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ABSTRACT

Analysis of dynamic characteristics plays an important role in
designing hydrodynamic bearings.  Based upon the thin-film lubrica-
tion theory, the analysis of dynamic characteristics for a wide slider
with exponential film profiles is presented when taking into account
the bearing squeezing action.  By applying a small perturbation
technique to the dynamic Reynolds-type equation, both of the steady-
state performance and the dynamic characteristics are then evaluated.
Comparing with those of slider bearings with an inclined-plane film
shape, higher values of the load-carrying capacity, stiffness coeffi-
cient and damping coefficient are predicted for the bearing with larger
values of the inlet-outlet film ratio.  These results provide engineers
useful information to design machine elements and bearing systems.

INTRODUCTION

Slider bearings are designed for supporting trans-
verse load in engineering practice.  An understanding of
the steady-state performance and dynamic characteris-
tics of bearings taking into account the geometry and
different operating conditions is important.  By consid-
ering different film shapes, bearing characteristics have
been analyzed [4, 8].  Advanced studies are presented
by considering different operation conditions, such as
the viscosity variation across the film [9], the inertia
force effects [6, 10, 13], the turbulent flows [5, 15], the
temperature variation of fluid film [8], the thermal
effects [1, 11, 12, 14].  All the above studies, however,
focus upon the performance of slider bearing operating

under the steady-state situation, in which the effects of
dynamic squeezing motion are neglected.  It is well
known that the steady-state performance provides a
basic reference in designing bearings.  In order for
avoiding runner-pad contact and for predicting stability
behavior of the bearing, a study of dynamic characteris-
tics shows more important.  Since slider-bearing sur-
faces operate mainly upon the wedge-action principle,
an understanding of the dynamic stiffness and damping
behaviors is helpful in designing the bearing.  In a
previous study, Lin et al. [7] have analyzed the dynamic
characteristics of a wide inclined plane slider bearing.
It is found that higher dynamic stiffness and damping
coefficients are predicted for the bearing with small
values of profile parameter.  To provide more informa-
tion for bearing designing, we are motivated to investi-
gate the dynamic characteristics of the bearing with
different film shapes.

On the basis of the thin-film lubrication theory,
this study is mainly concerned with the dynamic charac-
teristics of wide slider bearings with an exponential
film shape including the effects of squeezing action.  By
applying a small perturbation technique to the dynamic
Reynolds-type equation, both of the steady-state
Reynolds equation and the perturbed-type Reynolds
equation are derived.  The steady-state performance and
the dynamic characteristics of bearings at different
inlet-outlet film ratios are then evaluated.  Comparing
with those of the plane sliders, characteristics of bear-
ings are presented in terms of the steady load-carrying
capacity, dynamic stiffness and damping coefficients.

FORMULATION

Figure 1 shows the geometrical configuration of a
wide exponential shaped slider bearing including the
effect of squeezing action.  It is assumed that the fluid
inertia is small, the side leakage is negligible, and the
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flow is incompressible and laminar.  Based upon the
thin-film theory of hydrodynamic lubrication, the dy-
namic Reynolds-type equation taking into account the
squeezing action is derived by Lin et al. [7].

   
∂
∂x

(h 3∂p
∂x

) = 6µU ∂h
∂x

+ 12µV (1)

In the equation p represents the film pressure, µ
denotes the lubricant viscosity, U is the sliding velocity
of the lower surface, V = ∂h/∂t denotes the squeezing
velocity of the upper surface, h(x, t) is the film thickness
depending upon the time t and the coordinate x.  For an
exponential shaped slider, the film thickness h(x, t) is
described by:

   h(x, t) = h m(t) ⋅ exp (– x
L

ln r) (2)

In the equation hm(t) denotes the minimum film
thickness depending upon the time t only, L is the length
of the upper pad, and the non-dimensional parameter
represents the inlet-outlet film ratio defined by: r = h1/
hm.  Introduce the non-dimensional variables and pa-
rameters defined by the following.

   
x * = x

L
, τ = Ut

L
, h m

* =
h m

h m0
, p * =

ph m0
2

µUL (3)

where hm0(t) represents the minimum film height of the
bearing operating under steady state.  The non-dimen-
sional dynamic Reynolds-type equation and the film
thickness are then obtained.

