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ABSTRACT

The temporal instability of a two-dimensional perturbed wave in
a coupled air-water shear flow is considered to study the generation
and initial growth of wavelets by the air flow.  A robust numerical
method is developed to solve the coupled Orr-Sommerfeld equations
and the interfacial conditions governing the linear viscous instability
of the perturbed flow.  Calculations of the growth rates and phase
speeds of the unstable wavelets compare well with the early theoreti-
cal as well as numerical predictions, and also reveal that the discrep-
ancy in the numerical results of Wheless and Csanady (1993) indeed
are due to erroneous calculations.  Dependence of the instability on
the flow parameters is then studied systematically.  Contrary to the
previous findings, there is no apparent correlation between the maxi-
mum growth rate and the minimum phase velocity wavenumber.

INTRODUCTION

The initial surface-wave generation and growth
triggered by the action of wind is the most well-known
and obvious example of air-sea interaction.  The subject
has been intensively studied since the pioneering theo-
retical model proposed by, e.g., Phillips (1957), Ben-
jamin (1959), and Miles (1957a).  Nevertheless, neither
of the predicted growth rates by these models, in par-
ticular those for short wind waves in gravity-capillary
region, agrees with the experimental measurements.  It
was not until the analysis of Miles (1962), in which the
instability of an air shear flow over the water surface
was considered, that reasonable growth rates for grav-
ity-capillary waves were obtained.  Miles’s analysis
did not include the shear flow in the water; it is known
that the phase speeds of wind-generated gravity-capil-
lary waves depend on the wind-induced drift in the

water.  Thus the analysis was further improved by
taking into account the shear flow in the water by, e.g.,
Valenzuela (1976), Kawai (1979), and Wheless and
Csanady (1993).

Valenzuela (1976) was among the first who stud-
ied the growth of the instability waves on the air-sea
interface by solving numerically the full formulation of
the Orr-Sommerfeld equation and the interfacial condi-
tions for the coupled air-water shear flow Lock (1954).
The numerical results of Valenzuela (1976) demon-
strated that the shear flow in the water can produce a
significant increase in the growth of wind-generated
gravity-capillary waves.  Later Kawai (1979) carried
out intensive studies on the initial generation and evo-
lution of the instability waves both through theoretical
analyses and laboratory measurements.  He found that
the frequencies, the growth rates and the phase veloci-
ties of the most unstable waves from the stability analy-
sis are virtually coincident with those of the observed
initial wavelets in the laboratory experiments.  He there-
fore concluded that the generation of the initial wave-
lets at the air-sea interface is caused by selective ampli-
fication of the most unstable waves in the coupled air-
water shear flow.

Wheless and Csanady (1993) returned to the full
formulation of the instability wave problem, the same as
that in the investigations of Valenzuela (1976) and
Kawai (1979), with focuses on studying the internal
structure of the instability waves and also extending the
range of flow parameters explored.  They developed a
numerical technique to integrate the coupled Orr-
Sommerfeld equation based on the compound matrix
method, a numerical technique which combines the
inviscid and viscid solutions through the use of Ricatti
transformation.  They, nevertheless, claimed that the
developed computational method could not cope with
the near-discontinuity in the second derivative of the
mean air-flow profile characterizing the linear-loga-
rithmic distribution used in most of the previous
investigations.  For this reason they constructed a new
smooth mean velocity profile with a continuous second
derivative.  The calculated growth rates that Wheless
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and Csanady (1993) obtained, however, are almost a
factor of two larger than those calculated by Kawai
(1979) who used linear-logarithmic air velocity profile.
They therefore attributed the large discrepancies to the
differences in velocity profiles.  To clarify the peculiar
results obtained by Wheless and Csanady (1993), we
decided to reappraise the problem by first developing a
robust and accurate numerical method for stability analy-
sis of the air-water coupled shear flow.  The numerical
implementation is then used to explore the dependence
of the generation of instability waves on external flow
properties.

Unlike the single-phase stability problem in which
the Reynolds number is the only governing parameter,
the formulation of the two-phase stability problem re-
quires at least six dimensionless parameters.  Due to this
complexity, previous studies usually apply to a limited
range of parameter space, which implies that it is not
always clear whether the instability mechanism of the
whole parameter range belongs to the same type.  In this
study, we investigate in more detail the dependence of
the instability on the various flow parameters, including
the friction velocity of air, surface tension of water,
viscosities of air and water and wavelength of the un-
stable wave.

