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ABSTRACT

Experiments show that pipe flows with large expansion angle
and area ratio always accompany with significant amount of energy
loss, actually energy loss ratios over 70% of incoming flow kinetic
energy are commonplace.  It is generally believed that all the energy
loss is entirely due to viscous dissipation effect.  In this paper, several
interesting demonstrations have been given to prove the existence and
importance of impact energy loss.  Literally, impact energy loss is
usually more important than viscous energy loss in many cases.  In
fact, the pipe expansion flow can be configured as high-speed flow
ramming into low-speed flow and then moving together, this situation
is similar to rope-lifting problem in system dynamics as illustrated
herein as continuous inelastic impact process with unavoidable im-
pact energy loss.  Virtually the intrinsic negligence of impact energy
loss is the original major cause for many weird paradoxes and disaster
solutions in fluid dynamics.  Moreover, in CFD practice, many kinds
of ad hoc treatments such as artificial viscosity, numerical dissipation,
upwinding and so forth are devised awkwardly in an attempt to
somehow manipulate a certain amount of disguised energy dissipation
that is largely due to impact.  These treatments are done as usual
without recognizing what an important role the impact energy loss is
playing in the game.  More surprisingly, this intrinsic negligence of
impact energy loss in deriving process renders the Euler equation as
a non-genuine momentum equation which is hardly solvable, and in
turn unveils the even more stunning role of impact energy loss as the
triggering concept for a full-scale historical revolution in FD/CFD as
deliberated in the related paper [10].

INTRODUCTION

The transport processes of fluid flow in piping
system with expansions are substantially important en-
gineering problems that are frequently encountered.  A
general survey shows that pipe flows with large expan-
sion angle and area ratio always accompany with sig-

nificant amount of energy loss as evidenced in Figs. 1
and 2 for gradual pipe expansion flows.  Sometimes the
energy loss ratio can be easily over 70% of incoming
flow kinetic energy, as shown in Figs. 3 and 4 for sudden
pipe expansion flows.  But what causes it?  It is gener-
ally believed that all the energy loss involved in fluid
flowing is entirely due to viscous dissipation effect.
Nevertheless, in the following sections, no matter how
surprisingly, we will unveil the impact energy loss as
the true major culprit for most energy loss in many
gradual and sudden pipe expansion flows.  And more
surprisingly, this concept of impact energy loss will
subsequently trigger a full-scale revolution in the para-
doxes-rotten fundamental theoretical system of fluid
dynamics, and associated computational fluid dynamics.
This all-out revolution in FD/CFD will be only
broadbrushed in this paper, its more theoretical aspects
will be deliberated in a sequential paper [10] titled “The
Life and Death of Euler, Bernoulli, Navier-Stokes
Equations and Associated CFD for So-called Incom-
pressible Fluid Flow”.  Then we can see what a crucial
role the impact energy loss is playing in the FD/CFD
field.  Very interestingly, all these landslides in FD/
CFD can be attributed to a corresponding absurdity of
the rope-lifting problem in system dynamics also due to
disregarding impact energy loss as illustrated in later
section.

CONCEPT  OF  IMPACT  ENERGY  LOSS  IN
FLUID  DYNAMICS

Fluid mechanics analysis is naturally based on the
conservation laws of mass, momentum and energy.  In
general, water as the most common fluid is considered
to be incompressible, but in reality water is slightly
compressible with a high bulk modulus and extremely
low viscosity.  For example, it would take a high pres-
sure of 212 × 105 N/m2 (about 3,120 psi) to compress 1%
of water by volume [15], yet under the condition of one
atmosphere pressure and temperature of 16°C  or so, the
kinematic viscosity of water is only 1.12 × 10-6 m2/s.
But with such a minimum viscosity, what truly causes
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such a sizable energy loss in the pipe flow with large
expansion angle and area ratio?  Well, people may argue
that the energy loss in such pipe expansion flows is all
due to the fluid viscosity.  In fact, with very short dura-
tion for water flowing through a short length of expan-
sion portion of pipe, there is essentially no significant
chance for viscous effect to rip off such a high percent-
age of incoming flow kinetic energy.  Alter-natively,
pipe expansion flow can be configured as high-speed
flow ramming into low-speed flow and then moving
together, this situation is similar to the continuous
inelastic impact process in system dynamics to be illus-

trated later.  Notably, this kind of dynamics process
involves unavoidable impact energy loss as well known.

