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ABSTRACT

Considering the effects of viscous shear stresses, a study of
squeeze-film behavior between porous parallel plates with finite
width is presented.  Based upon the Brinkman model (BM), two
general coupled Reynolds equations derived for curved surfaces [20]
are applied to predict the two-dimensional squeeze-film pressure and
thereafter the squeeze-film characteristics.  The results show that the
BM predicts quite different squeeze-film behaviors to those obtained
by using the slip-flow model (SFM) and the Darcy model (DM).
Comparing with the SFM, the viscous shear effects provide an in-
crease in the load-carrying capacity and lengthen the response time of
finite porous squeeze-film plates.  However, these trends are reversed
as compared to the DM.  On the whole, the effects of viscous shear
stresses of the BM upon the load-carrying capacity and the response
time are more pronounced for the plates tending to be wide.

INTRODUCTION

The investigation of squeeze-film characteristics
between porous surfaces plays an important role in
engineering and industrial applications.  To describe the
fluid motion through a porous matrix three models have
been used in the studies of hydrodynamic porous
bearings: the Darcy model (DM), the slip-flow model
(SFM) and the Brinkman model (BM).  In the DM,
Darcy’s law was adopted to govern the fluid flow in the
porous matrix and the no-slip condition was utilized at
the film/porous surface interface.  In the SFM, Darcy’s
law was used to describe the fluid flow in the porous
matrix but a tangential slip velocity is be taken into
consideration at the fluid/porous matrix interface by
Beavers and Joseph [1] and Beavers et al. [2].  Since the
artificial SFM takes into account the phenomena of slip
velocity at the film/porous matrix interface, an incom-

patible discontinuity of tangential velocity component
occurs across the interface.  According to the discussion
of Neale and Nader [14] in coupled flows within a
channel flow and a bounding porous medium, a viscous
shear term in the Brinkman equations matching the
stress across the interface is physically compatible with
the continuous velocity profile within the porous matrix.
Therefore in the BM, the Brinkman equations are adopted
to govern the fluid flow in the porous matrix and the
continuity conditions of velocities and shear stresses
are applied at the film/porous surface interface.  In the
conventional study of porous squeeze-film surfaces us-
ing the DM, porous squeeze-film behaviors are pre-
sented for journal bearings [3, 15], spherical bearings
[10], circular disks [11, 12], annular disks [20, 21], and
rectangular plates [18].  According to the SFM, the
effects of slip velocity on porous squeeze-film charac-
teristics are analyzed in journal bearings [13], circular
disks [9], annular disks [17], rectangular plates [19],
and plates with different shapes [16].  Applying the BM,
the viscous shear effects upon porous squeeze-film
characteristics were presented for journal bearings [6],
spherical bearings [8], and circular disks [7].  In a recent
study [5], the BM is applied to derive the general porous
squeeze-film Reynolds equations and to investigate the
squeeze-film behavior between infinite-width parallel
plates. Since the squeeze film motion of finite plates
may often occur in practical application, a further ex-
tension is needed.

The present study is concerned mainly with the
effects of viscous shear stresses in the squeeze-film
behavior between porous parallel rectangular plates.
Based upon the Brinkman model, two coupled Reynolds
equations governing the squeeze-film pressure are solved
numerically.  Compared with the Darcy model and slip-
flow model, the squeeze film characteristics are pre-
sented for different values of permeability parameter
and length-to-width ratio.

ANALYSIS

Fig. 1 shows the squeeze-film geometry between
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porous parallel rectangular plates of length L and width
D at the section plane of y = 0.  The lower plate with a
porous facing of thickness H is fixed, and the upper
plate has a squeezing velocity dh/dt.  The lubricant is
taken to be an incompressible Newtonian fluid having
constant properties.  In addition to the conventional
thin-film lubrication assumptions, it is assumed that the
porous material is homogeneous and isotropic, the flow
in the porous matrix is laminar, and the pressure gradi-
ent across the porous medium is a unknown function g
(x, y).  According to Lin et al. [5], the two coupled
Reynolds equations governing the film pressure p and
the unknown function g can be written in the following
form.

