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ABSTRACT

This paper deals with quasi-static coupled thermoelastic prob-
lems for multilayered spheres.  Using the Laplace transform with
respect to time, the general solutions of the governing equations are
obtained in transform domain.  The solution is obtained by using the
matrix similarity transformation and inverse Laplace transform.  We
obtain solutions for the temperature and thermal deformation distri-
butions for a transient state.  It is demonstrated that the computational
procedures established in this paper are capable of solving the gener-
alized thermoelasticity problem of multilayered spheres.

INTRODUCTION

The increasing use of composite materials in engi-
neering application has resulted in considerable re-
search activity in this area in recent years.  An under-
standing of thermally induced stresses in isotropic bod-
ies is essential for a comprehensive study of their re-
sponse due to an exposure to a temperature field, which
may in turn occur in service or during the manufacturing
stages.  While the deformation and stress fields in a shell
caused by thermal effects have commonly been ob-
tained on the basis of uncoupled thermoelasticity theory,
the thermo-mechanical coupling effect is included in
the present study.

Vollbrecht [9] has analysed the stresses in both
cylindrical and spherical walls subjected to internal
pressure and stationary heat flow.  Kandil [5] has stud-
ied the effect of steady-state temperature and pressure
gradient on compound cylinders fitted together by shrink
fit.  Ghosn and Sabbaghian [3] investigated a one-
dimensional axisymmetric quasi-static coupled

thermoelasticity problem.  The solution technique uses
Laplace transform.  The inversion to real domain is
obtained by means of Cauchy’s theorem of residues and
the convolution theorem.  Sherief and Anwar [6] dis-
cussed the problem of an infinitely long elastic circular
cylinder whose inner and outer surfaces are subjected to
known temperature and are traction free.  They have
neglected both the inertia terms and the relaxation effects.
Takeuti and Furukawa [7] discussed the thermal shock
problem in a plate; they included the inertia and
thermoelastic coupling terms in the governing equation
and obtained the exact solution for the thermal shock
problem of a plate.  Chen and Yang [1] discussed the
transient response of one-dimensional quasi-static
coupled thermoelasticity problems of an infinitely long
cylinder composed of two different materials.  They
applied the Laplace transform with respect to time and
used the Fourier series and matrix operations to obtain
the solution.  Chen and Chen [2] presented a new
numerical technique hybrid numerical method for the
problem of a transient linear heat conduction system.
They applied the Laplace transform to remove the time-
dependence from the governing equations and boundary
conditions, and solved the transformed equations with
the finite element and finite difference method.  Jane
and Lee [4] considered the same problem by using the
Laplace transform and the finite difference method.
The cylinder was composed of multilayers of different
materials.  There is no limit to the number of annular
layers of the cylinder in the computational procedures.
Laplace transform and finite difference methods were
used to analyze problems.  They obtained solutions for
the temperature and thermal stress distributions in a
transient state.

In this paper, the one-dimensional quasi-static
coupled thermoelastic problem of a multilayered sphere
with time-dependent boundary conditions is considered.
The medium is without body forces and heat generation.
Laplace transform and finite difference methods are
used, which are quite effective and powerful, to obtain
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solutions of a wide range of transient thermal stress.

FORMULATION

This work deals with the thermo-mechanically
coupled problems of multilayered spheres using the
quasi-static approach.  The problems possess the spheri-
cal symmetry with the following additional assumption:
(1) Materials in each layer is assumed to be homoge-
neous, isotropic and linearly thermoelastic. (2) Defor-
mation is small. (3) The composite sphere is constructed
of multilayer laminates bonded perfectly together. (4)
All physical quantities are assumed to be functions of
the radial coordinate and time only. (5) The medium is
initially undisturbed, traction free, and without body
forces and internal heat sources.

The layered sphere to be analyzed is shown in
Fig. 1.  The transient heat conduction equation for the
ith layer in dimensional form can be written as

   k[ ∂2

∂r *2
+ 2

r *
∂

∂r *
] Θ = ρC ν

∂ Θ
∂τ + Θ0β ∂

∂r *
(∂U
∂τ )

   + Θ0β 1
r *

(∂U
∂τ ) (1)

where   Θ = Θ – Θ0 ,    β = Eα
1 – ν

Θ0 is the referential temperature
If body forces are absent, the equation of equilib-

rium for a sphere along the radial direction can be
written as

   ∂2U
∂r *2

+ 2
r *

∂U
∂r *

– 1
r *2

U = 1 + ν
1 – ν α ∂ Θ

∂r * (2)

