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ABSTRACT

This paper considers the time cost incurred when a container
ship is queuing to enter a port and when a container ship arrives at the
port ahead of or behind the scheduled time.  With this regard, we
derive a series of the optimal congestion toll scheme, in order to
eliminate or decrease the port congestion.  By means of collecting
congestion tolls, container ships’ departure schedules can be ratio-
nally altered, and consequently disperse container ships’ arrival times
at the destination port as well as eliminate or decrease container ships’
queuing times for port entry.  Next, we use the sense of economic
equilibrium to derive the consequent changes of container ships’
departure schedules after collecting congestion tolls.  These results
help predict ship owners’ departure behaviors under the optimal step
toll scheme.

INTRODUCTION

Queuing often develops in front of the entry to a
road bottleneck during the commuting rush hour.  The
model of pricing a queuing bottleneck first developed
by Vickrey [13] and extended by Braid [3], Arnott et al.
[1, 2], Tabuchi [12], Laih [4-11], and Yang and Meng
[14].  Among these researches, Laih [4] first developed
a flexible pricing mechanism including the optimal
single- and multi-step tolls to relieve commuting queu-
ing in the morning at a road bottleneck.  Laih [11] also
provides a methodological framework to forecast com-
muter behavior changes from the no toll case to both the
optimal single- and multi-step toll cases.  Applying
these considerations, this paper derives a series of the
optimal toll schemes to a congested harbor.  With these
pricing schemes, ships’ queuing time for port entry can

be eliminated or diminished.  This paper also investi-
gates the consequent changes of merchant ships’ depar-
ture schedule after collecting congestion tolls.  All of
these are important issues for the ship owner and the
harbor bureau if pricing a congested harbor is consid-
ered by the authorities.  Also, they are issues that have
not been discussed previously.

When a regular container ship departs from a
harbor and moves on to the next appointed berth, the
shipmaster will notify the marine company the time of
arrival with a telegraphic message.  This procedure is
for the convenience of the company to carry out the
necessary dispatch steps.  If the containership arrives at
the port during congestion, the harbor officers will
guide it to wait at general anchorage.  When a vacancy
at the berth becomes available, a pilot will shepherd it to
the berth where it unloads and loads.  This situation is
very similar to the traffic congestion on the road.  At the
road bottleneck, every car has to queue before entering
the road bottleneck.  From an economic point of view,
we can minimize the queuing by collecting congestion
tolls.  Hence, if the same applies to the arrival of
containerships at a harbor, a certain degree of effective-
ness should be achieved.

This paper will derive a framework of collecting
congestion tolls that applies to all general congested
commercial harbors.  The content includes the optimal
time-varying toll and the optimal step toll schemes.  We
will then advice related offices this strategy.  Port
congestion pricing leads to efficient use of berth espe-
cially during the crowded season.  The ship owner may
not consider anchoring their ships at other ports that do
not implement the port congestion pricing because of
the two reasons.  The first is the port congestion pricing
reduces ships’ waiting time at general anchorage.  The
second is the ship may not be willing to anchor other
ports for some inconvenience reasons, e.g., the voyage
distance to other ports may be too long.  Therefore, most
of externalities cannot be internalized in free competi-
tion marine market.  Port congestion pricing seems as
much important as road congestion pricing.

Here we will review some literatures related to
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pricing a queuing bottleneck.  Laih [4] looked into the
model of charging at queuing road bottleneck and used
the static equilibrium analytical method to develop a
series of the optimal and sub-optimal step toll schemes.
This development helps to achieve the goal of collecting
tolls in an easy and flexible way.  The best part about the
ways of charging step tolls is that it provides decision
makers a set of collecting toll framework with selectiv-
ity when trying to minimize negative effects of
congestion.  Furthermore, considering the ways of charg-
ing the step toll scheme have blind spots existed in the
overall benefit of both the supply and demand sides and
in practice, Laih [5] investigated the increased or de-
creased cost functions of both the supply (Government)
and the demand (auto-commuters) in respond to varia-
tion of number of charging steps, during the application
of the optimal step toll scheme at a queuing road
bottleneck.  Under the principle of minimum cost of
both sides, he derived the optimal charging steps to the
optimal step toll scheme.  This derivation maximized
the social welfare and also provides the basis for policy
makers in practice.  However, the two thesis mentioned
above did not explore the variation of auto-commuters’
departure before and after the period of congestion
charge.

