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ABSTRACT

This work presents the nonlinear dynamic analysis of orthotropic
composite rotor blade using differential quadrature method (DQM).
It can be found that the same efficient and procedure of DQM for both
uniform composite beam and pre-twisted non-uniform composite
beam. In this approach, only nine sample points are needed to achieve
convergence.  Dynamic responses of orthotropic composite rotor
blade with various rotor rotation speeds are determined. Both linear
and nonlinear dynamic responses have been obtained in order to study
the significance of the nonlinear effect.  The transient responses of the
derived systems are calculated by using Newmark method.  The
bending-torsion coupled beam model is used to characterize the
composite rotor blade.  Kelvin-Voigt internal and linear external
damping coefficients are employed and determined for the orthotropic
composite rotor blade.  The DQM is used to transform the partial
differential equations of a composite rotor blade into a discrete
eigenvalue problem.  In this study, the effects of the fiber orientation,
internal damping, external damping, pre-twisted angle and the rota-
tion speed on the dynamic behavior for an orthotropic composite beam
are investigated.  The effect of the number of sample points on the
accuracy of the calculated natural frequencies is also discussed.  The
integrity and computational efficiency of the DQM in this problem
will be derived in this paper.

INTRODUCTION

In the design of rotor blade, fiber reinforced com-
posites have been used.  Fiber reinforced composite
material in blade applications has stimulated a consid-
erable amount of study.  Sivaneri and Chopra [24]
solved the nonlinear trim equation of a flap-lag-torsion
blade using the finite element method.  Crespo Da Silva
[13] analyzed the problem of determining the equilib-
rium soultion and the eigenvalues of a helicopter rotor
blade in hover in a mathematically exact manner.
Firedmann et al. [14] presented the vibration reduction

studies conducted on a servo flap configuration, a plain
flap configuration and a dual servo flap using indepen-
dent control.  Wang and Peters [27] studied the interac-
tion of wake dynamics and blade flapping dynamics
through the mode shapes and eigenvalues of coupled
modes’ continuous vibrations.  Ruzicka and Hodges
[21] described the derivation of a mixed element and the
element’s effectiveness in modal reduction for a articu-
lated blade model.  Schultz and Tsai [22] presented data
concerning the dynamic material behavior in a glass-
filament reinforced epoxy composite.  Abarcar and
Cunniff [1] presented the fiber orientation effect on the
vibration mode in cantilever beams made of unidirec-
tional fiber reinforced composite materials.  Shiau et al.
[23] investigated the vibration and optimum design of a
rotating laminated blade subject to constraints on the
dynamic behavior. Rand and Barkai  [20] presented a
nonlinear formulation for the structural behavior of
initially twisted solid and thin walled composite blades.
Lekhnitskii [16] solved the static response of an
orthotropic composite beam subjected to the simulta-
neous action of an applied bending moment and an
applied torque.  Thomas [25] developed a variation
principle for a non-conservatively loaded cantilever
beam with Kelvin-Voigt internal and linear external
damping.  Chen and Chen [9, 10] and Chen and Shen
[11] applied the finite element model to study the dy-
namic stability aspects of a cracked orthotropic beam
and investigated the mean square response and reliabil-
ity of a rotating composite blade with external and
internal damping.

The dynamic characteristics of composite material
structure are important in high-speed rotor blade designs.
In this work, the differential quadrature method (DQM)
was employed to formulate the eigenvalue problem of
an orthotropic composite rotor blade in matrix form.
The effects of the external and internal damping on the
natural frequencies of the orthotropic composite rotor
blade were also considered in the formulation.  The
integrity and computational efficiency of the DQM in
this problem will be demonstrated through a series of
case studies.  This paper shows the detailed implemen-
tation of DQM in the nonlinear vibration analysis of a
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composite rotor blade with internal and external
damping.  As noted in a number of papers, the DQM is
a very efficient method for different structural analysis.
The efficiency and the accuracy of Rayleigh-Ritz method
are dependent on the number and the accuracy of the
selected comparison functions.  However, there is no
this kind difficulty to selected the appropriate compari-
son functions in the DQ technology.  To the author’s
knowledge, very few published papers in the literature
have presented the nonlinear vibration analysis of an
orthotropic composite rotor blade using the DQM.