In order to prove the important idea that even with
little chance for viscous dissipation, there still could be
considerable amount of energy loss due to impact.  Let
us consider an interesting experiment: when two blocks
of viscous and so-called incompressible water flow
collide against each other in a straight pipe, what would
happen after this impacting ?  The result is that most of

Fig. 2.  The loss coefficient for gradual pipe expansion flow [4].

Fig. 3.  The configuration of sudden pipe expansion flow.
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Fig. 4.  The loss coefficient for sudden pipe expansion flow [4].

Fig. 1.  The configuration of gradual pipe expansion flow.
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the kinetic energy was dissipated during this impact
process, yet the nearly paralleled flow has very slim
chance to activate the viscous energy dissipation.  Such
a striking example has clearly illustrated the viscous
energy loss plays a very limited role for energy dissipa-
tion compared with impact energy loss which can be
preliminarily thought as the fluid flow energy loss in
addition to the usual viscous energy loss.  Further,
numerous daily phenomena such as falling rain on the
ground, water hammer, hydraulic jump, water flow into
reservoir and so forth, can literally demonstrate the
existence and importance of impact energy loss in fluid
flow.  Virtually, in decreasing viscosity experiment by
measuring the drag of fluid flow past a circular cylinder,
we would find that no matter how small one makes the
viscosity, one would still measure a finite drag, essen-
tially independent of the value of viscosity [15].

Moreover, to our knowledge, no literature shows
any significant difference for energy loss of pipe flow
with large expansion angle and area ratio, even when
90°C water with a kinetic viscosity of 3.2 × 10-7 m2/s is
replaced by 20°C water with a kinetic viscosity of 10.0
× 10-7 m2/s as shown in Table 1 (which is more than
300% of the 90°C water viscosity [17]).  This vivid
example of cold/hot water pipe expansion flow has
further clarified the existence/importance of impact
energy loss.  Besides, the amount of impact energy loss
in the pipe expansion flowing process depends on a
spectrum of physical parameters, including the expan-
sion angle, expansion curve, the area ratio, the inflow
velocity, the physical parameters of flowing media, and
etc.  In light of its complexity, it is understandable so far
most energy loss data for pipe expansion flows are
experimental.

Furthermore, to have some real-life feeling about
quantitatively how important the impact energy loss is,
let us take the pipe flow with sudden expansion as an
example, if for diameter ratio of 3.6, the experimental
data show that 90% of incoming flow kinetic energy
could be lost as seen in Fig. 4 [14].  With above under-
standing, now it can be rightfully recognized the major
culprit for such a sizable energy loss for pipe flow with
large expansion angle and area ratio is actually the
impact energy loss, which is usually much more impor-
tant than viscous energy loss in many flowing situations.
No wonder distinguished scholar like Munson et al. [15]
ever indicated that as with so many energy loss situations,
it is not the viscous effects directly that cause the loss,
rather, it is the dissipation of kinetic energy as the fluid
decelerates inefficiently.  Further, let us quote Lomax
[12] that “Although numerical approximation to the
Navier-Stokes equations contain dissipation through
the viscous terms, this can be insufficient, especially at
high Reynolds numbers”.  And more sarcastically, pio-
neering researcher Ladyzhenskaya [9] once expressed
that in many flow cases, viscosity only serves as the
scapegoat for answering many accumulated absurdities
in the theory of fluid dynamics.  In fact, their common
hunches [1, 3-7, 9, 12, 15, 18-20] are in good accor-
dance with the crucial concept of impact energy loss to
be unveiled here for so-called incompressible fluid
flows.