In order to obtain the behavioral variation in de-
parture before and after charging the tolls, Laih [6]
provides a way to prove the effectiveness of shortening
entire queuing time of all auto-commuters to 1/2 or 2/3
of the original, with the premises that the ways of
collecting the optimal single- and double-step tolls are
in equilibrium.  However, this study only displays a
simple outcome of dispersing auto-commuters’ depar-
ture rates after the application of the optimal single- and
double-step toll schemes.  It was not known clearly
where an auto-commuter, who departed before period
of charging these tolls, went after that period.  As a
result, Laih [7, 8] utilizes the dynamic equilibrium
analytical method to derive auto-commuters’ moving
tracks of departure time before and after the application
of collecting the optimal single- and double-step toll
schemes.  Next, Laih [9] derived the optimal number of
pricing steps, which minimizes the total costs for the
demand and supply sides, for the step toll scheme imple-
mented at a queuing road bottleneck.  These outcomes
not only improve the theoretical model of the step toll
scheme, but also provide the authorities a rule to operate
the optimal step toll in practice.

Moreover, Laih et al. [10] derived the auto-com-
muters’ related time values when queuing during the
morning rush hour, using the analytical methods of
utility functions. This paper set the phenomenon of
auto-commuters’ cars queuing at the entry to a road
bottleneck as the research background, used the theory

of auto-commuters pursuing maximized utility as the
base, and at the same time, takes account of various
constraints, such as time and income. Then in accor-
dance with the late arrival and early arrival models
depending on the time of arrival at work place, each of
the related time values during periods of auto-commut-
ing was derived.  The results of this research showed
that: the unit time value of late arrival is equal to
difference between the punishment cost of unit time
value of late arrival and the unit time value of leisure;
the unit time value of early arrival equals to the unit
time value of leisure; unit time value of queuing equals
to the sum of unit time value of leisure and unit traveling
cost.

Recently, Laih [11] expanded the analysis of
the optimal single and double steps to nth number (n =
1, 2, 3, ...) of charging steps.  It was realized that
when the charging steps increased one by one after
detailed derivation, the framework of the optimal step
toll, the related equilibrium costs, the equilibrium
departure rates and moving tracks of departure time
of auto-commuters had all shown regular variation.
These complete and regular information not only facili-
tate policy makers for the application of the optimal
step toll scheme, it can also be used to predict the entire
auto-commuters’ behavior in the system of toll col-
lection.

THE  MODEL  FRAMEWORK  AND
EQUILIBRIUM  RESULTS  IN  THE  OPTIMAL

TIME-VARYING TOLL  AND  SINGLE-STEP
TOLL  CASES

Derivation of the Non Toll Equilibrium and the Optimal
Time-Varying Toll Scheme

In order to simplify the model in this paper, thus
the following conditions are assumed in accordance
with the research targets:
1. The assumed background of this paper is that there is

no berth available and all admitted container ships
have to wait at the general anchorage until the pilot
comes to shepherd the waiting ships.

2. A large amount of ships will enter the port at certain
periods of time regularly during the year causing
congestion.  This may be a result of local demand or
increase in demand attracting more ships into the
port, for example, during harvest time. These condi-
tions are traceable and cyclic.

3. Apart from the cost of queuing during congestion, the
cost structure of this model also covers that of sched-
ule delay, such as early or late arrival.  In order to
simplify this model, we assume the time cost as a
linear function.
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4. Other than delay caused by waiting at the general
anchorage, there is no delay occurred during the
voyage.  Hence the cost during the no delay voyage is
fixed and is not included in the discussion.