The stress-displacement relations are

   σ ri
* = E

(1 + ν) (1 – 2ν)
[(1 – ν) ∂U

∂r *
+ 2ν U

r *

  – α (1 + ν) (Θ – Θ0)] (3)

   σθi
* = E

(1 + ν) (1 – 2ν)
[ν ∂U

∂r *
+ U

r *
– α (1 + ν) (Θ – Θ0)]

(4)

Let the boundary surfaces of the composite sphere
be subjected to the initial and time-dependent boundary
conditions given below

   U = U = Θ = Θ = 0 at τ  = 0

   σ r
*(r *, τ ) = p(τ ), Θ1 – Θ0 = f(τ ) at r* = R1

   σ r
*(r *, τ ) = 0 , – k ∂Θ

∂r *
= h(Θ – Θ∞) at r* = Rout

At the interface between two adjacent layers, the
following matching conditions must be satisfied:

   U i(r
*, τ ) = U i + 1(r

*, τ )   r * = r i + 1
*

   σ ri
* (r *, τ ) = σ ri + 1(r

*, τ )   r * = r i + 1
*

qi = qi + 1   r * = r i + 1
*

   Θ i(r
*, τ ) = Θ i + 1(r

*, τ )   r * = r i + 1
*

i = 1, 2, ..., m − 1 layer

The non-dimensional variables are defined as
follows:

   T = (Θ – Θ0) / Θ0 = Θ /Θ0

r = r*/R1

   t = ( k
ρC ν

)
1
τ /R1

2

   u = U(
β

ρC ν
)
1
/R1

   a i = ( k
ρC ν

)
i
/ ( k

ρC ν
)
1

   σ ri = σ ri
* /(β 1Θ0)

   σθi = σθi
* /(β 1Θ0)

   Q i3 = [ Eα
(1 – 2ν)

]
i
/ β 1

   R i3 = [ Eα
(1 – 2ν)

]
i
/ β 1

Rout

R1

Fig. 1. Physical model and system coordinates for a multilayered
spheres.
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   Q i1 = [
E(1 – ν)

(1 + ν) (1 – 2ν)
]
i
/ [β 1(

β
ρC ν

)
i
Θ0]

   Q i2 = [ 2Eν
(1 + ν) (1 – 2ν)

]
i
/ [β 1(

β
ρC ν

)
i
Θ0]

   R i1 = [ Eν
(1 + ν) (1 – 2ν)

]
i
/ [β 1(

β
ρC ν

)
i
Θ0]

   R i2 = [ E
(1 + ν) (1 – 2ν)

]
i
/ [β 1(

β
ρC ν

)
i
Θ0]

   g i = [(
β

ρc ν
) α (1 + ν)]

i
Θ0 (5)

Substituting the nondimensional quantities given
in equation (5) into the governing equations (1)-(4), the
governing equations and stress-displacement relations
assume the following nondimensional form:

   {a i[
∂2

∂r 2
+ 2

r
∂
∂r

] – ∂
∂t

}T = ∂
∂r

(∂u
∂t

) + 1
r (∂u

∂t
) (6)

   ∂2u
∂r 2

+ 2
r

∂u
∂r

– u
r 2

= g i
∂T
∂r (7)

   σ ri = Q i1
∂u
∂r

+ Q i2
u
r – Q i3 T (8)

   σθi = Ri1
∂u
∂r

+ Ri2
u
r – Ri3 T (9)

The nondimensional boundary and interface con-
ditions can be written as:

1. Boundary conditions

   σ r(r, t) =
p(t)

β 1Θ0
,  T1 = f(t)/Θ0 at r = r1

σr(r, t) = 0,    – k ∂T
∂r

= h(T – T ∞) at r = rout

2. Interface conditions

ui(r, t) = ui + 1(r, t) r = ri + 1

σri(r, t) = σri + 1(r, t) r = ri + 1

qi = qi + 1 r = ri + 1

Ti(r, t) = Ti + 1(r, t) r = ri + 1

i = 1, 2, ..., m − 1 layer

 NUMERICAL  PROCEDURE  AND  SOLUTION

Applying central differences in quations (6), (7),
(8) and (9), we obtain the following discretized
equations:

   a i (
T j + 1 – 2T j + T j – 1

(∆r i)
2

+ 1
r j

T j + 1 – T j – 1

∆r i
) –

∂T j

∂t

   
= 1

r j

∂u j

∂t
+

(∂u
∂t

)
j + 1

– (∂u
∂t

)
j – 1

2∆r i
(10)

   u j + 1 – 2u j + u j – 1

(∆r i)
2

+ 1
r j

u j + 1 – u j – 1

∆r i
– 1

r j
2

u j

   = g i

T j + 1 – T j – 1

2∆r i
(11)