Besides, for potential flow as incompressible,
inviscid, irrotational, and steady fluid flow, we will see
that the intrinsic negligence of impact energy loss is
also the major cause for many weird paradoxes [2] and
disaster solutions such as d’Alembert’s−the unrealistic
and weird phenomenon of zero drag force resulting
from uniform fluid flow past a circular cylinder as
shown in Fig. 5.  It is interesting to note that, geometri-

Table 1.  Water viscosity vs. temperature [2]

Temperature Density
Dynamic Kinematic
Viscosity Viscosity

T ρ  µ v
(°C) (Kg/m3) (N • s/m2) (m2/s)

000 999.9 1.787 E−3 1.787 E-6
005 1000.0 1.519 E−3 1.519 E-6
010 999.7 1.307 E−3 1.307 E-6
020 998.2 1.002 E−3 1.004 E-6
030 995.7 7.975 E−4 8.009 E-7
040 992.2 6.529 E−4 6.580 E-7
050 988.1 5.468 E−4 5.534 E-7
060 983.2 4.665 E−4 4.745 E-7
070 977.8 4.042 E−4 4.134 E-7
080 971.8 3.547 E−4 3.650 E-7
090 965.3 3.147 E−4 3.260 E-7
100 958.4 2.818 E−4 2.940 E-7 Fig. 5. The general streamline pattern of potential flow for uniform

flow past a circular cylinder [3].
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cally this paradox is not a paradox that “full”, since for
the frontal portion within ±60° angle or so, the potential
flow theory still gives an acceptable prediction of pres-
sure distribution in dimensionless form compared with
experimental data as shown in Fig. 6 (where P0 is the
general far-field pressure and PS is the surface pressure).
Yet, the ensuing portion (>60°) fails miserably to re-
duce pressure largely due to disregarding the crucial
impact energy loss with its expansion flow.

IMPACT  ENERGY  LOSS−THE  TRIGGERING
CONCEPT  FOR  FD/CFD  REVOLUTION

The Euler equation along streamtube for seem-
ingly incompressible inviscid flow with cross-section A
can be expressed as

−(dP)A = ρAVdV (1)

where ρ is the density, V is the flowing velocity and P
is the streamwise pressure.  Note that gravity term is not
written in for the sake of simplicity.  Then it can be
integrated along streamtube to become the famous Ber-
noulli equation.

   V1
2

2g
+

P1
γ =

V2
2

2g
+

P2
γ (2)

where g is the local gravity acceleration, γ is the weight
density.  However, it is well-known that Euler equation
as represented by Bernoulli equation can only accom-
modate no-energy-loss cases, yet they cannot accom-
modate any cases with energy loss at all.  Although they
are derived by momentum principle, no matter how
surprisingly, they are not genuine momentum equations,
since a genuine momentum equation should be able to
accommodate both cases either with or without energy
loss [10].

Subsequently, for the sake of seeing some insights
of the above problem, let us take the sudden pipe expan-
sion flow shown in Fig. 3 as an example.  Then, the
associated continuity, momentum and energy equations
with possible head loss hL can be sequentially expressed
as

A1V1 = A2V2 = AV (3)

P1A1 − P2A2 + PWAW = ρAV(V2 − V1) (4)

   P1
γ +

V1
2

2g
=

P2
γ +

V2
2

2g
+ h L (5)

where PW is the wall pressure and AW is the pipe wall
area as shown in Fig. 3.  From the momentum Eq. (4) for
sudden pipe expansion flow, we clearly see that the PW

acting on AW can be adjusted in accordance with P2, so
that they can always satisfy the momentum equation and
accommodate any energy loss induced during this flow-
ing process.  Consequently, for known A1, A2, P1, V1 the
solution for the system is not only existent but also
unique if hL, P2, or PW is given.  For example, as
illustrated by Munson et al. [15] and others, if one
assumes PW = 0, then Eqs. (3)~(5) can be simulta-
neously solved to obtain the head loss.

  
h L = 1 –

A1

A2

2
V1

2

2g
= K

V1
2

2g (6)

where the loss coefficient K [15] stands for the energy
loss ratio compared with the incoming flow kinetic
energy.  To have some numerical feeling, if taking area
ratio A2/A1 = (2.4)2 = 5.76 as an example, then the result
K = 0.683 agrees well with the experimental data shown
in Fig. 4 [14].

