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ABSTRACT

In this paper, the problem of static output feedback stabilization
is considered.  By congruence and state-coordinate transformations,
a convex condition for static output feedback stabilization is given in
terms of a matrix linear inequality while subject to an equality
constraint.  To facilitate stabilization design via LMI conditions, the
equality constraint is satisfied by imposing a structure constraint on
matrix variable.  Moreover, a numerical construction algorithm and a
sufficient condition for the presented convex condition are given as
well.  Finally, numerical examples demonstrated the utility of the
proposed approach for static output feedback stabilization.

INTRODUCTION

The static output feedback problem concerns find-
ing a static or constant feedback gain to achieve certain
desired closed-loop characteristics.  The output feed-
back control problem is much more difficult to solve
when compared to state feedback control problem.
Though many important control problems using state
feedback can be solved via linear matrix inequality
(LMI) techniques [3], this is not the case for the avail-
able design techniques for output feedback control; if
on one hand the existing convex approaches are based
on sufficient conditions they may be restrictive, on the
other hand the approaches based on necessary and suf-
ficient condition are not numerical tractable [12, 15].

A variety of static output feedback problems were
studied by many researchers with analytical and nu-
merical methods, for example, the comprehensive sur-

vey given in [2, 14] One approach is based on the fact
that the existence of a static output feedback gain is
equivalent to a positive definite matrix variable Q satis-
fying simultaneously two Lyapunov inequalities, where
one inequality related with Q and the other with Q−1

[11].  In order to handle this matrix inversion condition,
various iterative schemes have been developed such as
the rank minimization algorithm [6], the min-max algo-
rithm [8], and the product reduction algorithmn [9].
Another iterative approach presented in [4] was derived
based on a necessary and sufficient condition.  As for
the non-iterative approach, a sufficient condition for
static output control was given in [5] for systems with
measurement matrix C full row rank or input matrix B
full column rank.  In [13], another non-iterative ap-
proach is presented for a certain class of plants with
matrix product CB full row rank.

In this paper, a convex condition of static output
feedback stabilization is proposed for system with the
measurement matrix C full row rank or the input matrix
B full column rank.  The convex conditon are expressed
as an LMI condition subject to an equality constraint.
The equality constraint is established sufficiently by a
Lyapunov matrx Q with block digonal structure.  Then,
a numerical construction algorithm and a sufficient
condition via LMI method for the proposed convex
condition for static output feedback stabilization are
given.  Finally, two numerical examples are presented
to demonstrate the capability of the proposed approaches.

CONVEX  AND LMI  CONDITIONS

Consider a linear time invariant system G de-
scribed by the state-space equations

  
G:

x = Ax + Bu ,
u = Cx , (1)

where x ∈ Rn is the state, u ∈ Rm is the control input, and
y ∈ Rp is the measurement.  It is assumed that the matrix
pairs (A, B) and (A, C) are assumed to be, respectively,
stabilizable and detectable, and the rank conditions
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either rank(C) = p or rank(B) = m.  The aim is to
compute a static output feedback law u = Fy such that
the stability of the closed-loop syetm Acl = A + BFC is
ensured.  Therefore, the closed-loop system must admit
a symmetric Lyapunov function P > 0 such that

  Z: = Acl
T P + PAcl

= ATP + PA + CTFTBTP + PBFC. (2)

By denoting the square and non-singular matrix
  C

T
= [C T T c

T ]  with Tc chosen to be an orthogonal basis
of the null space of the full row rank output matrix C, the
equation (2) can be written as

  Z = ATP + PA + C
T

F 0
T
BTP + PB F 0 C < 0 ,

(3)

By using the denotation P−1 := Q and the congru-
ence transformation QZQ, we have the equivalent stabi-
lizing conditon

  Z Q: = QZQ = QAT + AQ + QC
T

F 0
T
BT

  + B F 0 CQ < 0 . (4)

The following proposition gives a convex con-
strained condition for the numerical construction of (4).
Proposition 1  System (1) with matrix C full row rank
is stabilizable by static output feedback u = Fy if there
exist matrices Q > 0, L ∈ Rm × p such that

  Z d = Q dA
T

+ AQ d + L 0
T
B

T
+ B L 0 < 0 ,     (5)

  CQT c
T = 0 , (6)

where    Q d = CQC
T
, A = CAC

– 1
, B = CB.  Moreover ,

when the conditions (5) and (6) are feasible, a stabiliz-
ing static output feedback is F = L(CQCT)−1.
Proof  Premultiplying and postmultiplying the matrix
inequality (4) by  C  and  C

T
, and according to the

definition of Qd,  A,  and  B,  we have

  Z CQ: = CQZQC
T

  = CQATC
T

+ CAQC
T

+ CQC
T

F 0
T
BTC

T

  + CB F 0 CQC
T

  = Q dA
T

+ AQ d + Q d F 0
T
B

T
+ B F 0 Q d < 0 .

