MSM in place
of the crossover and mutation operations of the GA.
This paper, apart from the Introduction section, is orga-
nized as follows.  Section 2 describes the algorithm of
the MSM with several testing examples of function
minimum optimization.  The framework and flowchart
of the SEA are included in Section 3.  Comparisons of
the SEA and other algorithms with respect to searching
efficiency are presented in Section 4.  Several concrete
conclusions are made in Section 5 by recasting the
reported results.

THE  SEARCHING  CHARACTERISTICS  OF  THE
MSM

The search algorithm of the MSM can be described
as follows.  In an n dimensional space, a simplex is
composed of n + 1 linearly independent vertexes, for
instance, two different points can form a line in one-
dimensional space; three different points not at the same
line can form a triangle in two-dimensional space; any
four points in a different plane can form a tetrahedron.
Therefore, according to the dimension of the problem
like n dimension, a simplex is a geometrical figure
consisting, in n dimensions, of (n + 1) points and then,
the objective function of the n + 1 points can be obtained

and compared.  The search direction of the objective
function can be determined by using (1) reflection, Xr;
(2) expansion, Xe; (3) contraction, Xs.  By using this
search mechanism, the search direction can be deter-
mined and the new better point can also be found for
replacing the worst point among the (n + 1) points to
form a new simplex.  Owing to this search algorithm, a
new simplex will contract toward the optimal point.
When the contraction approaches to the convergence
criterion, this replacing process stops, that is, the itera-
tion stops.  The flowchart of this algorithm for the MSM
can be described as follows.
Step 1: Initial process: For an n-dimensional space,

assuming ε is the divergence criterion, α the
reflection coefficient, γ the expansion coeffi-
cient and β the contraction coefficient.  For a
given initial point Xo, the other n vertexes can
be found by starting from Xo along the axis
direction ei (i = 1, 2, ..., n) with the side length
of h: Xj (j = 2, 3, ......, n + 1).

Xj = Xo + h*ei (j = 2, 3, ..., n +1), (1)

in which ei represents the unit vector of the i- th
axis and h represents the side length.

Step 2: Evaluating process: To evaluate the priority
of the (n + 1) vertexes in orders, for instance, to
search for the minimum optimization, the
smaller the value of the vertex is the better and
the larger is the worse.

Step 3: New point generation process: By using the
reflection, expansion and contraction mecha-
nisms, the new point can be generated as shown
in Fig. 1.  In this figure, Xl is the best choice,
then Xg is the second and the Xh is the worst.
Besides, Xc represents the centroid of the sim-
plex excluding of the point, Xh .  Thus, we can
have

   Xc = 1
n Σ

i = 1, i ≠ h

n + 1

Xi (2)

and

(1) Reflection: Xr = Xc + α(Xc − Xh), as shown in
Fig. 1(a);

(2) Expansion: Xe = Xc + γ(Xr − Xc), as shown in
Fig. 1(b);

(3) Contraction: Condition (a): Xs = Xc + β(Xh −
Xc), as shown in Fig. 1(c); Condition (b): Con-
tract to the point Xl as shown in Fig. 1(d).

Step 4: If the average mean square distance of all points
to the centroid of the simplex approaches to the
convergence threshold, ε, then stop searching.
Thus, one can choose the best point as the
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optimal solution; otherwise, one has to skip to
step 2 for iteration and the convergence crite-
rion can be expressed as

   
1

n + 1 Σj = 1

n + 1

[f(Xj) – f(Xc)]
2

1
2

≤ ε . (3)

To verify searching characteristics of the MSM, a
two-dimensional single-minimum function f1, the
Rosenbrock function, and the two-dimensional multi-
minimum function f2 (all these testing functions are
listed in the appendix section for quick reference)
are chosen as the testing examples, respectively; the
former f1 is used to evaluate the local searching ability
of the MSM, while the latter f2 is for global searching
ability of the MSM.  Here, the parameters of the MSM
are given as: the side length, ST, is equal to 1; the
reflection coefficient α = 2; the expansion coeffi-
cient γ = 2; contraction coefficient β = 0.5; the con-
vergence criterion ε is set to be 1 × 10−4.  Besides, five
different sets of initial points are given for these testing
examples.