   
(h *3 + Fa

*)
∂2p

∂x 2
+

∂2p

∂y 2
– 6G a

* K 1/2

δr
3

∂2g
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+

∂2g

∂y 2
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12µ
h 0

3
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dt (1)
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where h0 denotes the initial film thickness, K is the
permeability of porous material, δr = h0/K1/2 and h* = h/
h0.  The expressions   Fa

*, G a
*, Fb

*
 and   G b

*
 are functions of

the permeability K, the porous-facing thickness H, the
dimensionless film thickness h* and the parameter α ,
and are given in (5).  The parameter α  is defined as

  α = µ
µ

1/2

(3)

where µ  represents the effective viscosity of fluid in the
permeable matrix which can be assumed to be different
in value from µ.  Expressed in a dimensionless form the
two coupled Reynolds equations are given by
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where the non-dimensional variables are defined as

   h 0L =
h 0

L
, x * = x

L
, y * =

y
D

, λ = L
D

,

   
p * =

ph 0
3

µL 2(– dh/dt)
, g * =

gh 0
4

µL 2(– dh/dt)
(6)

Equations (4) and (5) are subject to the following
boundary conditions.

p* = g* = 0  at  x* = 0 (7)

p* = g* = 0  at  x* = 1 (8)

p* = g* = 0  at  y* = 0 (9)

p* = g* = 0  at  y* = 1 (10)

Equations (7), (8), (9) and (10) show that the
squeeze-film pressure p* at the four ends of the porous
parallel rectangular plates are equal to the ambient
pressure.  Since p* and the pressure in the porous region

 p *
 are zero at those ends, one has g* = 0 at the same

boundaries from the analysis in [5].
After eliminating the unknown p* from the coupled

Reynolds equations, one gets the partial differential
equation for .

   ∂2g *

∂x *2
+ λ 2 ∂2g *

∂y *2
– Ag* = B (11)

where

   
A = 2

δr
2

h 0L
2

h *3 + Fa
*

G a
*(h *3 + Fb

*) – G b
* (h *3 + Fa
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(12)

Fig. 1.  Squeeze-film mechanism for porous parallel rectangular plates.
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(13)

Using the central difference approximation for the
partial derivatives, equations (11) and (4) can be written
respectively in a numerical format.

   g i, j
* = γ1(g i + 1, j
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The mesh for the film region has 20 intervals in the
horizontal direction and 20 intervals across the plate
width.  The finite-difference system of equations (14)
and (15) are solved by using the Jacobi method of
iteration [4] with the accuracy:

  g i, j
*(k + 1) – g i, j

*(k)

g i, j
*(k)

< 0.0001 ,
p i, j

*(k + 1) – p i, j
*(k)

p i, j
*(k)

< 0.0001

(19)

where   g i, j
*(k)  and   p i, j

*(k)  denotes the   iterative values of   g i, j
*

and   p i, j
* , respectively.  Once the film pressure is

calculated, the squeeze-film characteristics can be
determined.

The load-carrying capacity is obtained by integrat-
ing the film pressure over the film region.

  
W =

y = 0

D

x = 0

L
pdxdy (20)

Expressed in terms of dimensionless quantities
and written in a numerical format, one has

   
W* =

y * = 0

1

x * = 0

1
p *dx *dy * ≅ Σ

i = 0

M

Σ
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N

p i, j
* ∆x *∆y *

(21)

The time, taken by the upper plate to move from
the h* = 1 to h* =   h 1

*
for a constant load, can be

calculated from equation (21).  Introduce the non-di-
mensional time

   
t * =

Wh 0
2

µL 3
t (22)

After rearranging the equation, the time-height
relationship is presented in the following form.

   dh *

dt*
= – 1

W*
≅ – 1

Σi = 0

M Σj = 0

N
p i, j

* ∆x *∆y *
(23)

This equation is a highly nonlinear equation of
first order.  The initial condition for the dimensionless
film height is:

h* = 1 at t* = 0 (24)

Applying the fourth-order Runge-Kutta method
[4] with a time step of ∆t* = 0.05, a numerical solution
of the film height is obtained.