   σ ri = Q i1

u j + 1 – u j – 1

2∆r i
+ Q i2

u j

r j
– Q i3 T j (12)

   σθi = Ri1

u j + 1 – u j – 1

2∆r i
+ Ri2

u j

r j
– Ri3 T j (13)

where ∆ri = (ri + 1 − ri) / (n − 1)and n is number of grid
point for each layer

The Laplace transform of a function Φ(t) and its
inverse are defined by

   Φ (s) = L[Φ(t)] =
0

∞
e – stΦ(t) dt

   Φ(t) = L –1[ Φ (s)] = 1
2πi c – i∞

c + i∞
est Φ (s) ds

Taking the Laplace transform for equations (10),
(11), (12) and (13), we obtain the following equations:

   
a i (

T j + 1 – 2 T j + T j – 1

(∆r i)
2

+ 1
r j

T j + 1 – T j – 1

∆r i
)

  – (T j, in + s T j)

   = 1
r j

(u j, in + s u j) + 1
2∆r i

[(u j + 1, in + s u j + 1)

  – (u j – 1, in + s u j – 1)] (14)

   u j – 1 – 2 u j + u j – 1

(∆r i)
2

+ 1
r j

u j + 1 – u j – 1

∆r i
– 1

r j
2

u j

   
= g i

T j + 1 – T j – 1

2∆r i
(15)

Let the surface of the sphere inner surface be
traction free and subject to a time-dependent temperature.
After taking Laplace transforms, the boundary condi-
tions in the transformed domain become

   σ r
(r, s) =

p (s)
β 1Θ0

, T 1 = f (s) / Θ0 at r = r1

   σ r
(r, s) = 0 , – k ∂ T

∂r
= h( T – T ∞) at r = rout

(16)



Journal of Marine Science and Technology, Vol. 12, No. 2 (2004)96

The interface conditions are as follows:

  u i(r, s) = u i + 1(r, s) r = ri + 1

   σ i
(r, s) = σ ri + 1(r, s) r = ri + 1

  q i(r, s) = q i + 1(r, s) r = ri + 1

  T i(r, s) = T i + 1(r, s) r = ri + 1

i = 1, 2, ..., m − 1 layer (17)

Substituting equations (16), (17) into equations
(14), (15), we obtain the following equation in matrix
form

  
B1 C 1

A2 B2 C 2

AN – 1 BN – 1 C N – 1

AN BN

– s[I]

T 1

T 2

T N – 1

T N

  

+ s

E1 F1

D 2 E2 F2

D N – 1 EN – 1 FN – 1

D N EN

u 1
u 2

u N – 1

u N

=

G 1

G 2

G N – 1

G N

(18)

where

   B1 = – [1 +
Q 13

Q 11
]
– 1

[
a 1

(∆r 1)
2
]

   C 1 = [1 +
Q 13

Q 11
]
– 1

[
a 1

(∆r 1)
2

+
a 1
r 1

1
∆r 1

]

  E1 = [1 +
Q 13

Q 11
]
– 1

[ 1
r 1

Q 12

Q 11
– 1

r 1
]

F1 = DN = 0

   A j =
a i

(∆r 1)
2

–
a i
r j

1
∆r i

   B j = –
2a i

(∆r i)
2

   C j =
a i

(∆r 1)
2
+

a i
r j

1
∆r i

   D j = 1
2∆r i

  E j = – 1
r j

   F j = 1
2∆r i

  G j = 0

   AN = [1 +
Q m3

Q m1
]
– 1

[ –
a m

(∆r m)2
+

a m
r k

–
a m
r k

1
∆r m

]

   BN = – [1 +
Q m3

Q m1
]
– 1

[
2a m

(∆r m)2
]

  EN = [1 +
Q m3

Q m1
]
– 1

[– 1
r k

+
Q m2

Q m1

1
r k

]

   G 1 = [1 +
Q m3

Q m1
]
– 1

[(
a 1
r 1

1
∆r 1

–
a 1

(∆r 1)
2
) T 1 +

p
Q 11 βΘ0

]

   G N = – [1 +
Q m3

Q m1
]
– 1

[(
a m

(∆r m)2
+

a m
r k

1
∆r m

) T N + 1]

m denotes the last layer, k the last point and i denotes ith
layer for j = 2, 3, ..., N − 1

  I1 J 1

H 2 I2 J 2

H N – 1 IN – 1 J N – 1

H N IN

T 1

T 2

T N – 1

T N

  

