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ABSTRACT

The highly nonlinear roll and capsizing motion of ships in
random seas are analyzed in this paper by utilizing the Melnikov
function and phase space flux.  Influence factors on the phase space
flux, such as significant wave height, significant wave frequency,
nonlinear righting arm and damping characteristic, have taken into
consideration.  As an example, when a fishing vessel of 30.7 m long
and 6.9 m wide is considered to sail in the seas of ISSC wave spectrum,
the Melnikov function in time domain is computed.  Also, the relation
between the phase space flux and the Melnikov function has attained
and the influence of significant wave height on the phase space flex
has discussed.  It is shown that the phase space flux is monotonically
increasing as the significant wave height increases, while the safe
basin is decreasing rapidly.

INTRODUCTION

A ship sailing in sea can be considered as an
autonomous system exposed to many hazardous
circumstances.  Among which capsizing is the most
catastrophic one since it can result in the heavy losses of
ship and human lives.  Thus, national and international
rules have protocoled to regulate the stability criteria
for ships.  Based on long-time experience, the charac-
teristics and area under the restoring moment curve
have been prescribed.  In this way, it intends to ensure
that the potential energy due to restoring moment in
calm sea has to be larger than the work done by a
possible heeling moment.  Unfortunately, the existing
stability criteria are not satisfactory, owing to the facts
that may ships have ever capsized.  Therefore, few
researchers envisaged to reconsider the ship stability
criteria by utilizing the methodology from the state-of-
the-art in nonlinear dynamics.

The interest in nonlinear ship dynamics started to
surge in the 1970s.  While at that time the computers
were still at an embryonic stage and it was perhaps
inevitable that the prominence to the nonlinear ship
dynamics would be given to analytical methods.
Unfortunately, these methods are not only extremely
laborious but also requiring that the nonlinearities be
weak, thus leading to eliminate much of the most dy-
namically interesting part of the behavior.

The vast increase in computer power realized in
the 1980s and 1990s brought a wide range of new
techniques of numerical analysis of nonlinear dynami-
cal systems into the limelight.  During these years the
study of nonlinear rolling in beam seas continued to be
topical.  Nayfeh and Khdeir [6, 7], Papanikolaou and
Zaraphonitis [9] presented studies of large amplitude
rolling based on a combination of analytical perturba-
tion based techniques and digital analogue simulations.
Virgin [19] concentrated on the onset of chaotic roll
oscillations occurring through a period-doubling
cascade, which he observed on the basis of Poincar'e
maps.  Thompson and co-workers offered a new per-
spective on the ship-capsize problem by considering the
capsize process as dynamically equivalent to the escape
of a ball rolling in a potential well, which is an intrinsi-
cally transient phenomenon.  One of the first major
contributions was the proposal of a diagram for the
practical assessment of a hull’s capsizability, which
was known as the transient capsize diagram.  Extensive
cell-mapping and continuation studies were performed
for a roll equation with direct or parametric excitation
[10, 15, 16]. In the late 1980s/early 1990s, capsizing
due to transient rolling had become a hot topic.  Nayfeh
and Sanchez presented numerical safe basins for the roll
motion in beams [8].  The simulation of nonlinear
rolling motions is also studies by Sanchez and Nayfeh in
longitudinal waves [11].  Another significant step for-
ward was the use of Melnikov analysis for predicting
capsizing wave slopes in beam regular waves [2].  By
use of realistic restoring representations, like a fifth- or
higher-order polynomial, is, however, problematic when
the analytical route is followed [14].  Bikdash et al.
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examined the equivalence between quadratic and cubic
damping nonlinearities from a Melnikov perspective
[1].  Hsieh et al. [4] adapted the Melnikov approach for
a random excitation using the concept of Wiggins [18,
19] for phase flux transport out of the safe basin.  This
approach was extended for a biased vessel by Jiang et al.
[5].  The interfacing of nonlinear dynamics and stochas-
tic excitation have also been tackled by others [3].  The
papers of Senjanovi'c and Falzarano with their associ-
ates formed a mainstream in nonlinear-dynamics inves-
tigations of ship capsize under stochastic wave
excitation. Senjanovi'c et al. followed a repetitive simu-
lation procedure in order to produce a chart giving the
probability of capsize in terms of ship-motion direction
and speed [12, 13].