   ∂
∂x *

[h *3(x *, τ)
∂p *

∂x *
] = 6 ∂h *

∂x *
+ 12 ∂h *

∂τ (4)

   h *(x *, τ) = h m
* (τ) ⋅ exp (– x * ln r) (5)

Following a small perturbation technique by Ghosh

and Majumdar [2] and Guha et al. [3], the bearing is
assumed to undergo small-amplitude oscillations about
its steady-state position.  The film pressure and the film
thickness are expressed as follows:

   p * = p 0
* + p 1

*εe iτ, h m
* = 1 + εe iτ (6)

where ε represents a small amplitude of the oscillation.
Substituting the above expressions into the non-dimen-
sional dynamic Reynolds-type equation and neglecting
higher-order terms of ε, one can obtains two Reynolds-
type equations responsible for the steady-state perfor-
mance and the dynamic stiffness and damping
characteristics, respectively.

   ∂
∂x *

exp ( – 3x * ln r)
∂p 0

*

∂x *
= – 6 ln r exp ( – x * ln r)

(7)

   ∂
∂x *

exp ( – 3x * ln r)
∂p 1

*

∂x *
= i 12 exp ( – x * ln r)

   
– 6 ln r exp ( – x* ln r) – 3 ∂

∂x*
exp ( – 3x * ln r)

∂p 0
*

∂x *

(8a)

Using the expression of equation (10), equation
(11a) is written as:

   ∂
∂x *

exp ( – 3x * ln r)
∂p 1

*

∂x *
= i 12 exp ( – x * ln r)

  + 12 ln r exp ( – x* ln r) (8b)

STEADY-STATE  PERFORMANCE

If we neglect the cavitation effects at the ends, the
steady-state film pressure can be found from the steady
Reynolds-type equation (7) with the boundary condi-
tions:

  p 0
* = 0  at x* = − 1 and x* = 0 (9)

The steady-state film pressure is then obtained.

  p 0
* = 3

ln r
exp (2x * ln r) + c1

1
3 ln r

exp (3x * ln r) + c2

(10)

where c1 and c2 are found to be: ,

  c 1 =
– 9 [1 – exp (– 2 ln r)]

1 – exp ( – 3 ln r)
,Fig. 1. Geometrical configuration of a wide exponential shaped slider

bearing.
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  c 2 =
– 3
ln r

+
3 [1 – exp (– 2 ln r)]

ln r [1 – exp ( – 3 ln r)] (11)

The steady-state load-carrying capacity per unit
width is evaluated by integrating the steady-state film
pressure.

   
W0

* =
W0h m0

2

µUL 2
=

x * = – 1

0
p 0

*dx * (12)

After performing the integration, one can obtains

  W0
* =

3 [1 – exp ( – 2 ln r)]

2 (ln r)*
+ c 1

1 – exp ( – 3 ln r)

9 (ln r)*
+ c 2

(13)

DYNAMIC  STIFFNESS  AND  DAMPING
CHARACTERISTICS

If we neglect the cavitation effects at the ends, the
perturbed film pressure is calculated from the perturbed
Reynolds-type equation (8b) with the boundary
conditions:

  p 1
* = 0  at x* = − 1 and x* = 0 (14)

The perturbed film pressure is then obtained.

  p 1
* = i

– 6

(ln r)2
exp (2x * ln r) +

– 6
ln r

exp (2x * ln r)

  + c 3
1

3 ln r
exp (3x * ln r) + c4 (15)

In the equation c3 = c3r + ic3i and c4 = c4r + ic4i are
given by:

  c 3r =
18 [1 – xp ( – 2 ln r)]

1 – exp ( – 3 ln r)
,

  c 3i =
18 [1 – exp ( – 2 ln r)]

(ln r) [1 – exp ( – 3 ln r)] (16)

  c 4r =
18 – c 3r

3 ln r
, c 4i =

18 – c 3r ln r

3 (ln r)2 (17)

The perturbed load-carrying capacity per unit width
is evaluated by integrating the perturbed film pressure.