RESUYLTS  AND  DISCUSSION

To reveal the effects of viscous shear stresses of
the BM, the Reynolds equation derived using the SFM
and DM by Prakash and Vij [16] is extended to evaluate
the squeeze-film pressure and thereafter the squeeze-
film characteristics (Appendix A).  To illustrate the
numerical results, the values of parameters are chosen
as: λ  = 0.1, 0.5, 1, h0L = h0/L = 0.01, HL = H/L = 0.02.
Since from the previous study [5] the effect of variation
of α  on the one-dimensional porous squeeze-film plates
is found to be small and negligible, the value of α  in the
BM is similarly chosen to be 1 in evaluating the squeeze-
film characteristics of porous parallel rectangular plates.

The comparison of dimensionless squeeze-film
pressure p* as a function of dimensionless coordinate x*
for different permeability parameter Φ predicted by the
three models is shown in Fig. 2.  Comparing with the
non-porous plates, the presence of porous-facing mate-
rial is observed to decrease the squeeze-film pressure.
This phenomenon can be explained from the fact that
the porous-facing material provides a path for fluid flow
toward the environments.  When the upper plate ap-
proaches the lower one, a part of the fluid is squeezed
out.  The remaining part will simply flow out through
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the porous material.  Therefore, the lubricant becomes
easier to flow out of the squeeze-film plates with the
porous facing in place. In this sense, the presence of the
porous facing decreases the resistance to lubricant flow
and makes the film pressure evenly distributed.  As
shown, an increasing value of Φ yields a decreasing p*.
Comparing with the DM, the viscous shear effects of the
BM decrease the pressure.  But for the artificial SFM,
the slip velocity may be over introduced and therefore
gives a lower squeeze-film pressure.

The comparison of dimensionless load-carrying
capacity W* as a function of permeability parameter Φ
for length-to-width ratio λ  = 1 predicted by using the
BM, SFM and DM is presented in Fig. 3.  Since the
presence of the porous facing decreases the squeeze-
film pressure, the integrated load-carrying capacity is
similarly affected.  A decreasing value of W* is ob-
tained with increasing value of Φ.  The BM results in a
lower load-carrying capacity as compared to that de-
rived by the DM, but the viscous shear effects provide
a higher W* as compared to the SFM.  Fig. 4 shows the
comparison of dimensionless load-carrying capacity
W* as a function of permeability parameter Φ for λ  =
0.5 and 0.1 predicted by using the BM, SFM and DM.
As the plates tend to be wide (λ  = 0.1), a larger amount
of the difference of the load-carrying capacity is ob-
served among the three models for moderate values of
Φ.

The comparison of time-height relationship for
different values of permeability parameter Φ with length-
to-width ratio λ = 1 predicted by using the BM, SFM and

DM is shown in Fig. 5.  The effects of viscous shear
stresses of the BM reduce the response time as com-
pared to the DM.  Comparing with the SFM, the viscous
shear effects lengthen the time required to achieve a
given film height.  Fig. 6 presents the comparison of
time-height relationship for different length-to-width
ratio λ  with permeability parameter Φ = 0.001 predicted
by using the BM, SFM and DM.  Since a larger differ-

Fig. 2. Comparison of dimensionless squeeze-film pressure p* as a
function of dimensionless coordinate x* for different Φ.

Fig. 3. Comparison of W* as a function of Φ with λ = 1 between the BM,
SFM, and DM.

Fig. 4. Comparison of W* as a function of Φ with λ = 0.5 and 0.1 between
the BM, SFM, and DM.
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ence of the load-carrying capacity among the three
models is observed when the value of length-to-width is
small, it also reflects in the response time.  Comparing
with the DM and the SFM, the effects of viscous shear
stresses of the BM upon the time-height relationship are
more pronounced as the plates tend to be wide.