In this paper Melnikov function and phase space
flux are applied to analyze highly nonlinear roll and
capsize of ships in random seas.  Several factors, includ-
ing significant wave frequency, significant wave height,
nonlinear righting arms and damper characteristic are
taken into account in the analysis of their influence on
the phase space flux.  Consider a fish vessel of 30.7 long
and 6.9 m wide, sailing in the ISSC wave spectrum and
the Melnikov function in the time domain is computed.
The relation between the phase space flux and Melnikov
function is gained and the influence of significant wave
height on phase space flux is also attained.  It is shown
that phase space flux is growing continually along with
significant wave height and the safe basin of ships is
decreasing rapidly.  Therefore, the osculating relations
between the phase space flux and ship capsize are
revealed and valuable reference will be provided for the
ship design and safe standard.

PHYSICAL  MODEL  FOR  SHIP  ROLL-MOTION

Assume that the dynamics of large amplitude roll-
ing of ships in random beam seas can be modeled by the
following equation of motion of single degree of free-
dom (SDOF) in terms of the relative roll angle φ:

   (I44 + A44(ω)) φ + B44(ω) φ + B44q(ω) φ3 + ∆GZ

   = Fsea(τ) (1)

where I44 is the rotational moment of inertia about an
assumed rolling center, A44 is the added moment of
inertia due to the ambient fluid, B44q is the nonlinear
damping coefficient, ∆ is displacement of ship, GZ is
the nonlinear righting arm in ship rolling, Fsea(τ) is the
external excitation resulting from the random beam
seas, and the over dot denotes differentiation with re-
spect to time t.

The nonlinear restoring arm can be approximated

reasonably well by the following odd cubic polynomial
of φ,

GZ(f) = C1φ − C3φ
3 (2)

where C1 and C3 are linear and nonlinear coefficients of
the restoring arm.

The roll excitation moment in random beam seas
can be expressed in the form as [6]

   Fsea(τ) = Iα0ω0
2 2ω

g Σ
n = 1

N

(nω)2 S(nω) cos (ωnt + ξn)

(3)

where I = I44 + A44(ω), α0 is the effective wave slope
coefficient and assumed to be constant, ω0 is the natural
frequency of initial roll, ω  is the step of wave frequency,
S is the spectral density function and ξn is the random
phase angle in the range of 0 to 2π.

Substituting those above-mentioned rolling pa-
rameters into equation (1) and let x = φ, it can be written
in the non-dimensional form as

   x(t) + εδ1x(t) + εδ2x
3(t) + x(t) – αx 3 = εf(t) (4)

where ε is a parameter of small values, εδ1 and εδ2

denote the dimensionless linear and quadratic viscous
damping coefficient, respectively, and α denotes the
strength of the nonlinearity.  The non-dimensional terms
are defined as

x = φ; t = ω0t;    εδ1 =
B44(ω)
∆C 1

ω0;

   εδ2 =
B44q(ω)

I44 + A44(ω)
ω0; α =

C 3

C 1
; Ω = ω

ω0
;

   εf(t) =
Fsea

∆C 1
; ω0 =

∆C 1

I44 + A44(ω)
. (5)

Simplifying equation (4) in a first-order form yields

   x(t) = y(t)
y(t) = – x(t) + αx 3(t) + ε( – δ1y(t) – δ2y

3(t) + εf(t))

(6)

Equation (5) represents an integrable Hamiltonian
system.  For an unperturbed and un-damped system,
equation (3) can be further simplified to

   x(t) = y(t)
y(t) = – x(t) + αx 3(t)

(7)
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A closed form solution of equation (6) can be
obtained as

   
x 0(t) = ± 1

α tanh ( t
2

)

y0(t) = ± 1
2α

sech 2( t
2

) = ± ( 1
2α

– α
2

x 0
2)

(7)

where “+” denotes the positive part of the heteroclinic
orbits and “-” represents the negative part of the
heteroclinic orbits.  The heteroclinic orbits are the
boundary between capsizing and safety, which consti-
tutes an important part in the following study of the
paper.