   
W1

* =
W1h m0

2

µUL 2
=

x * = 0

1
p 1

*dx * (18)

Substituting the expression of   p 1
*  into the above

equation, one has

  W1
* = Re al(W1

*) + i Im ag(W1
*) (19)

  Re al(W1
*) = c 4r + c 3r

1 – exp ( – 3 ln r)

9 (ln r)2

  +
– 3 [1 – exp ( – 2 ln r)]

(ln r)2 (20)

  Im ag(W1
*) = c 4i + c 3i

1 – exp ( – 3 ln r)

9 (ln r)2

  +
– 3 [1 – exp ( – 2 ln r)]

(ln r)3 (21)

The perturbed load-carrying capacity resulting
from the perturbed film pressure can be written in terms
of linear spring and damping coefficients.

  W1
* = – K * – iD *

(22)

Comparing the real part and imaginary part of
equations (19) and (22), the dynamic stiffness coeffi-
cient and the dynamic damping coefficient are given
respectively by:

  K * = – Re al(W1
*) (23)

  D * = – Im ag(W1
*) (24)

RESULTS  AND  DISCUSSION

Taking into account the transient squeezing-action
effects, the dynamic characteristics of a wide exponen-
tial shaped slider bearing are investigated.  By applying
a small perturbation technique, both of the steady-state
performance and the dynamic characteristics are
analyzed.  In the present study, results of the bearing
characteristics are presented with inlet-outlet film ratio
r = 1.2-3.8.

Figure 2 shows the variation of dimensionless
steady load-carrying capacity   W0

*
 with inlet-outlet film

ratio r.  The dashed curve shows the results for an
inclined plane slider bearing obtained by Lin et al. [7].
The solid curve presents the steady load-carrying ca-
pacity for the present study.  It is observed for both types
of bearings that there exists a critical value of inlet-
outlet film ratio such that the value of steady load-
carrying capacity achieves the maximum.  Comparing
with those of the inclined plane slider, the exponential
shaped slider provides a higher load-carrying capacity
for larger values of the inlet-outlet film ratio.

Figure 3 presents the variation of dimensionless
dynamic stiffness coefficient K* with inlet-outlet film
ratio r.  It is observed for the inclined plane slider that
the maximum stiffness coefficient lies within the range
of small values of the inlet-outlet film ratio.  But the
maximum stiffness shifts to the position of a larger r for
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the exponential shaped bearing.  Comparing with the
inclined-plane slider, the slider with an exponential
shaped film results in a significantly increased stiffness
for larger values of the inlet-outlet film ratio.  Figure 4
shows the variation of dimensionless dynamic damping
coefficient D* with inlet-outlet film ratio r.  For both
types of bearings, increasing value of r yields a decreas-
ing damping coefficient.  Comparing with those of the
inclined plane slider, the exponential shaped slider pro-
vides a higher damping coefficient, especially for larger
values of the film ratio.  Totally, larger values of the
inlet-outlet film ratio for the exponential shaped slider
provide higher load-carrying capacity and better dy-
namic stiffness and damping characteristics as com-

Fig. 2. Variation of dimensionless steady load-carrying capacity   W0
*

with inlet-outlet film ratio r.

Fig. 3. Variation of dimensionless dynamic stiffness coefficient K* with
inlet-outlet film ratio r.

Fig. 4. Variation of dimensionless dynamic damping coefficient D*

with inlet-outlet film ratio r.

pared to those of the inclined plane slider bearing.

CONCLUSIONS

On the basis of the thin-film lubrication theory, a
study of dynamic characteristics for a wide exponential
shaped slider bearing taking into account the squeezing-
action effects is presented.  By applying a small pertur-
bation technique to the dynamic Reynolds-type equation,
both the steady-state performance and the dynamic
characteristics are calculated.  According to the results
discussed, conclusions can be drawn as follows.

Both of the steady-state performance and the dy-
namic characteristics are significantly affected by the
inlet-outlet film ratio of slider bearings.  There exists a
critical film ratio such that the bearing possesses a
maximum load-carrying capacity.  Comparing with those
of the inclined plane slider by Lin et al. [7], the expo-
nential shaped slider provides higher load-carrying ca-
pacity and better dynamic stiffness and damping char-
acteristics at larger values of the inlet-outlet film ratio.
The finding of the present study provides useful infor-
mation for engineers in designing and application of
bearing systems.
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