All the results of the testing examples are listed in
Table 1 and Table 2.  In this table, NOFE represents the

total numbers of the objective function evaluations
being called when searching.  It is found that when the
MSM is applied to the f1, the minimum solutions can
be reached for various initial points and the average
error to the analytical solution is 3.8122 × 10−7 only.
Basically, for this single-minimum function f1, the glo-
bal minimum is located in the middle of the banana-
shape long and narrow valley [4] and our search process
also shows the similar condition with the final result at
an accepted convergence.  For the f2 testing condition,
five cases are setting with five initial points given at the
nearby of the five local minima, respectively.  Testing
results show that the global minimum can be yielded
only available for the third case and for the other cases,
the local minimum solutions at the nearby of the initial
points can be reached.  It means that generally the MSM
can be used to search for the local minimum optimiza-
tion for the multi-minimum function for different initial
points.

As results shown above, the global minimum opti-
mization searching ability of the MSM is not good
enough such that a trial of enlarging the initial side
length is conducted for testing whether a larger simplex
can help the MSM skip out the local optimal solution as
shown in Fig. 2.  Again taking f2 as testing example, the
calculation results are listed in Table 3.  It is shown that
when the side length has been adjusted to be 5 and 10,
respectively, cases 2 and 4 can yield the local optimal
solution nearby the initial points; while cases 1, 3, and
5 can still reach other local optimal solution.  This

Fig. 1. Moving schemes in the MSM: (a) reflection, (b) expansion, (c)
contraction, and (d) multi- contraction.
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Fig. 2. The initial different simplexes in 2 dimensions: ▲: is the initial
point; ● : other vertices produced by using a smaller side
length; ■ : other vertices produced by using a larger side length.
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phenomenon shows that the MSM can have the ability to
skip out the local optimal solution.  Finally, initial
points of generating randomly are also conducted to
find the global minimum for calculating the success rate
of this algorithm.  The success rate is defined as the
number of reaching the global minimum per 100 times
of random search.  The results are shown in Table 4.  In
this table, the best success rate appears in the case of ST
= 1 and approaches to 17% with an average NOFE value
of 93; while for the other cases, the success rates is 10%
approximately.  It is shown that the randomly generat-
ing initial points in conjunction with a simplex of poly-
hedron with different side lengths can possibly search
for the global minimum optimization.  In addition, with

more given initial points the success rate of yielding the
optimal solution can increase.

THE  HYBRID  ALGORITHM  OF
EVOLUTION AND  SIMPLEX  METHODS

The proposed hybrid algorithm of evolution and
simplex methods is a simplex-based evolutionary algo-
rithm (SEA).  The SEA adopts the population evolution
process of the GA and introduces the searching mecha-
nism of the MSM for generating the new generation.
With the Darwin’s theory of evolution, “Survival at the
fittest or fail at the non-fittest”, the proposed SEA
combines the evolution method and the MSM with

Table 1.  Optimization results of the MSM with different initial points for f1(x)

f1(x)/Case 1 2 3 4 5

Initial point (-3, 3) (3, 3) (-3, -3) (3, -3) (1, -1)
Solution and function (1,1) (1,1) (1,1) (1,1) (1,1)

value of local minimum*  0 0 0 0 0
NOFE** 203 193 185 163 236

The final solution (0.999, 0.999) (0.999, 0.999) (0.999, 0.998) (1.000, 1.001) (1.000, 1.000)
The final function value 2.84E-07 3.753E-07 4.332E-07 7.95E-07 4.39E-07

* Local minimum: the initial points of the five cases are located in the neighborhoods of the local minimum.
**NOFE: the total number of the objective function evaluations being called when searching.