(7)

If matrix Q satisfies the equality constraint

  CQT c
T = 0  in (6), the matrix Qd is shown to be diagonal,

  Q d = CQC
T

= diag (CQC T, T cQT c
T) .   Then, by the deno-

tation [F 0]Qd = [F(CQCT) 0] : = [L 0], we have the
matrix inequality (5) which is linear in the matrix vari-
ables L and Q.  The resulting static output feedback gain
is F = L(CQCT)−1.  This completes the proof.           ■

The constraint of matrix equation   CQT c
T = 0  in (6)

is not readily to be solved by using the MATLAB LMI
Toolbox [7].  A sufficient condition for (6) is to find a
matrix M ∈ Rp × p such that

CQ = MC, (8)

which was also presented in [5] for derivation of the
static output feedback stabilization in a different way of
formulation.  Then we have   CQT c

T = MCT c
T = 0 ,  automa-

tically.  In [10], the matrix equality (8) is shown to be
equivalent to imposing a block diagonal structural con-
straint on the matrix variable Q.  For a full row rank
output matrix C, the singular value decomposition of C
can be represented as

C = U(C0 0)VT, (9)

with U ∈ Rp × p and V ∈ Rn × n unitary matrices and C0 ∈
Rp × p a diagonal matrix with positive diagonal elements
in decreasing order.  This equivalent condition on ma-
trix equation CQ = MC is restated as the following
lemma.
Lemma 1  For the given output matrix C ∈ Rp × n with
rank(C) = p and the symmetric matrix Q ∈ Rn × n, there
exists a matrix M ∈ Rp × p such that CQ = MC if and only
if Q can be represented as

  
Q = V

Q 1 0
0 Q 2

VT, (10)

where Q1 ∈ Rp × p and Q2 ∈ R(n − p) ×  (n − p). Moreover, the
matrix M is found to be   M = UC 0Q 1C 0

– 1U T .
The structural constraint (10) as well as the equal-

ity condition (8) on Q is a sufficient condition and
shows conservativeness. Indeed, for the case of a partial
state measurement, C = [Ip   0] and  T c

T
= [0  In − p]T, the

matrix equation (6),   CQT c
T = 0  is exactly equivalent to

the block diagonal structural constraint matrix on Q,
that is, Q = diag(Q1, Q2), which is the same as the
statement in Lemma 1.  However, in order to relieve this
diagonal structure constraint for the considered system
(1) in a general form, a heuristic construction for the
stabilizing static output control law u = Fy is given in
the following algorithm.
Algorithm 1 Given the system (1) with output matrix C
full row rank to be stabilized by the static output
feedback, u = Fy.
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Step 1: Pick the small positive number εi,j, i = 1, ..., p,
and j = 1, ..., n − p, for the magnitude bound of the
elements of matrix product   CQT c

T(i, j) .
Step 2: Solve for Q > 0 and L by minimize α subject to
the following LMI constraints

Zd − 2αQd < 0, (11)

   – ε i, j < r iCQT c
Tl j

T < ε i, j , (12)

where ri ∈ R1 × p with the i-th element equals to one and
others equal to zeros, lj ∈ R1 × (n − p) with the j-th element
equals to one and others equal to zeros.  Denote α* as
the achieved minimum value of α.
Step 3: If α* ≥ 0, go to Step 6.
Step 4: If α* < 0, compute the static output feedback
gain F = L(CQCT)−1.  If  Z CQ  in (7) is negative definite,
the resulting F is a stabilizing static output feedback
gain.  Stop.
Step 5: If εi, j < δε for the prescribed tolerance δε, go to
Step 6, else choose smaller number for εi, j, then go to
Step 2.
Step 6: the system (1) may not be static output feedback
stabilizable. Stop.