+

L 1 M1

K 2 L 2 M2

K N – 1 L N – 1 MN – 1

K N L N

u 1
u 2

u N – 1

u N

=

V 1

V 2

V N – 1

V N

(19)

where

   I1 =
Q 13

Q 11
( 2
r 1

– 2
∆r 1

)

   J 1 = –
g 1

2∆r 1

   L 1 =
Q 12

Q 11
( 2
r 1∆r 1

– 2
r 1

2
) – 2

(∆r 1)
2

– 1
r 1

2

   M1 = 2
(∆r 1)

2

   V 1 = –
g 1

2∆r 1
T 1

 Ij = 0

   J j = –
g i

2∆r i
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   H j =
g i

2∆r i

   K j = 1
(∆r i)

2
– 2

r j

1
2∆r i

   L j = – 2
(∆r i)

2
+ 1

r j
2

   Mj = 1
(∆r i)

2
+ 1

r j

1
∆r i

  V j = 0

   H N =
g m

2∆r m

   IN =
Q m3

Q m1
( 2
r m

+ 2
∆r m

)

   K N = 2
(∆r m)2

   L N =
Q m2

Q m1
(

– 2
r m∆r m

– 2
r m

2
) – 2

(∆r m)2
– 1

r m
2

   V N = –
g m

2∆r m
T N + 1

Equations (18) and (19) can be rewritten in the
following matrix forms

   {[M] – s[I]} { T j} + s[N] { u j} = { G j} (20)

   [R] { T j} + [Q] { u j} = { V } (21)

where the matrices [M], [N], [R] and [Q] are the corre-
sponding matrices in equations (18) and (19).  Substi-
tuting equation (21) into (20), we have

   {[A] – s[I]} { T j} = { F j} (22)

where

  [A] = {[N]– 1 + [Q]– 1[R]}
– 1

[N]– 1[M]

   [F j] = {[N]– 1 + [Q]– 1[R]}
– 1

{[N]– 1[ G ] – s[Q]– 1[ V ]}

Since the (N × N) matrix [A] is a nonsingular real
matrix, the matrix [A] possesses a set of N linearly
independent eigenvectors, hence the matrix [A] is
diagonalizable. Therefore, there exists a nonsingular
transition matrix [P] such that [P]−1[A][P] = diag [A],
that is, the matrices [A] and diag [A] are similar, where
the matrix diag [A] is defined as

    

diag [A] =

λ 1
λ 1

λ N

(23)

where λ j(j = 1, 2, ..., N) are the eigenvalues of matrix
[A].

Substituting equation (23) into (22), we obtain the
equation

   { [P]– 1[A] [P] – s[P]– 1[I][P]} [P]– 1{ T j} = [P]– 1{ F j}

(24)

Equation (24) can be rewritten as

   {diag[A] – s[I]}{ T j
*} = { F j

*} (25)

where

   T j
* = [P]– 1{ T j}

   F j
* = [P]– 1{ F j}

From equation (25), the following solutions can be
obtained immediately.

   
T j

* =
F j

*

λ j – s   j = 1, 2, ..., N (26)

By applying the inverse Laplace transform to equa-
tion (26), we obtain the solution for   T j

* .   After we have
obtained   T j

* ,  we can then use equations (27) and (28)
given below to obtain the solutions for Tj and uj.

   {T j} = [P] {T j
*} (27)

   {u j} = [Q]– 1[ V ] – [Q]– 1[R]{T j} (28)

Substituting Tj and uj into equations (8) and (9), we
obtain the radial and circumferential stresses.

NUMERICAL  RESULTS  AND  DISCUSSIONS

In this study, we present some numerical results
for the temperature distributions in multilayered com-
posite spheres, subjected to the considered boundary
conditions and the resulting displacement and thermal
stresses.  For the multilayered spheres, the geometry
and material quantities of the sphere are shown in Table
1.  The table 2 and table 3 show the computation time for
different number of finite difference gird points.  The
inner and outer radii of the sphere are assumed to be
1.0 and 4.5, respectively.  The boundary conditions at
inner and outer surfaces are assumed to be f(t) and
convective respectively.  Each layer is assumed to have
a different thickness (nondimensional thickness of each
layer is taken for ∆h1 = 1, ∆h2 = 1, and ∆h3 = 1.5,
respectively).  In all the figures, the grid points assumed
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219 (N = 219).
Fig. 2 shows water vapour temperature and pres-

sure relation assumed for the inner boundary.  The water
vapour temperature and pressure data were obtained
from a thermodynamic steam table [8].  Fig. 3 shows the
temperature distributions with time.  Fig. 4 shows the
pressure distributions with time.  Fig. 5a shows the
temperature distributions along the radial direction and
with time.  Fig. 5b shows the temperature distributions
with time and different radial locations.  The tempera-
ture gradient varies in each layer because of the differ-
ence in the thermal conductivity coefficients.  Fig. 6a
shows the variation of the radial displacement as a
function of the radial coordinate and time.  Fig. 6b
shows the displacement distributions with time and
different radial locations.  From these figures, we can