Table 2.  Optimization results of the MSM with different initial points for  f2(x)

f2(x)/Case 1 2 3 4 5

Initial point (-1, 4) (2, 2) (-3, -2) (3,-2) (0,-1)
Solution and function (-2.820, 3.131) (2.983, 2.009) (-3.788, -3.246) (3.574, -1.845)

value of local minimum*  -2.813  2.990  -3.780  3.579
NOFE** 88 77 82 72 85

The final solution (-2.822, 3.132) (2.985,2.007) (-3.789,-3.287) (3.579,-1.847) (2.984,2.011)
The final function value -2.812 2.9920 -3.7838 3.5797 2.9919

* Local minimum: the initial points of the five cases are located in the neighborhoods of the local minima.
**NOFE: the total number of the objective function evaluations being called when searching.

Table 3.  Optimization results of the MSM with different side length, ST, and initial point for f2(x)

f2(x)/initial point (-1, 4) (2, 2) (-3, -2) (3, -2) (0, -1)

Solution and function (-2.820, 3.131) (2.983, 2.009) (-3.788, -3.246) (3.574, -1.845) (2.983, 2.009)
value of local minimum  -2.813  2.990  -3.780  3.579  2.990

The final function -2.812 2.992 -3.783 3.579 2.991
value, ST = 1

The final function 2.992 2.992 -2.812 3.579 3.579
value, ST = 5

The final function 3.579 2.991 2.992 3.579 -2.812
value, ST = 10
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respect to their own merits to deal with the global
minimum optimization.

1. Algorithm of the SEA

Basically, two parameters need to be setup for the
SEA in advance: 1. the population size: (n + 1) of the
individuals is chosen for the initial generation with a
uniform format; 2. the renew number: how many num-
ber of the new individuals is needed being called the
renew number, for instance, if there need five renew
individuals for a new generation, then we call the renew
number as 5.  As for the generation scheme of the initial
population, the neighborhood concept is adopted, that
is, we take the individual X as the center and the radius
r to form a circle, and then, the generated individual X'
should satisfy the condition of ||X' − X|| ≥ r such that the
initial population can be uniformly distributed over the
searching space, as shown in Fig. 3. The generation
schemes of the new population for the SEA can be
described as follows.
(1) Choosing an individual of the population randomly

as the worse point Xh, (may not the worst of the

whole population) and calculating the centroid, Xcen,
of all individuals which are better then Xh.  By using
the search direction that the Xh faces toward the Xcen,
the new individual Xn can be obtained.  That is,

Search direction: S1 = Xcen − Xh, (4)

New individual: Xn = Xcen + α • S1. (5)

(2) Choosing two individuals of the population ran-
domly and evaluating which one is better.  The new
individual Xn can be yielded by using the search
direction that the worse Xh faces toward the better
Xg.  That is

Search direction: S2 = Xg − Xh, (6)

New individual: Xn = Xg + α • S2, (7)

in which α is taken 0.618.  The two search directions are
shown in Fig. 4.

In summary, the algorithm for the SEA can be
expressed as:
Step 1: Initial process: To determine the population

size, the renew number and the searching itera-
tion number and then, to generate the initial
population with a uniform format.

Step 2: Evaluating process: To evaluate the fitness of
the individuals of the population and reordering
according to their fitness.

Step 3: New generation process: In the evaluating
process, those individuals of higher fittest sur-
vive and knock the lowers out.

Step 4: Determining the search direction: By using
the two generation schemes as mentioned to
determine the search direction S1 and S2 and
then, to produce new individuals in place of the
worse individuals.

Step 5: To judge whether the error between the analyti-
cal minimum of the function and the numerical
solution approaches to the converging criterion;
if it reaches, then stop searching.  Thus, one can
choose the best individual as the optimal
solution.  Otherwise, to judge whether the num-

Table 4.  Optimization results of the MSM with some different side length, ST, for f2(x)

The side length of simplex ST = 1 ST = 3 ST = 5 ST = 7 ST = 10

Success rate (%) 17 14 8 10 7
NOFEav 93 107 100 124 129

The final function value -3.783 -3.783 -3.783 -3.783 -3.783
Global minimum of f2(x) -3.783 -3.783 -3.783 -3.783 -3.783

-1 .00 -0.80 -0.60 -0.40 -0.20 0 .00 0 .20 0 .40 0 .60 0 .80 1 .00
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Fig. 3. The uniform distribution of the initial population (30 individuals)
f6(x) for in the searching space.
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ber of new individuals is equal to the renew
number, if it does, then skip to Step 2, otherwise,
skip to Step 3.