MATHEMATICAL  FORMULATION

1. The orr-sommerfeld equation

We consider the growth (or decay) of a two-
dimensional, periodic perturbation within a viscous and
incompressible air-water coupled, parallel flow with a
mean velocity   U (z) , where z is in the vertical axis with
the mean air-water interface located at z = 0 and the
subscript = a or w stands for the variable of air or
water, respectively.  At the interface between the air and
the water, the perturbed deviation from the mean inter-
face is

η(x, t) = ℜ(ξexp[i(kx − ωt)]), (1)

where ξ is the complex perturbed amplitude, k = kr + iki

is the complex wavenumber and is the complex cyclic
frequency.  A temporal instability means that for a
specified real wavenumber k = kr the temporal growth
rate ℑ(ω) = ωi > 0.  On the other hand, a disturbance
grows spatially when ℑ(k) = ki < 0 for a specified real
cyclic frequency ω = ωr.

The velocity vector of the flow is considered to
consist of the primary mean velocity and a perturbed
velocity as

  u (x, z, t) = [U (z) + u ' (x, z, t)] i + w ' (x, z, t) j .    (2)

For incompressible flow the perturbed velocity
can be further expressed by the complex streamfunction,

   Ψ (x, z, t) = φ (z) exp [i(kx – ωt)] , (3)

as

   
u ' = ℜ

∂Ψ
∂z = ℜ

dφ
dz

exp [i(kx – ωt)] ,

   w ' = ℜ –
∂Ψ
∂x = ℜ (– ikφ exp [i(kx – ωt)]) .       (4)

Substituting the velocity vector into the Navier-
Stokes equations, combining the x- and y-component
equations by eliminating the pressure gradient terms,
and neglecting the nonlinear perturbed terms results in
the well-known Orr-Sommerfeld equations,

   iν φ (iν) + (U k – i2k 2ν ) φ " + (– U k 3 – U "k + ik 4ν ) φ

   = ω φ " – k 2φ , (5)

where  ν  is the kinematical viscosity of air or water.
The total pressure  p , which is needed in deriving the
interfacial normal-stress condition, can be obtained
readily from the x- component linearized Navier-Stokes
equation as

   
p = ρ ω

k
– U

dφ
dz

+
dU
dz

φ

   
– i

ν
k

d 3φ
dz 3

– k 2dφ
dz

– ξg exp [i(kx – ωt)] ,
(6)

where  ρ is the density of air or water and g is the
gravitational acceleration.

2. Boundary conditions

For the fourth-order differential equation (5) in
both the air and the water region, four boundary condi-
tions are required at the interface.  The physical condi-
tions that both the vertical and horizontal velocities are
continuous across the interface and the balance of the
normal and tangential stresses at the interface give rise
to two kinematic and two dynamic conditions.  For the
primary mean flows, these conditions imply that

Ua(0) = Uw(0) ≡ U0  and     vaU a
' (0) = vwU a

' (0) ≡ τ 0 ,

(7,8)

where U0 is the interfacial mean velocity.  For the



Journal of Marine Science and Technology, Vol. 12, No. 3 (2004)202

perturbed flows, continuity of the velocities across the
interface is:

ua(x, η, t) = uw(x, η, t) ≡ u0 (9)

and

wa(x, η, t) = wa(x, η, t) ≡ w0. (10)

Expressing the velocities in (9) and (10) by Taylor
series about z = 0 and neglecting the nonlinear terms,
leads to the linearized kinematic conditions at z = 0 as

   U 0φw
' – U w

' φw – U 0φa
' + U a

' φa = ω 1
k
φw

' – 1
k
φa

' , (11)

and

φw − φa = 0. (12)

In reaching (11), the vertical velocity at the inter-
face wa = ww is related to the perturbed displacement ξ
through

   w 0(x, η, t) =
Dη
Dt

=
∂η
∂t

+ u 0(x, η, t)
∂η
∂x . (13)

Linearization of (13) results in the relationship
between the perturbed amplitudes of velocity and the
surface displacement at z = 0 as

   ξ =
kφa(0)
ω – kU 0

=
kφw(0)
ω – kU 0

. (14)

As for the dynamic interfacial conditions, the bal-
ance of stresses and surface tension requires that ,