FORMATION  OF  THE  DYNAMIC  PROBLEM

Geometry of an orthotropic composite rotor blade
structure is showed in Figure 1.  The composite rotor
blade is attached to a hub.  Axes 1, 2, and 3 are the local
axes and axes x, y and z are the global blade axes.  θf is
the fiber orientation.  Consider the orthotropic compos-
ite beam subjected to a bending moment MB(z, t) and a
torsion moment MT(z, t) simultaneously.  The bending
and torsion moments can then be expressed as [16]

   
MB =

EzzIxx
η

∂2v
∂z 2

+
C t

C mt

∂φ
∂z (1)

   
MT =

C t
η

EzzIxx

C mt

∂2v
∂z 2

+
∂φ
∂z (2)

where v(z, t) and φ(z, t) represent the displacement of the
rotor blade in   axis and the twist angle of the rotor blade
in z axis, respectively.  For a composite rotor blade, the

parameters used in the above equations are defined as

   I xx = IXX cos2 z
L
θ t + IYY sin2 z

L
θ t (3)

  C t(z) =

   
bh 3

3
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b
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1
E11

+ 1
E33

+
2v 31

E33
sin2θ f +

cos2θ f

G 13

(8)

where  b is the breath of the rotor blade, h is the
thickness of the rotor blade, v is the displacement of the
rotor blade in y axis, E11 and E33 are Young’s modulus
in 1 and 3 axes, v31 is the Poisson’s ratio, G13, G12 and
G23 are shear modulus in 1-3, 1-2 and 2-3 planes, Ixx, IXX

and IYY are the moments of area, θt is the twist angle of
the rotor blade.  The kinetic energy of the rotating
orthotropic composite rotor blade can be derived as

   
T = 1

2
ρ

0

L
A ∂v

∂t

2
dz + 1

2
ρ

0

L
A ∂w

∂t

2
dz

   
+ 1

2
ρ

0

L
J z

∂φ
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2

dz + 1
2
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        (9)

The corresponding strain energy of the rotating
blade is

   
U = 1

2
MB

0

L ∂2v
∂z 2

dz + 1
2

MT
0

L ∂φ
∂z dz

   
+ 1

2
Ezz

0

L
A ∂w
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2

∂v
∂z

2
2

dz (10)

Substituting Eqs. (1) and (2) into Eq. (10), it leads
toFig. 1.  Geometry of a composite rotor blade.
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With considering the internal and external damp-
ing effects in the orthotropic composite blade, the vir-
tual work δW in the blade can be derived as

   
δW = – c 0

0

L ∂v
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δvdz – cφ
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L ∂φ
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δφdz – cw
0
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with

  J z =
C t

G xy
(13)

   G xy = 1
sin2θ f

G 23
+

cos2θ f

G 12

(14)

where w is the displacement of the rotor blade in the z
axis direction, A is the section area of the rotor blade, Ω
is the rotation speed of the rotor speed, Jz is the polar
moment of inertia, ρ is the density of the material and ro

is the length of hub.  Fv is the lift acting on the rotor
blade.   Fφ represents the moment acting on the rotor
blade.  c1 is the internal damping coefficient of the
composite rotor blade.  co, cφ and cw are the external
damping coefficient of the composite rotor blade,
respectively.  Substituting Eqs. (9), (11) and (12) into
Hamilton equation

   
(

t 1

t 2
δt – δU + δW) dt = 0 (15)

The differential equations governing the nonlinear
flexural-torsion dynamics of composite rotor blade are
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The corresponding boundary conditions are

v(0, t) = 0 (19)

   ∂v(0, t)
∂z = 0 (20)

   EzzI xx
η
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∂z 2
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C tEzzIxx
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φ(0, t) = 0 (23)

   C t
η
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C mt
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∂z +
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w(0, t) = 0 (25)
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EzzA

∂w(L, t)
∂z + 1

2
∂v(L, t)

∂z

2

= 0 (26)