2. Searching track of the SEA

As previous section shown, if the side length of a
simplex enlarge for the MSM, then a larger simplex
can help the MSM skip out the local optimal solution.
To validate such characteristics of the SEA, again the
multi-minimum function of f2 is used to test the global
minimum optimization searching ability of the SEA
and an observation of the searching track, which can
show the searching characteristic and the process of
population revolution, is also conducted.  Every ten
generations is adopted for recording the population
position to observe how the population move and yield
the final minimum.  In this case, the population size is
30 and the renew number is 21, which is 70% of the
population size.  Thus, one can find how the SEA makes
the population with individuals jump out the local mini-
mum searching and then to yield the global optimal
solution.

Fig. 5 shows the results of several generations
of populations in the case of f2 function for the SEA.  In
this figure, when the population evolves in the stage of
initial generation, the population individuals appear at
the nearby of the four minimum values of the contours.
When it further evolves into the 20th generation, some

individuals of higher values gradually move (so-called
the renew process) to up-right area of local minimum
in the contours; however, several individuals still
exist in the lower-left area due to their fitness.  Since
those individuals in the up-right area are more than
those in the lower-left area such that the opportunity
of generating new individuals in that area will in-
crease.  Even so, the individuals of the whole popula-
tion are still sparse and it means these individuals
can move to other search space for yielding the
global optimization.  Besides, during the evolution
from the 30th to 110th generation, the individuals start
to move to the lower-left area of global optimization
from the up-right area of local minimum gradually
over a contour peak area of the middle part of the
searching space.  More specifically, at the 30th genera-
tion, those individuals located at the nearby valley of
the up-right area gradually expand, move and finally
contract at the nearby valley of the lower-left area at the
110th generation.  Thereafter, at the 120th generation,
most of the individual center to the valley of global
minimum of the lower-left area, but still few individuals
appear elsewhere.  Anyway, the population finally
yields the global optimization and the search can stop
here.

As one can find the population moving track as
shown in Fig. 5, individuals of the worse fitness will be
filtered out at each generation revolution and are re-
placed by the better individuals.  While individuals with
the better fitness will survive and thus, it does not makes
more and more individuals contract to the local mini-
mum until another individuals of the population can
find the other better local minimum.  Therefore, the
SEA can have the expansion and contraction operations
to search for the global minimum optimization
repeatedly.  Besides, during the search process of the
SEA where happens the contraction phenomenon repre-
sents the existence of the local minimum.  Moreover,
the SEA can have the ability to jump out the local
minimum and not continue to expand for searching until
the population contracts at the highest fitness of the
global minimum.

TESTING  AND  DISCUSSION  ON  THE
SEARCHING  EFFICIENCY  OF  THE  SEA

1. Testing function examples of the SEA

Eight different kinds of functions listed in the
appendix are adopted for testing the success rate of
searching for the global optimization of the SEA.  The
convergence criterion is defined as [1]

|OBJSEA − OBJANAL| ≤ 10−4, (8)
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Fig. 4. The search direction Si, i = 1, 2: (1) ▲ is the centroid of the
individuals in the circle, S1 is from the ■   faces toward the ▲;
(2) S2 is from the ■  faces toward the ● .
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Fig. 5. The moving trajectory of the
population during generation,
the population size is 30.
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(e) The 80th generation
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(h) The 120th generation

in which OBJSEA represents the searched global opti-
mum by the SEA and OBJANAL represents the analytical
solution of the optimization problem.  All the testing
results are listed in Table 5 and the success rate is
defined as how many cases of searching results satisfy-
ing the convergence criterion in 100 searching cases.  In
Table 5, the symbol NOFEav denotes the average num-
ber of objective function evaluations for the success
searching cases, and the average error εav is defined as
the averaging value of the difference between the

searched optimal solution and analytical solution for
the success searching cases.  In addition, the testing
functions including two single- minimum functions and
six multi-minimum functions are used and as shown in
this table, the searching success rates of the eight testing
functions are all above 93% and the average success rate
of all testing function is 98%.  Therefore, no matter for
the single- or multi- minimum functions, the SEA shows
its high searching success rate for improving the global
searching ability of the MSM.
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2. Comparison of the SEA and other evolution algorithms