     (Tw – Ta) ⋅ n = – σ ∇ ⋅ n , (15)

where Ta and Tw are the stress tensors of air and water
at the interface, n  is the normal vector of the interface
and σ is the surface tension.  Decomposing the stress
balance equation (15) into the components along the
normal and tangential direction of the interface gives
rise to the normal and tangential dynamic conditions at
the interface z = η as

   
– p w +

2µw

(1 + ηx
2)

ηx
2∂u w
∂x – ηx

∂u w
∂z +

∂w w
∂x +

∂w w
∂z

   
– p a +

2µa

(1 + ηx
2)

ηx
2∂u a
∂x – ηx

∂u a
∂z +

∂w a
∂x +

∂w a
∂z

   =
ηxx

(1 + ηx
2)3 / 2

σ (16)

and
   µw

(1 + ηx
2)

– 2ηx
∂u w
∂x –

∂w w
∂z + (1 – ηx

2)
∂u w
∂z –

∂w w
∂z

   
–

µa

(1 + ηx
2)

– 2ηx
∂u a
∂x –

∂w a
∂z + (1 – ηx

2)
∂u a
∂z –

∂w a
∂z

 = 0 , (17)

where the dynamic viscosity    µ = ρ v .  Representing
the velocities in terms of the streamfunction and substi-
tuting the expression of pressure (6), the linearized
normal- and tangential-stress conditions at the mean
interface z = 0 are

   U w
' φw – g + σ

ρw
k 2 ξ – (U 0 – i3vwk) φw

' – i
vw

k
φw

'''

   – sU a
' φa + sgξ + s(U 0 – i3vak) φa

' + is
va

k
φa

'''

   = ω – 1
k
φw

' + s
k
φa

' , (18)

and

   U 0φw
" – (U w

" – k 2U 0) φw – rU 0φa
" + r(U a

" – k 2U 0)φa

   = ω 1
k
φw

" + kφw – r
k
φa

" – rkφa (19)

where the density ratio r = µa/µw and the dynamic
viscosity ratio s = ρa/ρw.

3. Mean velocity profiles

The mean velocity profiles in the air and water,
  U (z), are considered to be time-independent in all of

the linear stability published so far.  For the basic flow
in the air, the linear-logarithmic profile originally pro-
posed by Miles (1957b) has become more or less stan-
dard [(e.g., Valenzuela (1976), Kawai (1979), and van
Gastel et al. (1985)].  The profile, which characterizes
a turbulent boundary layer, is given by matching the
linear distribution:

  U a(z) = U 0 +
u * a

2 z
va

, (20)

in the laminar sublayer (0 ≤ z ≤ z1) with the logarithmic
distribution of well-mixed turbulence region:

   U a(z) = U 0 + mu * a +
u * a
κ α – tan 1

2
α , (21)

outside the sublayer (0 ≤ z ≤ z1), where the variable α is
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given by

   α = ln β + (β2 + 1)
2

, β =
2κu * a

va
(z – z 1) ,

where u*a is the friction velocity of air, κ ≈ 0.4 is von
Karman constant, z1 = mva/u*a is a measure of the
thickness of the viscous sublayer with the parameter
ranging from 5 to 8.  Note that both the first and second
derivatives of the linear-logarithmic profile (20, 21) are
discontinuous at the matching height z = z1, as shown in
Fig. 1 for the example of u*a = 15 cm s−1 and m = 5.
Wheless and Csanady (1993) claimed that such
discontinuities would cause troubles in their numerical
solution of the eigensystem using the compound matrix
method.  However, as will be reported later, we have not
encountered any difficulties in our computations using
the linear-logarithmic profile.

On the water side, the flow is driven by the surface
stress attributed to the air flow.  In the early onset of
wind, the water flow still remains to be laminar and
parallel.  After van Gastel et al. (1985), the velocity
profile of water can be approximated by an exponential
distribution:

   
U w(z) = U 0exp

ρa
µw

u * a
2

U 0
z , (22)

where    L S ≡ µwU 0 / (ρau * a
2 )  is the characteristic thick-

ness of the shear velocity profile given the air friction
velocity u*a and the drift velocity U0.  The profile
described by (22) closely resembles that observed in
Kawai7 at the initial appearance of wind wavelets.