DIFFERENTIAL  QUADRATURE  METHOD

The DQM was introduced by Bellman and Casti
[2] and Bellman et al. [3] in the early 1970s.  DQM has
been extensively used to solve a variety of problems in
different fields of science and engineering [4, 5, 6, 7, 8,
17].  DQM has been shown to be a powerful contender
in solving initial and boundary value problems and thus
has become an alternative to the existing methods.  In
the DQ technology, the derivative of a function at a
given point can be approximated as a weighted linear
sum of the functional values at all of the sample points
in the domain of that variable. Using this approximation,
the differential equation is then reduced into a set of
algebraic equations. The number of equations is depen-
dent upon the selected number of sample points within
the domain.  Suppose that there are N sample points in
the domain.  For a function f(z), DQM approximation
for the mth order derivative at the sample point zi is given
by

   
∂m

∂z m

f(z 1, t)
f(z 2, t)

f(z N, t)

≅ D ij
(m)

f(z 1, t)
f(z 2, t)

f(z N, t)

for i, j = 1, 2, ..., N (27)

where f(zi) is the functional value at the sample point zi,
and   D ij

(m)
 are the DQ coefficients of the mth order differ-

entiation attached to these functional values.  In order to
determine the DQ coefficients   D ij

(m)
 of first order deriva-

tives can be obtained from the following equation [18,
19],

   D ij
(1) = 1

z j – z i
Π
k ≠ i
k ≠ j
k = 1

N z i – z k

z j – z k

for i = 1, 2, ..., N and j = 1, 2, ..., N (28)

   D ij
(1) = Σ

k ≠ i

N
1

z i – z

for i = 1, 2, ..., N (29)

Once the sample points, i.e. zi, for i = 1, 2, ..., N, are
selected, the coefficients of the DQ matrix can be ob-
tained from Eqs. (28) and (29).  Higher-order deriva-
tives of DQ coefficients can be obtained by matrix
multiplication, which are

   D ij
(2) = Σ

k = 1

N

D ik
(1)D kj

(1)
 for i = 1, 2, ..., N (30)

   D ij
(3) = Σ

k = 1

N

D ik
(1)D kj

(2)
 for i = 1, 2, ..., N (31)

   D ij
(4) = Σ

k = 1

N

D ik
(1)D kj

(3)
 for i = 1, 2, ..., N (32)

The unequally spaced inner points of each blade
using the Chebyshev-Gauss-Lobatto distribution [5] in
the present computation are distributed as

  
z i = 1

2
1 – cos

(i – 1)
N – 1  for i = 1, 2, ..., N (33)

NUMERICAL  FORMATIONS

By employing the DQ technology, Eq. (27) is
substituted into Eqs. (16) to (26).  The equations of
motion for the orthotropic composite blade can be rear-
ranged in matrix form as

   
[M]

∂2y

∂t 2
+ [C]

∂y
∂t

+ [K]{y} – [F} = 0 (34)

where

   y(z 1, t)
y(z 2, t)

y(z N, t)
y(z N + 1, t)
y(z N + 2, t)

y(z 2N, t)
y(z 2N + 1, t)
y(z 2N + 2, t)

y(z 3N, t)

=

v(z 1, t)
v(z 2, t)

v(z N, t)
φ(z 1, t)
φ(z 2, t)

φ(z N, t)
w(z 1, t)
w(z 2, t)

w(z N, t)

The elements in the mass matrix are

Mii = ρA for i = 3, 4, ..., N − 2 (35)

Mii = ρJz for i = N + 2, N + 3, ..., 2N − 1 (36)

Mii = ρA for i = 2N + 2, 2N + 3, ..., 3N − 1     (37)

Mii = 0 for i = 1, 2, N − 1, N, N + 1, 2N, 2N + 1, 3N

(38)

Mij = 0 for i ≠ j, i = 1, 2, ..., 3N and j = 1, 2, ..., 3N

(39)



M.H. Hsu: Nonlinear Dynamic Analysis of an Orthotropic Composite Rotor Blade 251

The elements in the damping matrix are

   C ii = co + c 1
∂2

∂z 2

EzzIxx
η D ii

(2) + 2c 1
∂
∂z

EzzI xx
η D ii

(3)

   +
EzzIxxC 1

η D ii
(4)

  for i = 3, 4, ..., N − 2 (40)