For further validating the proposed SEA, five dif-
ferent evolution algorithms for the global minimum
search [1, 3-4, 7-8] are adopted to search for the NOFE
for the efficiency comparison with the SEA.  Here, six
different kinds of testing functions are chosen and most
of them are two-dimensional multi-minimum functions
as shown in the appendix.  The same convergence
criterion,   as shown above, is adopted again for testing
[1] and all testing results are shown in Table 6.  Among
all used algorithms, those related with the GA are SEA,
the CHA, the continuous genetic algorithm (CGA) and
the real-value coding genetic algorithm (RCGA).  For
the CHA [4], the GA is adopted for possible global
optimum position and the MSM is introduced for the
local search in the searched global optimum positions.
As for the CGA [3], the discrete variables in the binary
code are replaced by the continuous variables in the real
code for the GA.  For the RCGA, the initial population
is generated by using the entropy theory and a search
technique for finding the new smaller search space in
the neighborhood of the global optimum is adopted.  As
for the other two algorithms, the basic idea of the
continuous Tabu search (CTS) [11] is to put the searched
local minimum solutions into the Tabu list such that it

avoids the next iteration approaching to these local
minimum solutions.  As for the enhanced simulated
annealing (ESA) [12], its search technique is easy to
implement, requires little expert knowledge and is not
memory intensive.

In Table 6, a comparison for the searching effi-
ciency of the SEA with those quite similar search
algorithms, such as the SEA, CHA, RCGA and CGA, is
conduced and the results show that for the single-mini-
mum function f1(x), R2, the searching efficiency of
NOFE = 266 for the SEA is the best and the second is
CHA with NOFE = 459.  For the multi-minimum func-
tions results show that the SEA, in general, has the
dominant searching efficiency as compared with other
search algorithms and the second is the CHA.  Basically,
these two algorithms both adopt the global search abil-
ity of the GA in conjunction with the local search ability
of the MSM; however, what differences for these two
algorithms are: the CHA first conducts the crossover
and mutation mechanisms of the GA to generate the new
individuals and to explore the possible positions of the
global optimal solutions and then, these possible posi-
tions are taken as the initial points for the MSM to
search for the local optimal solution; while the SEA
adopts the direction-based  search mechanism of the
MSM to generate the new individuals.  In addition, the
necessary setting parameters of search algorithms are
also different, that is, the CHA needs eight parameters
while the SEA only need two such that it makes the SEA
more convenient to implement for the optimal search.
Finally, a comparison of the SEA with the CTS and the
ESA also shows that the SEA is superior to the other two
algorithms no matter for the single- or multi-minimum
functions.

CONCLUSIONS

Several concrete conclusions can be drawn as
follows:
1. The proposed hybrid method, SEA, adopts the search

technique of the simplex method and introduces the

Table 5. Optimization results of the SEA for eight testing func-
tions

SuccessFunction NOFEav εav
rate (%)

f1(x), R2   97   266 7.11E-06
f2(x), MH   93 1136 5.22E-06
f3(x), ES   97   197 4.42E-05
f4(x), RC 100   272 6.40E-05
f5(x), Z2   97     90 5.22E-05
f6(x), B2 100   258 2.82E-05
f7(x), SH 100   420 1.97E-05
f8(x), DJ 100   136 4.21E-05

Table 6.  A comparison of the searching efficiency of the NOFE for the SEA with other algorithms

Method/ SEA CHA CGA RCGA CTS ESA
Function [present] [4] [3] [1] [11] [12]

f1(x), R2 266 459 960 596 1616 796
f2(x), ES 197 952 1504 642 — —
f3(x), RC 272 295 620 490 668
f4(x), Z2 90 215 620 437 689 15820
f5(x), B2 258 132 — — — —
f6(x), SH 420 345 575 — — —
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concept of all population information and thus, one
can have the greater populations for searching.
Besides, the SEA offers two strategies of search
directions, S1 and S2, for generating new individual to
find the global minimum solution with respective
generation.