On the other hand, even when experimental data
A1, A2, P1, V1 and the outflow pressure P2 are given, the
solution of Euler equation may not exist at all due to its
incapability of accommodating any energy loss in order
to reduce the outflow pressure to the realistic level
which is usually lower than what Euler equation can
predict for general pipe expansion flows.  That is the
reason why the seemingly simple-looking Euler equa-
tion for incompressible, inviscid flow constitutes one of

Experimental
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the most difficult problems in FD/CFD to be solved,
because the solution is not existent at all for many cases
if disregarding impact energy loss.  No wonder, in
computational fluid dynamics practice, many kinds of
sophisticated ad hoc treatments such as artificial
viscosity, numerical dissipation, upwinding, and etc.,
are devised awkwardly in an attempt to somehow ma-
nipulate a certain amount of disguised energy dissipa-
tion which is largely due to impact.

Besides the straightforward adding of artificial
viscosity, other artificial measures such as the popular
upwind method [16] are just involving the artificial
viscosity in a seemingly more innocent manner.  For
instance, the upwinding scheme for one-sided differ-
ence method [8] can be expressed as

   du
ds

≅
u i – u i – 1

h
=

u i + 1 – u i – 1

2h
– h

2

u i + 1 – 2u i + u i – 1

h 2

(7)

where u is the flow velocity, s is the streamwise co-
ordinate, and h is the grid space.  By careful observation,
the first term on the right-hand side is the first-order
central difference approximation.  The last parentheses
represent the central difference approximation of the
second order derivative.

   
d 2u
ds 2

= d
ds

du
ds

≅ 1
h

u i + 1 – u i

h
–

u i – u i – 1

h

  =
u i + 1 – 2u i + u i – 1

h 2 (8)

While the coefficient h/2 in front of the right-hand
parentheses in Eq. (7) is equivalent to the dynamic
viscosity coefficient µ, we can clearly see that the

upwind method is just artificial viscosity in different
form to play an energy dissipation role in CFD.  This
method is managing to somehow cover the impact en-
ergy loss in a disguised manner in order to stand a better
chance for acquiring more reasonable solutions than the
central-difference scheme in many real flow cases.  No
wonder, some highly seasoned scholars ever indicate
that CFD is still very much an art than a science [3, 7].

Now we know that the intrinsic negligence of
impact energy loss in Euler equations results in their
non-genuineness as momentum equations and thus con-
stitutes endless troubles in solving incompressible flow
[10].  Eventually, we can recognize that the impact
energy loss is just the triggering concept for future FD/
CFD revolution as deliberated in a relevant paper [10].
Very interestingly, this full-scale revolution in FD/CFD
can be originated from our finding of a seemingly
unrelated absurdity in the system dynamics concerning
a rope-lifting problem as illustrated in the following
section.

THE  SLIPPERY  ROPE-LIFTING  PROBLEM  OF
SYSTEM  DYNAMICS

Therefore, let us further examine a corresponding
example in system dynamics and see what a strange
conclusion can scientists reach if disregarding impact
energy loss: When we lift a flexible and inextensible
rope piled on ground as shown in Fig. 7.  Traditionally,
this problem may be tentatively solved by applying the
work-energy equation to the entire rope for an infini-
tesimal movement dx [13]

   Pdx = d 1
2

ρxV2 + d ρgx x
2 (9)

or

   Pdx = 1
2

(ρdx) V2 + (ρgx) dx (10)

or simply

   P = 1
2

ρV2 + ρgx (11)

where P is the pulling force applied at the upper end of
rope to elevate it, ρ is the mass density per unit length
of rope, x is the length of the portion of rope already
pulled up, and V is the constant pulling velocity.  Noting
that in the above equations, the work done by the lifting
force P becomes the kinetic energy and gravitational
potential energy with the implicit assumption of no
energy loss.  Next, the force-momentum equation can be
applied to the entire rope system