NUMERICAL  METHOD

The Orr-Sommerfeld equation (5) subject to the
interfacial boundary conditions (11), (12), (18), and
(19) forms an eigensystem for the complex eigenvalue
ω (temporal instability problem) or k (spatial instability

problem) and the complex eigenfunctions φa(z),
φw(z) and ξ.  For a temporal instability problem, the
eigensystem is linear for the complex frequency ω.
Whilst in a spatial instability problem, the eigenvalue
system becomes nonlinear for the complex wavenumber
k.  We consider temporal growth of the wind waves
in this study, and solve for the complex frequency ω
for the real wavenumber k = kr.  Solution of the gener-
alized eigenvalue problem provides the dispersion
relation,

ω = ω(k, r, s, Rew, Fr, We), (23)

and the corresponding eigenfunctions which determine
the velocities and pressure disturbances of the instabil-
ity waves.  The nondimensional parameters in (23) are
the Reynolds number of water flow Rew = U0LS/vw, the
Froude number   Fr = U 0

2 / gL S  and the Weber number
   We = U 0

2L S(ρw – ρa) / σ . .
It is difficult to solve the eigensystem analytically,

and we generally resort to numerical solution1.  To
integrate numerically the differential equations (5), (11),
(12), (18), and (19), the complex streamfunction ampli-
tudes φa(z) and φw(z) are discretized on the discrete
grids z = zk, and the differential operators with respect
to z are approximated using the second-order difference
scheme.

The vertical domains of the air and water flows
extend to z = ±∞.  In order to make the system finite, the
vertical domains in both air and water are truncated at
sufficient large distances away from the interface.  At
the truncated boundaries z  = Ha and −Hw,  the
streamfunctions φa and φw are assumed to decay expo-
nentially according to

   lim
z → H a

φaekz = ca  and    lim
z → H w

φwe – kz = cw , (24)

where ca and cw are constants.  Accordingly, the dif-
ferential terms in the discretized Orr-Sommerfeld
equations at the truncated boundaries can be simplified
in terms of the unknown streamfunctions within
the computational domain.  Different values of Ha

and Hw have been tested in the numerical computations,
and their effects on the solutions were found to be
minimal.

To evaluate the second and fourth derivatives
in the Orr-Sommerfeld equation at the interface,
two artificial grids are extended below/above the inter-
face for the air/water flow streamfunction.  This
increases the number of unknowns by four.  For a grid
system with Ma and Nw grids in the air and water
regions, respectively, this leads to Ma + Nw + 5 un-
knowns including the amplitude of surface deviation
ξ and the discrete streamfunctions    φa(z k) ≡ φk

a  and

0.6

0.4

0.2

0

U

z

U' U"
0 0 0100 1000 -3000200

Fig. 1. Velocity profiles Ua(z) of air and its first and second derivatives
for u*a = 15 cm s−1 and m = 5 .
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   φw(z k) ≡ φk
w .  The discretized equations, including Ma +

Nw + 1 discretized Orr-Sommerfeld equations and four
interface boundary conditions, result in a discrete
eigensystem,

[A]{ϕ} = ω[B]{ϕ}, (25)

where [A] and [B] are the complex coefficient matrices,
and the vector of eigenfunction

   {ϕ} = {φ– M a
w , φ– M a + 1

w , , φ– 1
w , φ0, φ2

w, ξ,

   φ– 2
a , φ– 1

a , φ1
a, φ2

a, , φN w – 1
a , φN w

a } , (26)

with    φ0 = φ0
w = φ0

a .  The equations of the complex
eigensystem (25) are then solved numerically using QZ
algorithm of LAPACK (1999) [1] for the complex eigen-
value ω and the vector of eigenfunction {ϕ}.

RESULTS

1. Validation of the numerical method

In order to validate the numerical procedures
and also to determine the resolution of discretiza-
tion for the calculations, we perform convergence
tests by increasing the number of discrete grids.  The
tests are carried out for the perturbed flows with
wavenumbers k = 1 cm−1, 5 cm−1, and 9 cm−1 in a
mean coupled flow with air friction velocity u*a = 24 cm
s−1 and interfacial mean drift velocity U0 = 10.2 cm s−1.
The case of k = 1 cm−1 is the lowest wavenumber (the
longest wavelength) considered in our computations,
which also requires the finest grid resolution.  Whilst k
= 5 cm−1 corresponds to the wavenumber of the most
unstable wave with the highest growth rate ωi.  The
truncated boundaries on both air and water sides locate
half of the wavelength away from the interface.