As a design example, we consider the data of
porous parallel rectangular plates:

L = 2.5 cm

D = 2.5; 5 cm

H = 0.025 cm

h0 = 0.0025 cm

K = 6.25 × 10−12; 6.25 × 10−11; 6.25 × 10−10;

6.25 × 10−9; 6.25 × 10−8 cm2

From these data one has:

  h 0L =
h 0

L
= 0.001

  H L = H
L

0.01

   λ = L
D

= 1.0; 0.5

   Φ = KH
h 0

3
= 0.00001; 0.0001; 0.001; 0.01; 0.1

Following the procedure described in the above
analysis, the load-carrying capacity can be evaluated.
The results are shown in Table 1.

CONCLUSIONS

On the basis of the Brinkman model, the squeeze-
film characteristics of two-dimensional porous parallel
plates are presented in this paper.  Two coupled Reynolds
equations derived in a previous study [5] are applied to
evaluate the porous squeeze-film behavior.  According
to the results obtained, the BM predicts quite different
squeeze-film characteristics to those derived by the
slip-flow model and the Darcy model.  Comparing with
the Darcy model, the effects of viscous shear stresses of
the Brinkman model decrease the load-carrying capac-
ity and shorten the time required for the upper plate to
achieve a given film height.  However, the viscous shear
effects increase the load-carrying capacity and lengthen
the response time of finite porous squeeze-film plates as
compared to the slip-flow model.  Moreover, the influ-
ence of viscous shear stresses of the Brinkman model
upon the squeeze-film performance is more pronounced
when the plates tend to be wide.  A design example is
illustrated to demonstrate how the present study could
be used for the mechanism of porous parallel plates with

Fig. 5. Comparison of the film thickness h* as a function of t* with λ =
1 for the BM, SFM, and DM.

Fig. 6. Comparison of the film thickness h* as a function of t* with λ =
0.5 and 0.1 for the BM, SFM, and DM.
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finite width.
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APPENDIX A:  RESULTS  PREDICTED  BY  USING
THE  SFM  AND  DM

The dimensionless Reynolds equation for the two-
dimensional porous squeeze-film plates has been de-
rived by Prakash and Vij [16].

   ∂2p *

∂x *2
+ λ 2 ∂2p *

∂y *2
=

– 12

h *3(1 + ξ) + 12Φ
(25)

Where

   ξ =
3(δrh

* + 2α s)

δrh
*(α sδrh

* + 1)
(26)

In these equations, ξ accounts for the velocity slip
and α s denotes a dimensionless slip coefficient.  Ac-
cording to Beavers and Joseph [1] and Beavers et al. [2],
αs = 0.1 is used in the SFM.  The equation reduces to the
no-slip case of the DM as ξ is equal to zero.  Following
the same procedure as in the present study, one can
solve for the squeeze-film pressure and the squeeze-
film characteristics of finite porous parallel plates.

NOTATION

D width of the porous plate
g, g* pressure gradient across the porous medium,

g* =   gh 0
4

/µL2 (− dh/dt) (nondimensional)
h, h* film thickness, h* = h/h0 (nondimensional)
h0 initial film thickness
h0L h0L = h0/L
H wall thickness of porous surface
HL HL = H/L
K permeability of porous material
L length of the porous plate
p, p* squeeze-film pressure, p* =   ph 0

3
/µL2(−dh/dt)

(nondimensional)
t, t* time t* =    Wh 0

2t/µL 3
(nondimensional)

u, v, w velocity components in the film region
W, W* load-carrying capacity, W* =   Wh 0

3
/µL3D (−dh/

dt) (nondimensional)
x, y, z rectangular coordinate
x*, y* dimensionless coordinates, x* = x/L, y* = y/D
α   α = (µ/µ)1/2

λ length-to-width ratio, λ  = L/D
δr δr = h0/K1/2

µ lubricant viscosity
Φ permeability parameter, Φ = KH/   h 0

3

 ( ) quantities within the porous medium
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