Assuming there is a periodically congested port,
and the port office will place a congestion charge in
order to relieve the situation.  The problems relating to
ships entering the port in this model can de described as
follow: there is now an existing destination port and
every set time there will be a fixed number N of con-
tainer ships leaving from departure ports i for a certain
destination port.  The destination port however can only
provide service for s number of ships and N > s.  The
sailing time of ship (T) is equal to distance traveled
divided by sailing velocity, hence the average arrival
frequency at the destination port is Ti/Ni.  The condi-
tional terms of queuing time at the general anchorage is
defined as when the average arrival frequency is smaller
than the operation time (Tb) of a single ship at the
destination port.  In fact, queuing may still happen even
though the above definition is satisfied.  The queuing
time at the general anchorage should be the function of
the number and the utilization ratio of all berths.  In
order to simplify the model, however, we ignore this
function in the following discussion.

This model defines three situations: late arrival
(t + Tx(t) > t*), early arrival (t + Tx(t) < t*) and on-time
(t + Tx(t) = t*) by comparing the time of a ship arriving
at the port and finishing all the unloading jobs, with
the liner scheduled time.  Among these three situations,
t is the time point when a ship leaves the port of
departure (all the ships left from this port will be queu-
ing at the port of destination), Tx(t) is the length of
queuing time at the the general anchorage and varies
according to the time of departure, t + Tx(t) stands for
time required for completed unloading.  t* is the sched-
uled unloading time.  In addition, t* represents the
anticipated arrival time of the maximal queuing time
causing delay.  Ty(t) is the time length of early arrival,
which is t* − (t + Tx(t)), which means that ships arrive
at the port before the scheduled time.  Tz(t) is the
time length of late arrival with formula (t + Tx(t)) − t*,
which means that ships arrive at the port after the
scheduled time.

Since there is no other delay during the period of
voyage, the time point t1 (i.e. the starting time of queu-
ing at the general anchorage) will vary in accordance
with the departure time of the ship.  With regard to the
definition of the finishing time of queuing at the general
anchorage t2, it depends on the time length required to
disperse all queuing ships, the number of ships waiting
to enter the port, the number of ships that can be
serviced and the entire operation time of a ship at the
port of destination in average.

The time parameters of this model are defined as
below:
1. Queuing cost per unit time: the necessary cost in

average of every unit time before a pilot comes to the
general anchorage to shepherd the ship.  We assign
symbol x for this value which consists of personnel
expense, depreciation cost of ships, expense for
repairing, insurance fee, interests, petrol fee for main-
tenances and desalination fee.  These expenses are
indispensable while ships anchor at the general an-
chorage area.

2. Cost of early arrival: goods arriving at the destination
port early means the overall sailing time is shortened,
and the ship has to lengthen her port staying time to
match the next scheduled departure time.  The cost of
port charge to early arrival ship per unit time is set as
y.

3. Cost of late arrival: when merchandise arrives
late, the ship owner will possibly bear the increased
cost for unloading, which may include increased
costs for hardware apparatus and cost of port workers.
Furthermore, it may experience the cancellation
of the next scheduled port of call and an enormous
amount of transit fee may arise as a result.  The
cost of late arrival per unit time is symbolized by z.

Combining all the above costs per unit time and
their effective time, we obtain the following target
functions of minimizing the total cost (C(t)):

Minimum

C(t) = x • Tx(t) + y • Ty(t) + z • Tz(t)

Where t1 ≤ t ≤ t2 (1)

Classifying the three situations: on time, early
arrival and late arrival, we obtain the following
equations:

On time situation:

C(t) = x • Tx(t)

Among which t + Tx(t) = t* (2)

Early arrival situation:

C(t) = x • Tx(t) + y • Ty(t)

= x • Tx(t) + y • [t* − (t + Tx(t))]

Among which t1 ≤ t + Tx(t) < t* (3)

Late arrival situation:
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C(t) = x • Tx(t) + z • Tz(t)

= x • Tx(t) + z • [(t + Tx(t)) − t*]

Among which t* < t + Tx(t) ≤ t2 (4)

Due to the principle of minimizing the total cost,
which is followed by all ships, the total cost per unit
time has to be the same during t1 ≤ t ≤ t2 no matter what
the situation is.  Hence the equilibrium condition is dC/
dt = 0.  In accordance with this principle, we differenti-
ate (2), (3) and (4) with t.