Table 1. The geometry and material constants of multilayered

sphere (Rout / R1 = 4.5, h =    200 Watt
m2 ⋅⋅ K

, Θ0 = Θ∞ = 298

K)

layer 1 layer 2 layer 3
Titanium Al2O3 Steel(1025)

  E( N
m 2

) 108E9 390E9 207E9

   k( Watt
m ⋅ K

) 20 6 17

ν 0.3 0.23 0.3

   α( 1
K

) 11E-6 8E-6 11E-6

   ρ(
kg

m 3
) 4 3.99 7.8

   C ν( kJ
kg – K

) 0.4 1.25 0.48

Table 2.  Computation time for coupled theory

Grids = 69 Grids = 99 Grids = 129 Grids = 219

t = 1 3.21380 7.911376 12.76836 34.61978
t = 10 3.865558 8.23140 13.16894 36.70278
t = 30 7.85129 16.24336 27.30927 78.54294

(CPU P3_700, unit = second)

Table 3.  Compuation time for uncoupled theory

Grids = 69 Grids = 99 Grids = 129 Grids = 219

t = 1 2.103024 4.065846 6.259000 17.57527
t = 10 2.633787 5.377733 8.762600 25.53672
t = 30 5.397762 10.96577 18.39645 54.08778

(CPU P3_700, unit = second)
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Fig. 2. Temperature and pressure relation in inner boundary (quality
90%) [9].
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Fig. 3.  Temperature distribution with time in inner boundary.
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Fig. 4.  Pressure distribution with time in inner boundary.
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see where the maximum radial displacement may occur.
Fig. 7a shows the thermal radial stress distribution σr

along the radial direction and with time.  Fig. 7b shows
the thermal radial stress distribution σr with time and
different radial locations.  As expected, the circumfer-
ential stress distribution exhibits significant jumps at
all interfaces as shown in Fig. 8a.  These discontinuities
are due to the differences in material properties such as
the coefficient of linear thermal expansion and Young’s

modulus.  The circumferential stress varies characteris-
tically in each layer in view of the occurrence of
discontinuities at all interfaces shown in the Fig. 8a.
Fig. 8b shows the circumferential stress distribution
with time and different radial locations.  In all the
figures, the dotted lines express the results of uncoupled
cases.  It is obvious that there is distinct difference
between the coupled and uncoupled treatment.  From
these figures, it should be concluded that the coupling

Fig. 5.  (a) Temperature distribution along radial direction and different times, (b) Temperature distribution with time and different radial locations.
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Fig. 6. (a) Radial displacement distribution along radial direction and different times, (b) Radial displacement distribution with time and different
radial locations.
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effect behaves as a clear lag.

CONCLUSIONS

In this study, numerical results for a multilayered
sphere were calculated.  The finite difference and Laplace
transform methods were employed to obtain the numeri-
cal results.  The temperature, displacement and thermal
stress distributions were obtained which can be applied
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Fig. 7.  (a) Radial stress distribution along radial direction and different times, (b) Radial stress distribution with time and different radial locations.

to mechanical parts in precision measurement or design
useful structural applications.  The proposed method
may be readily extended to solve a wide range of physi-
cal engineering problems.

NOMENCLATURE

ρ density
Cv specific heat
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Fig. 8.  (a) Circumferential stress along radial direction and different times, (b) Circumferential stress for time and different radial locations.
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k thermal conductivity
α linear thermal expansion coefficient
E Young’s modulus
ν Poisson’s ratio
Θ0 reference temperature
h convective heat transfer coefficient
q heat flux in the radial direction
N total number of grid point
Tj, in initial condition
uj, in initial condition
Θ, T dimensional and non-dimensional tempera-

ture
r*, r dimensional and non-dimensional radial

coordinate
τ , t dimensional and non-dimensional time ,

  σ r
* , σr dimensional and non-dimensional radial

stress
  σθ

* , σθ dimensional and non-dimensional circum-
ferential stress

U, u dimensional and non-dimensional radial
component of displacement
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