MELNIKOV  FUNCTION  FOR  RANDOM
EXCITATION

Considering the single DOF system described by
the following equation

   x = f(x) + εg(x, t) (8)

The Melnikov function for equation (6) can be
expressed as

   M(t 0) = f
– ∞

+ ∞
(x 0(t))∧ g(x 0(t), t + t 0) dt (9)

where ∧ is the Possion symbol, defined as

   a =
a 1
a 2

, b =
b 1

b 2
, a ∧ b = [a 1b 2 – a 2b 1].

The coordinate of saddle points is   ± 1 / α , 0 ,
therefore the area of safe basin enclosed by the
heteroclinic orbits is

   
A0 = 2 y 0

+

– ∞

+ ∞
(t) dx 0(t) = 2 (

– 1 / α

1 / α 1
2α

– α
2

x 0
2) dx 0

  = 4 2
3α (10)

Similarly, the Melnikov function for equation (5)
can be derived as ,

   M(t 0) = y 0
– ∞

+ ∞
(t)( – δ1y 0(t) – δ2y 0

3(t) + f(t + t 0)) dt

  = M(t 0) – M (11)

where  M  is the mean value of the melnikov function

and is related to the damping of ship by

   M = y 0
– ∞

+ ∞
(t)(δ1y 0(t) + δ2y 0

3(t) dt (12)

  M(t 0)  is the oscillatory part of the Melnikov function,
and is related to the external excitation by

   M(t 0) = y 0
– ∞

+ ∞
(t) f(t + t 0) dt (13)

where

   f(t + t 0) =
Iα0ω0

2π
C 1∆

Σ
n = 1

N h n

λn
cos [Ωn(t + t 0) + ξn]

(14)

where hn,  λn are wave height and wave length
respectively, given by

   h n = 2 2ωS(nω), λn =
2πg

(nω)2
, Ωn = ω

ω0
= nω
ω0

Substituting equation (7) and (14) into equation
(13) yields

   M(t 0) =
Iα0ω0

2π 2

C 1∆
Σ

n = 1

N
2
α

h nΩn

λnsinh (πΩn / 2)

   × cos (Ωnt 0 + ξn) (15)

CALCULATION  OF  RATE  OF  PHASE  SPACE
FLUX

The rate of phase space flux denotes the area of
safe basin (The safe basin is chosen to be a region where
displacements stay within some prescribed limits, that
is ,the safe basin is the region    = {(y, y)∈ℜ2: |y| < b} for
a given b > 0) that transports beyond the heteroclinic
orbits and runs into the unbounded region during one
period of external excitation.  The larger the rate of
phase space flux, the smaller the area of safe basin;
therefore, its amplitude determines whether the ship’s
capsize or not.

If the external excitation is assumed to be a narrow
band wave and the power spectral function of external
excitation is Sf(Ω)(−∞ < Ω < ∞), then the corresponding
single-sided power spectral function is

   S f
+ = 2S f(Ω), Ω ≥ 0 (16)

Now, the mean value of   M(t 0)  is

   E[M(t 0)] = E[ y 0
– ∞

+ ∞
(t) f(t + t 0) dt]

   = y 0
– ∞

+ ∞
(t)E[f(t + t 0)] dt (17)

Owing to E[f(t)] = 0 therefore   E[M(t 0)] = 0 .  Then
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the mean value of Melnikov function is represented by
the value of – M .

In order to compute the mean square value of
  M(t 0) , the auto-correlation function of   M(t 0)  must be

defined firstly, i.e.,
   

RM(τ) = lim
T → ∞

1
T

M(t 0)
– 1

2
T

1
2

T
M(t 0 +τ) dt

   = S M
– ∞

+ ∞
(Ω) e – jΩτdΩ (18)

The power spectral density function of   M(t 0)  can
be expressed by

   S M = 2πM*(Ω) M*(Ω) = 1
2π

RM(τ)
– ∞

+ ∞
e – jΩτdτ    (19)

The over bar is used to denote the complex con-
jugate, and    M*(Ω)  is the Fourier transform of   M(t 0) , i.e.,

   M*(Ω) = 1
2π

M(t 0)
– ∞

+ ∞
e

– jΩt 0 dt 0 (20)

From the random process theory we know that R(τ)
is an even function, therefore    S M(Ω) = S M( – Ω) .