On time situation:
Unable to differentiate (2) because this situation is

one point in time,   ( t ) , which is defined as the departure
time in order to complete unloading on t*.              (5)

Early arrival situation:

  dC
dt

= (x – y)
dT x

dt
– y = 0

Among which t1 ≤ t + Tx(t) < t* (6)

Late arrival situation:

  dC
dt

= (x + z)
dT x

dt
+ z = 0

Among which t* < t + Tx(t) ≤ t2 (7)

In order to investigate the relationship between
queuing time length and the moment ships depart, we
arranged (6) and (7) separately and obtained:

Early arrival situation:

  dT x(t)
dt

=
y

x – y

Among which t1 ≤ t + Tx(t) < t* (8)

Late arrival situation:

  dT x(t)
dt

=
– z

x + z

Among which t* < t + Tx(t) ≤ t2 (9)

Generally speaking, x, y and z are positive, then
we can get the slope of the linear relationship between
Tx(t) and t.  Thus we assayed positive relationship
occurs in early arrival situation and negative when ships
arrive late.  From this relationship, the equilibrium
queuing time length can be easily calculated.  Take t*
for example, can be obtained as  (t* − t2) •   – z

x + z .  The
length of queuing time depends on the number of
ships waiting to enter the port, the number of ships

that can be serviced and their total operating time at the
port of destination in average.  For example, if there
are 50 ships queuing but the port can only provide
service for 10 ships with each operating 5 hours in
average, then the time length required to disperse all
queuing ships is 50 ÷ 10 × 5 = 25 (hours).  Therefore, we
have the following equation:

   t 2 – t 1 = N
s ⋅ T b (10)

N is the number of ships waiting to enter the port,
s is the number of ships that can be serviced and Tb is
their total operating time at the port of destination in
average.  Then based on the definitions of  t and t*, we
are able to list two equations as shown below:

  t +
y

x – y
( t – t 1) = t* (11)

  t – z
x + z ( t – t 2) = t* (12)

After rearranging (10), (11) and (12), we have

   t 1 = t* – z
y + z (Ns ⋅ T b) (13)

   t 2 = t* +
y

y + z (Ns ⋅ T b) (14)

   t = t* –
y ⋅ z

x(y + z)
(Ns ⋅ T b) (15)

Substituting (15) into (2), we obtain the equilib-
rium total cost, Ce, for each ship:

   C e =
y ⋅ z
y + z (Ns ⋅ T b) (16)

The optimal time varying toll Ω(t) is derived by
using congestion tolls collected to replace all queuing
costs incurred at the general anchorage under the situa-
tion that all ships remain their equilibrium total cost Ce.
In order to attain such an objective, it is then necessary
to impose a series of tolls, Ω(t), that results in Tx(t) = 0
and C(t) = Ce for all t in (2), (3) and (4).  Thus substitut-
ing (16) into (2), (3) and (4), we obtain a series of the
optimal time varying toll, Ω(t), as listed in details
below:

On time situation:

   Ω(t) = C e =
y ⋅ z
y + z (Ns ⋅ T b)

Among which t + Tx(t) = t* (17)

Early arrival situation:

Ω(t) = Ce − y • [t* − (t + Tx(t))]



Journal of Marine Science and Technology, Vol. 12, No. 1 (2004)20

Among which t1 ≤ t + Tx(t) < t* (18)

Late arrival situation:

Ω(t) = Ce − z • [(t + Tx(t)) − t*]

Among which t* < t + Tx(t) ≤ t2 (19)

The shape of the optimal time-varying toll
scheme is triangular because of continuously change-
able

charges throughout the queuing period [t1, t2].  The
maximum optimal time-varying toll is located at t*.  The
slope for (18) during [t1, t*) is always smaller than the
slope for (19) during (t*, t2] since y < z.  The optimal
time-varying toll is capable of eliminating queuing time
completely, but has practical difficulties because it
requires continuously changeable charges. Because of
these difficulties, a step toll scheme is considered as an
alternative to reduce queuing time.  The single- and
multi-step tolls inscribed in the optimal fine toll triangle
will be discussed in the following Sections to reduce the
queuing time to a desired level.