The computed complex eigenvalues ω = ωr + iωi

for the test cases using different grid resolutions are
shown in Table 1.  For the calculations of the short (k =
9 cm−1) and the most unstable (k = 5 cm−1) perturbed
waves, both real and imaginary parts of the computed
eigenvalues converge on the third decimal place when
the grid number Ma = Nw ≥ 500.  With the same grid
resolution, the long wave (k = 1 cm−1) solution can only
achieve second decimal place convergence.  This,
however, is sufficient for the present study, and we
decide to use Ma = Nw = 500 in the following calculations.

We further validate the present numerical pro-
cedures by comparing the computed eigenvalues with
the asymptotic solutions of van Gastel et al. (1985)
and the numerical results obtained by Kawai (1979).
Variations of the energy growth rate, β ≡ 2ωi, with
the wavenumber k are showed in Fig. 2 from the
present calculations as well as those by van Gastel
et al. (1985) and Kawai (1979).  Four air friction veloci-
ties u*a = 13, 17, 21.4 and 24.8 cm s−1, are considered
with the corresponding interfacial drift velocities of
water U0 = 7.5, 9.6, 9.8, and 10.2 cm s−1.  Other param-
eters used are:  va = 0.15 cm2 s−1, vw = 0.01 cm2 s−1, ρa =

Table 1. Convergence property of the computed eigenvalues using different grid resolutions for the perturbed wave with wavenumber
k = 1 cm−1, 5 cm−1 and 9 cm−1, in a mean flow of u

*a
 = 24.8 cm s−1 and U

0
 = 10.2 cm s−1

Grid number k = 1 cm−1 k = 5 cm−1 k = 9 cm−1

Ma = Nw ω = ωr + ωii ω = ωr + ωii ω = ωr + ωii

100 32.402+1.344i 146.518+1.504i 315.527+0.552i
300 33.200+0.679i 146.524+1.444i 315.559+0.528i
500 33.383+0.626i 146.515+1.449i 315.566+0.524i
700 33.413+0.617i 146.519+1.445i 315.569+0.524i
900 33.416+0.615i 146.519+1.445i 315.570+0.524i

0 2

4

3

2

1

0

k (cm−1)

(s−1)β 

6

u*a = 24.8 cm s−1

24.4 cm s−1

17 cm s−1

13 cm s−1

8 10

Fig. 2. Variations of the energy growth rate β = 2ωi against the
wavenumber k for four values of air friction velocity u*a = 13,
17, 21.4, and 24.8 cm s−1.  The curves are the computed results
in the present study.  The solid symbols are the numerical
results of Kawai (1979),7 and the open symbols are the theoreti-
cal values of van Gastel et al. (1985).10
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0.0012 g cm−3, ρw = 1 g cm−3 and σ = 75 dyn cm−1.  For
low wind speeds (u*a = 13 and 17 cm s−1), the compari-
sons show good agreement between the present results
and those of van Gastel et al. (1985) and Kawai (1979).
Differences in the three results increase for the cases of
high wind speeds (u*a = 21.4 and 24.8 cm s−1).  The
present computed growth rates are slightly lower than
the numerical values of Kawai7 but higher than theo-
retical predictions of van Gastel et al. (1985).

Wheless and Csanady (1993) solved the same
eigensystem as in the present study but used the com-
pound matrix method as suggested by Ng and Reid
(1979).  They claimed that their computational method
could not cope with the discontinuity in the second
derivative of the logarithmic-linear profile (20, 21)
used in the present and previous investigations.  They
therefore constructed a new smooth profile based on an
integrated error function with a small second derivative.
The calculated growth rates of Wheless and Csanady
(1993) are almost a factor of four larger than the results
of Kawai (1979).  [Note that the results of Kawai
(1979), which are energy growth rates, β = 2kci, were
mistakenly compared with the amplitude growth rates,
kci, by Wheless and Csanady (1993)].  Wheless and
Csanady (1993) accordingly suspected that the large
difference was attributed to the sensitivity of the calcu-
lations to the mean flow profiles.  The quantitatively
good agreement among the present results and those of
Kawai (1979) and van Gastel et al. (1985), as shown in
Fig. 1, however, implies that the calculations of Wheless
and Csanady (1993) could be erroneous.