   
E[M2(t)] = lim

T → ∞
1
T

M2(t)
– 1

2
T

1
2

T
dt = RM = S M

+

0

+ ∞
(Ω) dΩ

(21)

where 
   

S M
+ =

2S M Ω > 0
0 Ω ≤ 0 .

Considering the Fourier transform of   M(t 0) , which
can be expressed in terms of the Fourier transforms of
the input f(t) and the velocity along the heteroclinic
solution y0(t) as

   M*(Ω) = 1
2π

(
– ∞

+ ∞
y 0

– ∞

+ ∞
(t) f(t + t 0) dt) e

– jΩt 0 dt 0

   
= 1

2π
y 0

– ∞

+ ∞
(t) f

– ∞

+ ∞
(t + t 0) e

– jΩt 0 dt 0 dt

(22)

Equation (14) can be simplified by scaling time
according to t + t0 = ξ , and it leads to

   M*(Ω) = 1
2π

y 0
– ∞

+ ∞
(t) f

– ∞

+ ∞
(ξ) e

– jΩξt 0 dξ e – jΩt dt

   = 2πf *(Ω) y 0
*(Ω) (23)

where the over line denotes the complex conjugate.
Using equation (23) and the random vibration

theory, it follows that

   S M(Ω) = 2πM*(Ω) M*(Ω)

   = 2π (2πf *(Ω) y 0
*(Ω)) (2π f *(Ω) y 0

*(Ω))

   = 2πS y 0
(Ω)S f(Ω) (24)

Therefore the single sided power spectral of   M(t 0)
can be written as

   S M
+ = 2S M(Ω) = 2[2πS y 0

(Ω)S f(Ω)]

   = 2πS y 0
(Ω)S f

+(Ω) (25)

The mean square value of   M(t 0)  is obtained as

   σ 2
M(t 0) = σ 2

M(t 0) = E[M(t 0) – EM(t 0)]
2 = S M

– ∞

+ ∞
(Ω) dΩ

   = 2
0

+ ∞
πS y 0

(Ω) S f
+(Ω) dΩ (26)

Considering    y 0 = 1
2α

sech 2( t
2

) the power spec-

tral of the roll velocity along the heteroclinic is given by

   S y 0
= π
α

Ω
sinh (Ωπ / 2)

2

(27)

The average rate of phase flux for the case of
random excitation during one period of excitation T is
given by

   
Φ = lim

T → ∞
ε

2T
M+

– T

T
(ξ) dξ = lim

T → ∞
ε

2T
(

– T

T
M(ξ) – M )+dξ

(28)

where 
   

g +(ξ) =
g(ξ) g(ξ) > 0
0 g(ξ) ≤ 0

Based on the previous analysis, M(t0) is a random
process with Gaussian distribution with respect to t0, so
the expression for Φ can be attainted by carrying the
integral,

   Φ(σ, M ) = εE (Mq(ξ) – M )+ = ε (
M

+ ∞
z – M ) p(z) dz

(29)

Let    z
σ = x , dz = σdx,

   
Φ(σ, M ) = εσ

M
σ

+ ∞
1
2π

(x – M
σ ) exp – x 2

2
dx

   
= ε σp M

σ – M + M P M
σ (30)
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where

   p(x) = 1
2π

exp – x 2

2
; P(x) = p

– ∞

x

(x) dξ

NUMERICAL  RESULTS

For illustration of rolling motion, a fishing vessel
with the following parameters is chosen as an example.