   C ij = c 1
∂2

∂z 2
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η D ij

(2) + 2c 1
∂
∂z

EzzI xx
η D ij

(3)

   + c 1
EzzIxx
η D ij

(4)

for i ≠ j, i = 3, 4, ..., N − 2 and j = 1, 2, ..., N

(41)

Cii = cφ for i = N + 2, N + 3, ..., 2N − 1 (42)

Cii = cw for i = 2N + 2, 2N + 3, ..., 3N − 1      (43)

Cii = 0 for i = 1, 2, N − 1, N, N + 1, 2N, 2N + 1, 3N

(44)

Cij = 0 for i = 1, 2, ..., N and j = N + 1, N + 2, ...,  3N

(45)

Cij = 0 for i ≠ j, i = N + 1, N + 2, ..., 3N

and j = 1, 2, ..., 3N (46)

The elements in the stiffness matrix are

   K ij = ∂2
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η D ij
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and j = 2N + 1, 2N + 2, ..., 3N (49)
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∂z
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(3)
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and j = 2N + 1, 2N + 2, ..., 3N (58)
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Kij = 0 for i = 2N + 1, 3N and j = 1, 2, ..., 3N

(59)

RESULTS

The DQM feasibility and accuracy for the com-
posite rotor blades were studied first.  The effect of
the number of sample points on the solution accuracy
was also discussed.  As noted in a number of papers [12,
15, 26, 28], the fiber orientation, interphase, aspect
ratio, temperature and boundary conditions have ef-
fects on the damping of the composite structure.  Tables
1 and 2 show the natural frequency of the composite

Table 1.  Natural frequencies of an orthotropic composite beam with    θθ f = 15°°  and    θθ t = 0°°

  ω DQM FEM Experiment [1]

Number of sample points

7 9 11 13 15 17 19 21 23 25 27

  ω 1 8.5 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.5 8.2
  ω 2 52.3 51.6 51.6 51.6 51.6 51.6 51.6 51.6 51.6 51.6 51.6 53.1 51.4

Table 2.  Natural frequencies of an orthotropic composite beam with    θθ f = 30°°  and    θθ t = 0°°

  ω DQM FEM Experiment [1]

Number of sample points

7 9 11 13 15 17 19 21 23 25 27

  ω 1 5.4 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.4 5.2
  ω 2 33.5 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 34.2 33.3

Table 3.  Natural frequencies of a tapered and pre-twisted composite beam with    θθ f = 15°°  and    θθ t = 10°°

  ω DQM FEM

Number of sample points

7 9 11 13 15 17 19 21 23 25 27

  ω 1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 8.9
  ω 2 55.2 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 53.6

Table 4.  Natural frequencies of a tapered and pre-twisted composite beam with    θθ f = 20°°  and    θθ t = 10°°

  ω DQM FEM

Number of sample points

7 9 11 13 15 17 19 21 23 25 27

  ω 1 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.6
  ω 2 46.4 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.4

beam with θf = 15° and θf = 30° respectively.  Tables 3,
4, and 5 show the natural frequency of the tapered
and pre-twisted composite beam with θf = 15°, θf = 20°
and θf = 30° respectively.  The material properties
and the geometric dimensions of the composite beam
are given as [1]: G12 = 2.542 GPa, E11/G12 = 3.7, G23 =
4.305 GPa, E33/G23 = 30, G13 = 5.158 GPa, v31 = 0.3, A0

= 0.4026 cm2, I0 = 0.0034 cm4, L = 19.05 cm and ρ =

1550  kg
m3 .  Different numbers of sample points for each

blade, such as 7, 9, 11, 13, 15, 17, 19, 21, 23, 25 and 27,
were selected for the convergence analysis.  The
non-dimensional natural frequencies of the composite

blade are defined as    ω i = ωi ρAL 4 / EzzIxx .  In order
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to assess the accuracy of the DQM model, we computed
the natural frequencies and normal modes through the
finite element package MARC.  The composite blade is
modeled by eight-nodded orthotropic plate elements.  A
three dimensional model with 200 elements are used.
The undamped natural frequencies of the similar blade
were calculated.  Results in Tables 1, 2, 3, 4, and 5
indicated that the natural frequencies calculated using
DQM has a better agreement with the experimental data
and the FEM results.  The results also display that DQM
gives quite good accuracy even only 9 sample points are
selected.  The good agreement between the calculated

and the measured natural frequencies of a composite
blade indicated that DQM is an accurate and effective
method for formulating the dynamic problems of a
composite blade.  Figures 2, 3, and 4 show the tip re-
sponse in the y axis direction of the rotor blade with Ω
= 7.7 rad/sec, Ω = 15.4 rad/sec and Ω = 23.2 rad/sec,
respectively.  The values of parameters of the com-
posite rotor blade are EzzIxx = 3.99 × 105 N × m, GxyJzz