2. From the observation of the population moving, the
SEA has the expansion and contraction operations to
search for the global minimum optimization.  Further
more, the SEA can search other local minimum solu-
tions during the search process so that they can pro-
vide designer with more information to make policy
beneficially.

3. The average success rate of the SEA in eight testing
cases for searching global minimum approaches to
98% and thus, it proves that the SEA have an excel-
lent searching ability for the global optimal solution.

4. For the calculating efficiency of the NOEE index, a
comparison of the SEA with those similar search
algorithms of GA, such as the SEA, CHA, RCGA and
CGA, show that the proposed SEA is the best and the
second is CHA.  A comparison of the SEA with the
CTS and the ESA also shows that the SEA is superior
to the other two algorithms.

5. Finally, an evaluating mechanism of population mov-
ing stability, which can be used to evaluate param-
eters of SEA, such as the population size and the
renew number, and deal with the dynamics informa-
tion of individual moving more effectively, is sug-
gested for future study of the SEA.
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APPENDIX:  LIST  OF  TEST  FUNCTIONS

f1: Rosenbrock (R2) (2 variables)

  f 1(x) = 100(x 1
2 – x 2)

2 + (x 1 – 1)2

Search domain: −5, xi < 5, i = 1, 2, 3, ..., N;

The global minimum: x* = (1, ..., 1), f1(x*) = 0.

f2: Modified Himmelblau Function (MH) (2 variables)

  f 2(x) = (x 2 + x 1
2 – 11)2 + (x 1 + x 2

2 – 7)2 + x 1

Search domain: −5 < xi < 5, i = 1, 2;

Number of local minima = 3;

The global minimum: x* = (−3.788, −3.246),
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 f2(x*) = −3.78.

f3: Easom(ES) (2 variables)

   f 3(x) = – cos (x 1) ⋅ cos (x 2) ⋅ exp ( – ((x 1 – π)2 + (x 2 – π)2))

Search domain: −100  < xi < 100, i =1, 2;

Multiple local minima (exact number unspecified in
the literatures);

The global minimum: x* = (−3.788, −3.246),
f3(x*) = −1.

f4: Branin RCOS (RC)  (2 variables)

   f 4(x) = (x 2 – (5 / (4π 2))x 1
2 + (5 / π)x 1 – 6)2

   + 10(1 – (1 / 8π))cos (x 1) + 10

Search domain: −5 < xi < 10, i = 1, 2;

Three global minimum solutions: x* = (−π, 12.275),
(π, 2.275), (9.42478, 2.475),

f4(x*) = 0.39788.

f5: Zakharov (Zn)  (2 variables)

   f 5(x) = (Σ
i = 1

n

x i
2) + (Σ

i = 1

n

0.5i ⋅ x i)
2

+ (Σ
i = 1

n

0.5i ⋅ x i)
4

Search domain: −5 < xi < 10, i = 1, 2;

Multiple local minima (exact number unspecified in

the literatures);

The global minimum: x* = (0, 0), f5(x*) = 0.

f6: B2  (2 variables)

   f 6(x) = x 1
2 + 2x 2

2 – 0.3 cos (3πx 1) – 0.4 cos (4πx 2) + 0.7

Search domain: −100 < xi < 100, i =1, 2;

Multiple local minima (exact number unspecified in
the literatures);

The global minimum: x* = (0, 0), f6(x*) = 0.

f7: Shubert (SH)  (2 variables)

   f 7(x) = { jΣ
j = 1

5

⋅ cos [(j + 1)x 1 + j]} × { jΣ
j = 1

5

⋅ cos [(j + 1)x 2 + j]}

Search domain: −10 < xi < 10, i = 1, 2;

760 local minima; 18 global optimal solutions;

The global minimum: f7(x*) = −186.7309.

f8: De Joung F1(DJ)  (3 variables)

  f 8(x) = x 1
2 + x 2

2 + x 3
2

Search domain: −5.12 < xi < 5.12, i = 1, 2, 3;

The global minimum: x* = (0, 0, 0), f8(x*) = 0.
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