Derivation of the Optimal Single-Step Toll Scheme

The single-step toll scheme is collected from ships
arriving at the general anchorage during a chosen period
of time of congestion.  The range of this toll scheme has
to agree with the equilibrium principle, i.e. it has to fall
within two sides of the optimal time-varying toll
triangular.  Therefore the toll level (δ) is the height of
the inscribed rectangle within the triangle and the length
of charging period is the width.  Efficiency of eliminat-
ing queuing is the ratio between the area of the inscribed
rectangle and that of the triangle.  Table 1 shows some
symbols and their meanings used in the optimal single-
step toll scheme.  Please Note that t1 is now assumed to
locate on the origin (i.e., t1 = 0) for the purpose of
simplifying all values listed in Table 1.  Therefore the

values of t1 and t2 listed in Table 1 are 
  

t* – z
y + z

N
s T b

earlier than those first appeared in (13) and (14).
Under the equilibrium state, all the different

departure time must correspond to the same total
cost Ce.  It is explained in two different situations as
follow:

(I). Early arrival (t1 ≤ t ≤  t ): all the incoming
ships to a port enter one after another in a queue, so the
difference of early arrival cost between a ship and the
one behind is a fixed value, which is operation time at
port Tb multiplied by early arrival cost y, i.e. y • Tb, and
these two ships have to bear the same total cost Ce under

equilibrium state.  During the process of calculating Ce,
y • Tb is a constant and is not affected by t or Tx(t),
therefore in this model the early arrival cost of the two
ships described earlier is considered as the same.  Let t+

be the start charging time in the optimal step toll scheme,
and then we can imagine that the last ship without
paying any toll before t+ and the first toll-paying ship at
the moment t+ enter the port one after another.  Because
the latter one does not incur any queuing cost, the
queuing cost to the former ship consequently is equal to
the collected toll, and once the former ship arrived at the
destination port, there are no other ships arrived during
a certain period (t+ − t' = δ/x) until the latter ship arrived.
After the queuing phenomenon at general anchorage is
cleared, ships choosing to pay tolls will begin to arrive
at the port of destination.  For this reason, the early
arrival situation can be categorized into three different
time periods: non-toll paying period (t1 ≤ t < t'), no ships
setting off period (t' ≤ t < t+) and toll-paying period (t+

≤ t ≤  t ).

(a) t1 ≤ t < t' (Non toll-paying time period)

C(t) = x • Tx(t) + y • [t* − (t + Tx(t))] (20)

C(t1) = y • t* (21)

Since (20) must be equal to (21) for the equilib-
rium purpose, we obtain

   xT x
e(t) =

x ⋅ y ⋅ t
x – y (22)

The slope of (22) is    x ⋅ y
x – y , this represents that the

Table 1.  The optimal single-step toll scheme

Symbols           Meanings Values

t1 Beginning time point   t* – z
y + z (Ns T b)

of port congestion
t+ Starting time point   t* – 1

2
z

y + z (Ns T b)

of toll collection
t* Liner scheduled Set values

time point
t− End time point of   t* + 1

2
y

y + z (Ns T b)

toll collection
t2 Finishing time point   t* +

y
y + z (Ns T b)

of port congestion
Ω(t*) Equilibrium total cost, Ce    y ⋅ z

y + z (Ns T b)

Ω(t+) = Ω Toll collected, which is    1
2

y ⋅ z
y + z (Ns T b)

1/2 of Ω(t*)

Effectiveness of 1/2
eliminating queuing
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equilibrium queuing cost (xTx
e(t)) line of this time pe-

riod in the optimal single-step toll case coincides with
that of early arrival zone in the original no toll case.  t'
is the starting time point when no ship departs and its

value is   z(x – y)
2x(y + z)

N
s T b .

(b) t' ≤ t < t+ (Non toll-paying time period)

No ships depart.  This stage clearly disperses all
accumulated ships queue at general anchorage, and its
time length is δ/x.

(c) t+ ≤ t ≤  t (Toll-paying time period)

C(t) = xTx(t) + y • [t* − (t + Tx(t))] + δ (23)

C(tq) = y • (t* − t1) (24)

(23) equals (24) for the equilibrium purpose, thus

   xT x
e(t) =

xy ⋅ t – xδ
x – y (25)

Its slope is also   xy
x – y , which means the equilib-

rium queuing cost line of this time period after charging
the toll, δ, is parallel to that of early arrival zone in the
original no toll case.   t  is the departure time point for
ships to arrive on time after collecting the toll, and its

value is   z(x – y)
2x(y + z)

N
s T b .