The Algorithm 1 is intuitively simple in the pro-
cess but needs iteration.  Alternatively, the following
proposition gives a sufficient condition in terms of LMI
constraints by relieving the equality condition   CQT c

T = 0
in Proposition 1 as    CQT c

T < ε  for a small positive ε.
Proposition 2 System (1) is stabilizable by static output
feedback with F = L(CQCT)−1 if for a given small posi-
tive number ε, there exist matrices Q > 0, L ∈ Rm × p and
free parameter ξ such that the following LMI conditions
hold

  
CQC T > Ip ,

– eIn – p T cQC T

CQT c
T – eIp

< 0 ,

   – ξIp L T

L – Im

< 0 , (13)

   Z d + 2eξ B In < 0 . (14)

Proof From matrix inequality (7) with F = L(CQCT)−1,
we have

  
Z CQ = Z d + 0 BL(CQC T)

– 1
CQT c

T

  
+ 0 (BL(CQC T)

– 1
CQT c

T)
T

. (15)

In case that the equality condition   CQT c
T = 0  holds

as described in (6), the equation (15) simply leads to

  Z CQ = Z d .  In the general case, we have the following
inequality

  Z CQ < Z d + 2 B L (CQC T)
– 1

CQC c
T In .

(16)

By the LMI condition (13), we have

   λ (CQC T) > 1 , CQT c
T < ε, L < ξ ,

where   λ (⋅)  denotes for smallest eigenvalue.  Let the
symmetric matrix CQCT represented as CQCT = ∏Λ∏T,
where Λ is a diagonal matrix containing the eigenvalues
of CQCT and ∏ is a unitary matrix with columns made
up of the eigenvectors of CQCT.  We have,

   (CQC T)
– 1

= σ (ΠΛ– 1ΠT) = σ (Λ– 1) = 1
σ (Λ)

   = 1
λ (CQC T)

< 1 ,

where   σ (⋅)  and   σ (⋅)  denote for largest and smallest
singular values, respectively.  Then, (14) is obtained
from (16).  This completes the proof. ■

NUMERICAL  EXAMPLES

In this section, the utility of the propsed approaches
for static output stabilization is demonstrated through
two numerical examples.
Example 1: Consider the system presented in [5] with
state-space realization

  

A =
0 0 0 0
0 0 0 0
2 0 1 2
0 2 2 1

, B =
1 0
0 1
0 0
0 0

, C T =

4 – 2
– 3 2
3 – 1
0 2

.

The eigenvalues of A are located at {−1, 0, 0, 3}.
By using the Algorithm 1 with εi, j = 10−6, for i = 1, 2 and
j = 1, 2, we obtain α* = −0.2394 and the resulting static
output feedback gain

  
F =

– 27.361 – 35.398
– 49.781 – 67.773

.

The closed-loop eigenvalues are {−2.077 ± j1.395,
−9.347± j18.020}.  On the other hand, by the LMI
conditions presented in Proposition 2 for ε = 10−6, we
have ξ* = 1.202 × 105 and the static output feedback gain
is

  
F =

– 7.907 – 11.137
– 10.889 15.968

.
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The obtained closed-loop system is stable as well
with eigenvalues located at {−2.425 ± j7.889, −0.888 ±
j1.125}.
Example 2: Consider the satellite example presented in
[1] with dynamic equation

   J 1θ 1 + f(θ 1 – θ 2) + k(θ 1 – θ 2) = T
J 2θ 2 + f(θ 2 – θ 1) + k(θ 2 – θ 1) = 0 ,

where θ1 and θ2 are the attitude angles for the main
body and the instrumentation module, and T is the
control torque.  The state-space system matrices for

   x = (θ 1, θ 2, θ 1, θ 2)
T

, y = (θ1, θ2)T, u = T, are

  

A =
0 0 1 0
0 0 0 1

– k / J 1 k / J 1 – f / J 1 f / J 1

k / J 2 – k / J 2 f / J 2 – f / J 2

,

  
B =

0
0

1 / J 1

0

, C T =
1 0
0 1
0 0
0 0

.

For the parameter values J1 = 1, J2 = 0.1, k =
0.2450, f = 0.0188, the Algorithm 1 with ε = 10−6 gives
α* = −3.502 × 10−4 and static output feedback gain F =
[−9.680  −5.513].  The obtained closed-loop eigenval-
ues are located at {−0.003 ± j3.129, −0.065 ± j0.657}.  If
the conditions of Proposition 2 are utilized for given ε
= 10−6, we have ξ* = 0.480 and the stabilizing static
output feedback gain F = [0.035  −0.035].  The resulting
closed-loop eigenvalues are {−0.0004, −0.0789, −0.063
± j0.666}.

CONCLUSION

In this paper, we have presented a convex condi-
tion for the problem of static output feedback
stabilization.  This condition is expressed in terms of a
matrix inequality subject to an equality constraint.  To
facilitate the LMI construction for the proposed convex
condition, an iteratively numerical construction algo-
rithm is introduced and a sufficient condition is pre-
sented as well.  The numerical examples demonstrated
the utility of the proposed approaches for static output
feedback stabilization.
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