The wave spectrum used in this paper is the ISSC
two-parameter spectral formula,

   
S +(Ω, H s) = 0.11H s

2 ωz
4

Ω5ω0
5

exp – 0.44
ωz
Ωω0

4

where ω0 is the natural frequency of the ship, ωz and Hs

are the significant wave frequency and height respec-
tively,   Ω = ω

ω0 .
The generation of random wave excitation of roll-

ing motion is illustrated for the case of significant wave
height Hs = 1 mand significant wave periodic Ts = 5 m.
The wave power spectrum up to frequency ω = 4.5 rad/
s is taken into account.  The frequency step is chosen to
be ω = 0.025 rad/s.  Thus, the total number of harmonic

waves forming a random wave pattern is    N =
ω
ω = 180 .

The effective wave slope coefficient is α0 = 0.729.
The analysis results are shown in Figures 1 to 8.

While Figure 1 shows the wave power spectrum and the
roll moment amplitude per unit significant wave height
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Fig. 1.  Wave power spectrum.

Fig. 2.  Roll moment amplitude.
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Fig. 4.  The oscillation part of melnikov function.

Table 1.  Main parameters of fishing vessel

Length overall (Loa) 30.70 m I44 + A44 1.078 × 106 kg-m2

Length between perpendiculars (Lpp) 25.00 m Nature frequency (ω0) 1.32 rad/sec
Breadth  (B) 6.90 m Linear damping coefficient (B44) 2.242 × 104 kg-m2/s
Height  (H) 4.96 m Nonlinear damping coefficient (B44q) 1.777 × 104 kg-m2

Draught  (T) 2.67 m Linear restoring coefficient  (C1) 0.962 m
Displacement (∆) 195 t Nonlinear restoring coefficient (C3) 0.218 m



Journal of Marine Science and Technology, Vol. 12, No. 4 (2004)278

is shown in Figure 2, in which Froll(ω) is resulted from
the pressure due to the waves with small slopes acting
on a fixed vessel in the upright position.

Figure 3 and Figure 4 show the typical time traces
of the excitation and a corresponding Melnikov function,
respectively.

Figure 5 shows the mean square values for   M(t 0)

by the finite-frequency approximation over a range of
characteristic wave periods.  Figure 6 shows the power
spectrum of the roll velocity along the heteroclinic
orbits.

Figure 7 shows the rate of the phase space flux
with respect to   M  (   M  is a function of ship’s form).
The rate of the phase space flux along with significant
wave period is shown in Figure 8.  From this figure it can
be seen that the rate of the phase space flux    Φ(σ, M ) > 0
when Hs = 5.6 m.  When the wave height reach certain
value, the rate of phase space flux is rising linearly with
Hs and the area of the ship’s safe basin is decreasing
dramatically and it leads the ship to capsize finally.

CONCLUSIONS

The approach of utilizing Melnikov function and
the phase space flux to determine the safety of ships in
random beam seas are discussed in this paper. Ship
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Fig. 5.  Root mean square value of   M(t 0) .

Fig. 6.  Transfer function versus ΩΩ .
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Fig. 8.  Variation of    ΦΦ / A h  as a function of Hs.

rolling motion is simulated by a single degree freedom
system.  Nonlinear vicious damping and the restoring
moment presented by a high order polynomial are taken
into account.  Random wave excitation has found to be
depending on the relevant wave slope energy spectrum
for a given sea state and encounter frequency.  Numeri-
cal analysis results have presented with the following
some conclusions:

(1) The mean value of Melnikov function   M  has
a prodigious influence on the rate of the phase
space flux, the larger the   M , and the less the
Φ.  Therefore reasonably selecting the form of
a ship will directly affect the safety of the ship.

(2) When the significant period of waves is far
away from the initial roll natural period, the
influence on the phase space flux is little,
while the significant wave height plays an
important role on the rate of phase space flux.
When the wave height reaches certain value,
the rate of phase space flux is rising linear with
Hs and the area of the ship’s safe basin is
decreasing dramatically.

(3) In the study of this paper, it can be found that
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the wave power spectrum, the step of wave
frequency and the random phase angle affect
the amplitude of roll moment, the amplitude of
roll moment and the oscillatory part of
Melnikov function remarkably.  Therefore rea-
sonably choosing the step of wave frequency
and the random phase angle are quite important.
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