(II). Late Arrival (  t  < t ≤ t2): let t− be the finish
charging time in the optimal step toll scheme, then the
last toll-paying ship before time t− and the one after that
without paying the toll enter the port one after another.
Therefore in this model, the late arrival costs of these
two ships are taken as the same.  Since they both have
the same equilibrium total cost Ce, hence the equilib-
rium queuing cost to the first non toll-paying ship after
toll-collection time period finishes is equal to the col-
lected toll.  This situation means the first ship that does
not have to pay the toll after toll-collection time period
finishes will wait at the general anchorage area, and
only asks for admission into the port until time t−.  For
this reason, the late arrival situation can be classified
into three time periods: toll-paying period (  t  ≤ t < t−),
avoiding toll-paying period (t# ≤ t < t−) and non toll-
paying period (t− ≤ t ≤ t2).

(d)  t  < t ≤ t# (Toll-paying time period)

C(t) = xTx(t) + z[(t + Tx(t)) − t*] + δ (26)

C(t2) = z(t2 − t*) (27)

(26) equals (27) for the equilibrium purpose, therefore

   xT x
e(t) =

xz(t 2 – t) – xδ
x + z (28)

The slope of (28) is   – xz
x + z , this represents that the

line of the equilibrium queuing cost during this time
period in the optimal single-step toll case is parallel to
that during the late arrival zone in the original no toll
case.  t# is the starting time point of avoiding congestion

charge and its value is    2xz + xy – yz
2x(y + z)

⋅ N
s ⋅ T b .

(e) t# ≤ t < t− (Including toll-paying and avoiding toll-
paying time period)

This time period comprises two parts.  One is of
normal toll-paying ships, whose equilibrium queuing
cost is calculated in the same way as in time period (a),
and is parallel to the equilibrium queuing cost during
late arrival time zone in the original no toll case.  The
other part is the avoiding toll-paying ships, the slope of
their equilibrium queuing costs between t# and t− is −x,
and the slope of their equilibrium queuing costs after t−

on the other hand is   x 2

x + z .

(f) t− ≤ t ≤ t2 (Non toll-paying time period)

C(t) = xTx(t) + z[(t + Tx(t)) − t*] (29)

C(t2) = z(t2 − t*) (30)

For the equilibrium purpose, we obtain

  xT x
e(t) =

xz(t 2 – t)
x + z (31)

This represents that the equilibrium queuing cost

Table 2. Determined time points of altering ships’ departure
times under the optimal single-step toll scheme

Symbols           Meanings Values

t' Starting time when no   z(x – y)
2x(y + z)

N
s T b

ship leaves before toll
collection

 t Departure time in order   z(2x – y)
2x(y + z)

N
s T b

to arrive the port on time
after application of
congestion toll collection

t# Starting time of queuing   2xz + xy – yz
2x(y + z)

N
s T b

when avoiding toll
collection
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line during this time period in the optimal single-step
toll case coincides with that during the late arrival time
zone in the original no toll case.

Based on the above derivation, the determined
time points under the optimal single-step toll scheme
are shown in Table 2.

After comparing the above equilibrium queuing
costs in the optimal single-step toll case with the overall
equilibrium queuing costs in the original no toll case,
it is found that the departure time of different ships
evidently spreads out and queuing is eliminated by
50%.

THE  EQUILIBRIUM  RESULTS  IN  THE
OPTIMAL  MULTI-STEP  TOLL  CASE

The Optimal Double-Step Toll Scheme

The optimal single-step toll scheme can only di-
minish queuing by 50%, so if the port office is seeking
a more ideal way, the number of steps of toll collection
needs to be increased.  The double-step toll scheme
means collecting lower toll for a particular queuing time
period, then a relatively higher toll is collected during
other period.  Afterwards, the toll level returns to the
original lower one until the charging time period is over.

The effectiveness of eliminating queuing in the double-
step toll scheme is determined by the toll level and the
charging time length.  Table 3 shows some symbols and
their meanings used in the optimal double-step toll
scheme.