   P + R – ρgL = d
dt

(ρxV) (12)

P

R

V

g

x

Fig. 7.  The rope-lifting problem with constant pulling velocity V.
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or

P + R = ρgL + ρV2 (13)

where R is the ground reaction force and L is the total
length of the rope.  Eliminating P between Eqs. (11) and
(13), one can obtain

   R = ρgL + ρV2 – 1
2

ρV2 + ρgx (14)

or simply

   R = ρg(L – x) + 1
2

ρV2
(15)

When at the beginning of pulling, one can substi-
tute x = 0 into Eq. (15)

   R = ρg(L – 0) + 1
2

ρV2

   = W + 1
2

ρV2
(16)

where W is the weight of the entire rope.  This bizarre
solution of Eq. (16) indicates that if one puts a flexible
and inextensible rope on a weighing scale, then pulling
it upward, it will weight heavier than its weight at that
instant.  Alas! What a strange solution against common
sense of physics!  More incredibly, Eq. (16) says the
faster one pulls the rope upward, the heavier it will show
on the scale.  Through above derivation with implicit
no-energy-loss assumption for this dynamics process, it
turns out to be such a peculiar result Eq. (16) with
obvious irrationality.  It is not so easy to find the culprit
for this strange result until one looks at the problem with
the viewpoint of continuous perfectly inelastic impact
[11].  In that light, an interesting perfectly inelastic
impact model with one-way locking mechanism as shown
in Figs. 8 and 9 is devised to explain the crucial energy
transformation phenomenon in such a system dynamics
process.

First, the perfectly inelastic impact dynamics is
briefly reviewed with masses m1 and m2 shown in Figs.
8 and 9.  The m2 is equipped with a special frictionless
one-way locking mechanism to allow relatively ap-
proaching velocity and to avoid any relative separating
velocity.  The linear momentum equation can be ex-
pressed as

m1V1 = (m1 + m2) Vf (17)

where Vf  is the common velocity of both m1 and m2 after
the impact.  Thus

  V f =
m 1

m 1 + m 2
V1 (18)

The eventual result after impact as illustrated in Fig. 9
is a typical perfectly inelastic impact process.  Energy is
partly transformed into spring energy in the impact
process.  Then, the remained kinetic energy Ek for m1

and m2 together after the impact is

  Ek = 1
2

(m 1 + m 2) Vf
2

  =
m 1

m 1 + m 2

1
2

m 1V1
2

(19)

Also, the energy transformed into spring energy during
impact process is

  E tf = 1
2

m 1V1
2 – EK

  =
m 2

m 1 + m 2

1
2

m 1V1
2

(20)

The rope-lifting problem can be regarded as an
infinitesimal portion of rope dx remaining stationary
just before being pulled upward to accelerate to the
constant velocity of the upper portion of the rope.  The
situation is similar to the perfectly inelastic impact
example for m1 and m2 [11] in Figs. 8 and 9.  The Ek

acquired by ρdx is clearly equal to  1
2 (ρdx)V2 after being

Fig. 8.  Perfectly inelastic impact energy loss model before impacting.

Fig. 9. Perfectly inelastic impact energy loss model with comoving
velocity Vf  after impacting.
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pulled up.  Corresponding to Eq. (20), the transformed
energy for the upper portion of the rope is

   E tf =
ρdx

ρx + ρdx
1
2

ρxV2

   = 1
2

(ρdx) V2
(21)

For the rope system, the work input Pdx should be equal
to all the energy increase of the rope system, including
kinetic energy increase, transformed energy increase
and gravitational potential energy increase

Pdx = dEK + dEtf + dEP

   = 1
2

(ρdx) V2 + 1
2

(ρdx) V2 + (ρgx) dx (22)

Thus

P = ρV2 + ρgx (23)

Eq. (23) is clearly different from Eq. (11) which is
incorrect due to the missing of the transformed energy
term.  Together with Eq. (13), the correct and natural
reactive force R can be thus obtained as a check

R = ρg(L − x) (24)