= 0.4627 × 105 N × m, EzzA = 2.23 × 108 N, L = 9 m, r0

= 0.5 m, ρA = 10  kg
m  and   Fu =

(r 0 + r)
(r 0 + R)

sin (23.2t) N
m .  The

dynamic response of an orthotropic composite rotor

Fig. 2. Tip response in y axis direction of the rotor blade with

  ΩΩ = 7.7 rad/sec.

Fig. 3. Tip response in y axis direction of the rotor blade with

  ΩΩ = 15.4 rad/sec.

Fig. 4. Tip response in y axis direction of the rotor blade with

  ΩΩ = 23.2 rad/sec.

Fig. 5. Tip response in z axis direction of the rotor blade with different
ΩΩ..

Table 5.  Natural frequencies of a tapered and pre-twisted composite beam with    θθ f = 30°°  and    θθ t = 10°°

  ω DQM FEM

Number of sample points

7 9 11 13 15 17 19 21 23 25 27

  ω 1 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8
  ω 2 35.4 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 34.9
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blade is simulated for both the nonlinear and linear
model.  Both linear and nonlinear dynamic responses
have been obtained in order to study the significance of
the nonlinear effect.  The nonlinear terms are set to zero
in the simulation of the linear model. It is found that the
discrepancies between the nonlinear and linear results
are quite significance.  Figure 5 shows the tip response

in z axis of the rotor blade with   Fu =
(r 0 + r)
(r 0 + R)

sin (23.2t) N
m

and different Ω.  The nonlinear vibration analysis of a
composite rotor blade has been performed.  The nonlin-
ear term is updated for the system during the step-by-
step solution.  Results in Figure 5 reveal that the deflec-
tion at blade tip is dependent upon the rotor blade
rotation speed Ω.  Results show that higher Ω were
found for the blade with a higher tip displacement.
Figure 6 shows the tip response in y axis direction with

initial acceleration 1  m
sec2  and different c0.  The equa-

tions of motion are solved by the direct integration
method.  It can be clearly seen that there is a significant
reduction in the vibration by increasing c0.  Through
simulation they show that damping can provide reduc-
tion in helicopter rotor blade response. Figure 7 shows
the displacement in y axis direction at blade tip with

initial acceleration 1  m
sec2  and different c1.  The differen-

tial equations of the system are discretized by DQM and
the nonlinear equations of the system are solved using
Newmark method.  Results indicate that the internal or
the external damping coefficients are the key factors to
affect the natural frequencies of a composite blade.  It
can be clearly seen that there is a significant reduction
in the vibration by increasing c1.  One can see the
extensive vibrations without damping.

CONCLUDING  REMARKS

In this work, a DQM formulation on the dynamic

problem of an orthotropic composite rotor blade is
provided.  Results indicate that the DQM is valid for
solving such a complicate engineering problem without
using a large number of degrees of freedom.  This
approach is convenient for solving problems governed
by the fourth or higher order differential equations.  In
this approach, only nine sample points are needed to
achieve convergence.  Due to the coupling effect of
torsion, axial displacement and flexure in an orthotropic
composite rotor blade, the dynamic characteristics of an
orthotropic composite rotor blade are much more com-
plex than the isotropic rotor blade.  The internal and
external damping effects of the material on the dynamic
characteristics of an orthotropic composite rotor blade
have also been included.  Excellent agreement has been
obtained between the calculated and measured results.
Numerical results in this work showed that the rotation
speed, internal damping and external damping coeffi-
cients have a significant influence on the system’s
dynamic.  This work open new areas of application of
the DQM.
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