Under the framework of the optimal double-step
toll scheme, analysis of ships’ departure time alteration
is similar to that of single-step.  The early arrival can
be separated into 5 stages: non-toll paying period, the
first no ships leaving period, lower toll paying period,
the second no ships leaving period and higher toll
paying period.  On the other hand, late arrival situation
can also be divided into 5 stages: higher toll paying,
lower toll paying in avoiding higher toll paying, lower
toll paying, avoiding lower toll paying and non-toll
paying.  Their determined time points are shown in
Table 4.

The Optimal n-Step Toll Scheme

Compared with the optimal single-step toll scheme,
the toll collection and the effectiveness of eliminating
queuing in multiple steps show an apparent regular
trend.  It is simple to estimate all equilibrium results in
the n-steps.  When n approaches infinity, the framework
of step toll collection will be similar to the optimal time-
varying toll scheme.  However, as n increases, the
number of toll collection steps increases, which means
more troubles will arise for the incoming ships.  The
following Tables 5 and 6 shows the results of the
optimal n-step toll scheme.

Table 3.  The optimal double-step toll scheme

Symbols           Meanings Values

t1 Beginning time point of   t* – z
y + z (Ns T b)

port congestion
t+ Starting time point of   t* – 2

3
z

y + z (Ns T b)

lower toll collection
t++ Starting time point of   t* – 1

3
z

y + z (Ns T b)

higher toll collection
t* Liner scheduled time Set values

point
t− End time point of lower   t* + 1

3
y

y + z (Ns T b)

toll collection
t−− End time point of higher   t* + 2

3
y

y + z (Ns T b)

toll collection
t2 Finishing time point of   t* +

y
y + z (Ns T b)

port congestion
Ω(t*) Equilibrium total cost, Ce   

yz
y + z (Ns T b)

Ω(t+) = Ω Lower toll collected,   1
3

yz
y + z (Ns T b)

which is 1/3 of Ω(t*)
Ω(t++) = Ω Higher toll collected,   2

3
yz

y + z (Ns T b)

which is 2/3 of Ω(t*)

Effectiveness of 2/3
eliminating queuing

Table 4. Determined time points of altering ships’ departure
times under the optimal double-step toll scheme

Symbols           Meanings Values

t' Starting time when no   z(x – y)
3x(y + z)

N
s T b

ship leaves before lower
toll collection

t" Starting time when no   z(2x – y)
3x(y + z)

N
s T b

ship leaves before higher
toll collection

 t Departure time in order   z(3x – y)
3x(y + z)

N
s T b

to arrive the port on time
after application of
congestion toll collection

t# Starting time of queuing   3xz + xy – yz
3x(y + z)

N
s T b

when avoiding higher
toll collection

t## Starting time of queuing   3xz + 2xy – yz
3x(y + z)

N
s T b

when avoiding lower toll
collection
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CONCLUSIONS

Ships queuing and waiting at general anchorage to
enter the berth under the port congestion situation is
similar to the queuing car situation at a road bottleneck.
Therefore, this paper adopted the congestion pricing
concept on the road to construct a tolling model for
ships.  The model started with analysis of ships’ time
costs, and transformed congestion cost into the toll
collected for congestion.  Further, the port congestion
pricing including the optimal time-varying toll and the
optimal step toll schemes are derived based on the ratio
of congestion cost to be removed in order to relieve the
queuing condition at the port.

Next, we use the sense of economic equilibrium to
derive the consequent changes of container ships’ de-
parture schedules after collecting congestion tolls.  We
showed that shipís departure time changes after applica-
tion of toll collection, and their arrival times at port
have rationally dispersed to achieve the purpose of
relieving port congestion.  These results of ships’ depar-

Table 6. Determined time points of altering ships departure
time underthe optimal n-step toll scheme

Symbols           Meanings Values

t' Starting time when no ship   z(x – y)
(n + 1) x (y + z)

N
s T b

leaves before the 1st step
toll collection

t'' Starting time when no ship   z(2x – y)
(n + 1) x (y + z)

N
s T b

leaves before the 2nd step
toll collection

: : :
  

t
n – 1
'