With the confidence in our numerical method we
then focus on studying the effects of external flow
variables on the instability of the perturbed wave.
Specifically, the parameters we explore include the
friction velocity of air u*a, the surface tension of water
σ, the viscosities of air va and water vw, and the surface
drift velocity U0.

2. Effect of the friction velocity of air

Variations of the energy growth rate β = 2ωi against
the wavenumber k for four values of air friction velocity
u*a = 13, 17, 21.4 and 24.8 cm s−1 are shown in Fig. 2.
The corresponding variations in phase velocity c = ωr/
k are plotted in Fig. 3.  For any air friction velocity, there
exists a wavenumber with a maximum growth rate and
also a wavenumber with a minimum phase velocity.
Contrary to the conclusion of Kawai (1979) and also of
Wheless and Csanady (1993), the two wavenumbers do
not coincide.  The maximum growth rate shifts to higher
wavenumber with increasing u*a.  The wavenumber at
which the minimum phase velocity occurs, however,
seems not to correlate with the change of u*a.

For an unstable perturbed wave with a particular
wavelength 2π/k, the growth rate β increases monotoni-
cally with the air friction velocity.  This, nevertheless,
is not the case for the phase velocity c.  As shown in
Fig. 3, the phase velocity increases with decreasing air
friction velocity for the three values u*a = 17, 21.4 and
24.8 cm s−1.  The phase speeds of the unstable wave of
u*a = 13 cm s−1, however, decrease to be less than that u*a

= 17 cm s−1 of for wavenumbers below approximately 4
cm−1.  This implies that there exists a critical value of
u*a, below which the phase speed of an unstable wave
would decrease with u*a.  Such a finding has been
overlooked by Wheless and Csanady (1993) as the range
of u*a they have considered did not include the critical
air friction velocity.

The unstable mode with the maximum growth rate
βmax is usually the first visible wavelet under a constant
wind condition as has been observed in the experiments
of Kawai (1979).  Kawai (1979) further showed numeri-
cally that the maximum growth rate βmax is linearly
proportional to   u * a

3.5 .  The analyses of van Gastel et al.
(1985) however reveal that    βmax ∝ u * a

3  for the range of
friction velocities 5 cm s−1 ≤ u*a ≤ 40 cm s−1.  The
variation of the present numerical βmax with u*a is
shown in Fig. 4 in logarithmic-scale coordinate.  Power
fitting of the data is also plotted.  The result indicates
that there indeed exists a simple functional relation
between βmax and u*a, and the relation is the same as that
obtained by Kawai (1979):    βmax ≈ u * a

3.5 .

3. Effect of the viscosities of air and water

To understand the effects of fluid viscosities on
the initial development of the perturbed waves, varia-
tions of the growth rate and phase speed with the
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6 8

Fig. 3. Variations of the phase velocity c = ωr/k against the wavenumber
k for four values of air friction velocity u*a = 13, 17, 21.4, and
24.8 cm s−1.
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wavenumber for different viscosities of air and water
are shown in Fig. 5 and 6, respectively.  The three
kinematical viscosities, va = 0.12, 0.15, 0.18 cm2 s−1

and vw = 0.017, 0.01, 0.005 cm2 s−1, correspond to the
values at  low, normal and high temperatures,
respectively.  Reducing the air viscosity would increase
the growth rate, but the impact is minor (Fig. 5).  The
phase speed   of the unstable wavelet is virtually unaf-
fected by the kinematical viscosity of air.  In contrast,
the growth rate increases substantially when the viscos-
ity of water decreases (Fig. 6).  Significant shift in
the wavenumber of the maximum growth rate βmax is
also observed when varying the water viscosity.  Ac-
companying the abrupt increase in the growth rate with

3.5
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2.5
2

1.5

1

0.5

12 14 16 18
u*a (cm−1)

20 22 24 26

max(s−1)β 

Fig. 4. Variation of the maximum growth rate βmax with the air
friction velocity u*a.  The square symbols are the numerical
results, and the line is the least-square fitting.
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Fig. 5. Variations of the growth rate β = 2ωi and phase speed c = ωr/k
with the wavenumber k for different values of air viscosity: va