The main theme here is that, even for an implicit
perfectly inelastic impact process, there must be always
a certain amount of impact energy being lost as shown
in Eq. (21).  Consequently, any assertion of no energy
loss in a perfectly inelastic impact process will give
erroneous and strange result as in Eq. (15).  No matter
explicit or not, the original assumption of no energy loss
is the fatal cause that makes the result of Eq. (15) appear
so strange.  In like manner, high speed flow ramming
into low speed flow in pipe expansion case is similar to
the continuous inelastic impact process in system dy-
namics with unavoidable impact energy loss.  Cor-
respondingly, strange results will likewise occur in
incompressible fluid flow problems if disregarding im-
pact energy loss.  This striking example neatly unveils
the existence and importance of the impact energy loss
not only in fluid dynamics but also in related system
dynamics.  Although this standard rope-lifting problem
is widely taught in many universities throughout the
world, can any one believe this kind of absurdity shown
in Eq. (15) that R = ρg(L − x) +  1

2 ρV2?

CONCLUSION

From above insightful discussions, we can com-
prehensively conclude that:

  1. Herein, we have clearly proved the existence and
importance of impact energy loss and gracefully
unveiled its crucial role both in so-called incom-
pressible fluid flow dynamics and associated com-
putational fluid dynamics.

  2. A considerable amount of impact energy loss could
occur in incompressible fluid flow especially in
pipe expansion and associated flows.

  3. Due to impact effect of high-speed flow ramming
into low-speed flow, the energy loss in pipe expan-
sion flow is much greater than corresponding con-
traction flow with reverse area ratio.

  4. Usually, the impact energy loss can easily override
the viscous energy loss in incompressible pipe flow
with large expansion angle and area ratio.

  5. The natural feature of impact energy loss is that it
can occur within extremely short time duration while
viscous energy loss usually accomplishes in a rela-
tively much longer time period.

  6. For so-called incompressible flow, impact energy
loss is largely independent of fluid viscosity and
can occur in both viscous and inviscid flow as
illustrated by the cold/hot water pipe flow with
large expansion angle and area ratio.

  7. More importantly and surprisingly, the unveiling of
the crucial role of impact energy loss for incom-
pressible fluid flow fluently reveals the non-genu-
ineness of Euler equation as a momentum equation
due to its incapability at all to accommodate any
cases with energy loss. In turn, this non-genuine-
ness unveils the even more stunning role of impact
energy loss for triggering a full-scale epoch-making
revolution in FD/CFD as deliberated in the related
paper with title “The Life and Death of Euler,
Bernoulli, Navier-Stokes Equation and Associated
CFD for So-called Incompressible Fluid Flow” [10].

  8. The intrinsic negligence of impact energy loss is the
original major cause for many weird paradoxes and
disaster solutions, such as d’Alembert paradox of
uniform flow past a circular cylinder in potential
flow and associated CFD.

  9. The non-genuineness as a momentum equation due
to the intrinsic negligence of impact energy loss in
deriving process is the original major reason why
the seemingly simple-looking Euler equation for
incompressible, inviscid flow constitutes one of the
most difficult problems in fluid dynamics and CFD
to be solved, because the solution may not exist at
all.

10. High speed flow ramming into low speed flow in
pipe expansion flow is similar to the continuous
inelastic impact process in system dynamics with
unavoidable impact energy loss. The striking rope-
lifting example literally demonstrates the existence
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and importance of impact energy loss not only in
fluid dynamics but also in related system dynamics,
and shows what a disaster solution can incur if one
neglects the impact energy loss no matter explicitly
or implicitly.  Although this standard rope-lifting
problem is widely taught in many universities
throughout the world, who can believe this kind of
absurdity that R = ρg(L − x) +  1

2 ρV2?
11. In computational fluid dynamics practice for steady

incompressible fluid flow, many kinds of sophisti-
cated ad hoc treatments such as artificial viscosity,
numerical dissipation, upwinding, artificial com-
pressibility, and so forth are devised awkwardly in
an attempt to somehow manipulate a certain amount
of disguised energy dissipation which is often largely
due to impact.
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