Starting time when no ship   z(nx – y)
(n + 1) x (y + z)

N
s T b

leaves before the nth step
toll collection

 t Departure time in order to   z[(n + 1) x – y]
(n + 1) x (y + z)

N
s T b

arrive the port on time
after application of
congestion toll collection

t# Starting time of queuing   (n + 1) xz + xy – yz
(n + 1) x(y + z)

N
s T b

when avoiding nth step
toll collection

: : :
  

t
n – 1
#

Starting time of queuing   (n + 1) xz + (n – 1)xy – yz
(n + 1) x(y + z)

N
s T b

when avoiding 2nd step
toll collection

  
t

n
# Starting time of queuing   (n + 1) xz + nxy – yz

(n + 1) x(y + z)
N
s T b

when avoiding 1st step
toll collection

Table 5.  The optimal n-step toll scheme

Symbols           Meanings Values

t1 Starting time point of   t* – z
y + z (Ns T b)

port congestion
t+ Starting time point of the   t* – n

n + 1
z

y + z (Ns T b)

1st step toll collection
t++ Starting time point of the   t* –

n – 1
n + 1

z
y + z (Ns T b)

2nd step toll collection
t+++ Starting time point of the   t* –

n – 2
n + 1

z
y + z (Ns T b)

3rd step toll collection
:                  : :
  

t
n – 1
+

Starting time point of   t* – 2
n + 1

z
y + z (Ns T b)

(n − 1)th step toll
collection

  

t
n+

Starting time point of nth   t* – 1
n + 1

z
y + z (Ns T b)

step toll collection
t* Liner scheduled time Set values

point
  

t
n–

End time point of nth   t* + 1
n + 1

y
y + z (Ns T b)

step toll collection
  

t
n – 1
–

End time point of (n − 1)th   t* + 2
n + 1

y
y + z (Ns T b)

step toll collection
:                  : :

t−−− End time point of the 3rd   t* +
n – 2
n + 1

y
y + z (Ns T b)

step toll collection

t−− End time point of the   t* +
n – 1
n + 1

y
y + z (Ns T b)

2nd step toll collection

t− End time point of the 1st   t* + n
n + 1

y
y + z (Ns T b)

step toll collection
t2 End time point of port   t* +

y
y + z (Ns T b)

congestion

Ω(t*) Equilibrium total cost, Ce   
yz

y + z (Ns T b)

Ω(t+) The 1st step toll collected,   1
n + 1

yz
y + z (Ns T b)

= Ω(t−) which is 1/(n + 1) of Ω(t*)

Ω(t++) The 2nd step toll   2
n + 1

yz
y + z (Ns T b)

= Ω(t−−) collected, which is
2/(n +1) of Ω(t*)

Ω(t+++) The 3rd step toll   3
n + 1

yz
y + z (Ns T b)

= Ω(t−−−) collected, which is
3/(n + 1) of Ω(t*)

:                  : :   
Ω (t

n
+ ) The nth step toll collected,   n

n + 1
yz

y + z (Ns T b)

= 

   
Ω (t

n
– ) which is n/(n + 1) of Ω(t*)

   Effectiveness of eliminating queuing   
n

n + 1
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ture time switches help predict ship owners’ departure
behaviors under the optimal step toll scheme.

It should be noted that the above results are valid
only for a simple model that we have developed in this
paper.  Two deficits in our model that should be im-
proved and modified for the practice purpose are raised
as follows.  First, queuing time at the general anchorage
in this paper is defined as when the average arrival
frequency is smaller than the operation time of a single
ship at the destination port.  In fact, queuing may still
happen even though the above definition is satisfied.
The queuing time at the general anchorage should be a
function of the number and the utilization ratio of all
berths. This function has to be considered in the objec-
tive cost function to reply real queuing situation.  Second,
our simple model ignores the ship ownerís revenue or
cost variations due to early or late departure, respectively,
in the departure port.  In order to avoid congestion in the
destination port, early or late departure may result in
loading revenue shortage or port charge increase,
respectively.  The revenue and cost variations also have
to be considered in the objective cost function to show
the ship ownerís real costs under the optimal step toll
scheme.
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