= 0.12 cm2 s−1 (dashed curves), 0.15 cm2 s−1 (solid curves), and
0.18 cm2 s−1 (dash-dot curves).  The air friction velocity u*a =
13 cm s−1.
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Fig. 6. Variations of the growth rate β = 2ωi and phase speed c = ωr/k
with the wavenumber k for different values of viscosity of
water: vw = 0.005 cm2 s−1 (dashed curves), 0.01 cm2 s−1 (solid
curves), and 0.017 cm2 s−1 (dash-dot curves).  The air friction
velocity u*a = 13 cm s−1.

reducing water viscosity, the phase speed of the un-
stable wave decreases drastically.  Such a feature be-
comes more significant for waves of high wavenumbers
or short wavelengths.

4. Effect of the surface tension of water

The surface tension at an air-water interface is
affected by the temperature and salinity of water, and
also by the presence of surface-active materials
(surfactants).  The presence of salts in water increases
the intermolecular attraction and the surface tension of
seawater is therefore slightly greater than that of fresh
water at the same temperature.  Increasing the water
temperature, on the other hand, reduces the surface
tension by weakening the molecular attraction.  The
presence of surfactant films on the water surface also
decreases the surface tension significantly, and the in-
duced “Plateau-Marangoni-Gibbs effect” consequently
dampens the surface waves generation as show by
Gottiferedi and Jameson (1968), Creamer and Wright
(1992), and Saetra (1998).  To study the impact of
surface tension on the wind wave generation, three
surface tensions, σ = 75 and 70 dyn cm−1, corresponding
to the values at low (≈ 2°C), normal (≈ 20°C) and high
(≈ 56°C) water temperatures, are used to perform the
stability analyses.  Fig. 7 shows the variations of the
growth rate and phase speed with the wavenumber for
the three values of surface tension.  Reducing the sur-
face tension increases the growth rate and decreases the
phase velocity of the instability waves.  However, very
minor effects of the surface tension on the initial wave-
lets are observed for the large range of temperature-
surface tension dependence considered.
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Fig. 7. Variations of the growth rate β = 2ωi and phase speed c = ωr/k
with the wavenumber k for different values of surface tensions:
σ = 78 dyn cm−1 (dash-dot curves), 75 dyn cm−1 (solid curves),
and 70 dyn cm−1 (dashed curves).  The air friction velocity u*a

= 13 cm s−1.

CONCLUDING  REMARKS

The instability of a perturbed wave in an air-water
coupled shear flow is analyzed with the application to
the generation of initial wavelets at the air-sea interface.
An efficient and robust numerical method is developed
for such a purpose.  Comparison of the computed growth
rates of instability waves with previous numerical and
asymptotic analyses validates the accuracy of the present
method.  The numerical procedure is then applied to
explore the impact of the flow parameters on the initial
development of wind-generated waves.  The major con-
clusions drawn from this study are:
(1) There exist a maximum growth rate and a minimum

phase velocity for the range of the wavenumber of
instability waves.  The maximum growth rate βmax of
an instability wave increases with the air friction
velocity u*a, and is linearly proportional to   u * a

3.5 .
There is no apparent correlation between the maxi-
mum growth rate and the minimum phase velocity
wavenumber.

(2) Reducing the air viscosity only slightly raises the
growth rate of an instability wave, but the phase
speed is virtually unaffected.  In contrast, the growth
rate increases substantially when the viscosity of
water decreases.  Significant shift in the wavenumber
of the maximum growth rate βmax is also observed
when varying the water viscosity.

(3) For the surface tension varying with a wide range of
temperature [O(1°C) to O(102°C)], the impact on the
generation of instability wave is minor.

All of the theoretical models concerning the initial
wind-generated waves so far are based on the analysis
of the temporal growth of the instability waves.  Recent

experiment by Caulliez et al. (1998), however, showed
that the scales of the most spatially amplified waves
could differ from the scales of the most temporally
amplified waves.  This implies that the convective
instability mechanism might also play an important role
as the temporal instability.  The major difficulty in
analyzing the spatial instability arises from the need to
solve a system of nonlinear equations for the complex
eigenvalue of wavenumber.  This difficulty, however,
can be resolved by the searching procedure outlined in
Lin and Chen (1998) and utilizing the present efficient
numerical implementation for temporal stability
analysis.  Such a numerical procedure for spatial insta-
bility analysis of the air-water coupled flow is under
current development.
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