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ABSTRACT 
In this paper, a meshless method is developed for solving 

multi-dimensional wave equations.  The proposed method is 
based on the method of particular solution (MPS), the method 
of fundamental solutions (MFS) and the Houbolt finite dif-
ference (FD) method.  The wave equation is considered as a 
Poisson-type equation with the time-dependent source term.  
The Houbolt method is applied to avoid the difficult problems 
for dealing with the initial conditions in forming the linear 
algebra system.  The works of space discretization are depend- 
ent on the method of particular solution and the method of 
fundamental solutions.  There are three numerical examples 
considered in this paper, such as the string vibration and wave 
vibration problems.  Numerical validations have proven that 
the proposed method is a highly efficient and accurate mesh-
less numerical tool for solving wave equations in engineering 
and sciences by comparing with analytical solution and other 
numerical solutions. 

I. INTRODUCTION 
Although there are many numerical methods available for 

solving hyperbolic-type partial differential equations, the 
development of highly accurate and efficient wave solvers 
remains an important and challenging work in computational 
physics.  The wave equations govern many physical problems 
such as water wave propagation in water bodies, the stress 
wave in an elastic solid and sound wave propagation in a me- 
dium, etc.  In this paper, a meshless numerical method based 
on the method of particular solutions (MPS), the method of the 

fundamental solutions (MFS) and the Houbolt finite difference 
(FD) scheme is proposed for dealing with multi-dimensional 
wave problems. 

Generally speaking, the so-called meshless numerical 
schemes can be roughly classified into domain-type and 
boundary-type methods.  The domain-type meshless numeri-
cal methods such as the smoothed particle hydrodynamics 
(SPH) [15] and the multi-quadric (MQ) collocation method  
[9], etc. were well developed for solving partial differential 
equations.  The boundary-type meshless methods such as the 
MFS [7, 31], the hyper-singular meshless method (HMM) [27] 
and the Trefftz method [5, 6, 8], etc. have also been developed 
to obtain solutions of homogeneous partial differential equa-
tions.  In this study, we propose an extended scheme of the 
MFS to solve hyperbolic-type partial differential equations 
such as wave equations. 

The MFS was firstly proposed for approximating the solu-
tions of the elliptic-type partial differential equation [17, 18].  
Furthermore, the two-stage MPS-MFS was proposed to solve 
Poisson’s equations [11].  In above studies, the MFS captured 
many focuses of researcher in solving elliptic-type partial 
differential equations.  For time-dependent problems, the MFS 
was applied to solve the homogeneous or inhomogeneous 
problems either by the time-marching MFS [2, 22], the unified 
time-space MFS with diffusion fundamental solution [32] or 
the so-called eigenfunction expansion MFS [26].  These stud-
ies also focused on the solution of parabolic-type partial dif-
ferential equations. 

Although the MFS can successfully deal with the elliptic or 
parabolic problems, it is not so easy to directly handle hy-
perbolic-type problems such as wave or advection phenomena.  
In reference [29], the Eulerian-Lagrangian method (ELM) was 
combined with the MFS to deal with the multi-dimensional 
advection-diffusion problems (called Eulerian-Lagrangian 
method of fundamental solutions, ELMFS).  The ELMFS has 
been applied effectively to solve the nonlinear Burgers’ equa-
tions [28], the pure advection equations and one-dimensional 
wave equation [12, 13], etc. 

Although the MFS is a powerful tool for solving partial 
differential equations, it is still difficult to directly solve wave 
equation by the MFS.  Because the fundamental solution of 
wave equation always accompanies the Dirac delta function 
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(or Heaviside step function).  When the fundamental solutions 
of the wave equation are used for the implementation of the 
MFS, we have to face the difficult problems such as differen-
tiating the Dirac delta function (or Heaviside step function) 
with respect to the time domain for building the linear algebra 
system.  This will induce difficult singularity problems for 
computer calculation by the MFS.  Another well-known proc- 
ess for analyzing the wave equation is to transform the physi- 
cal variables from time domain into the frequency domain [16, 
19].  According to above approach, the initial and boundary 
value problems become the pure boundary value problems, 
but sometimes it is more difficult to directly capture the tran-
sient phenomena of the wave field via this mode decomposi-
tion approach. 

The D’Alembert formulation [4, 24] is considered as an-
other effective way for avoiding the problems of the Dirac 
delta function (or Heaviside step function) in time-space do-
mains.  The D’Alembert formula was combined with the de-
composition method to obtain the solution of the wave  
equation in infinite domain [24].  The ELMFS was combined 
with the D’Alembert formula for directly solving the one- 
dimensional wave equation [12, 13].  The D’Alembert formula 
can reduce the one-dimensional wave equation to two advec-
tion equations with opposite direction wave propagation speed.  
The ELMFS then approximates the solutions of the advection 
equation system.  Although the D’Alembert formula can han-
dle the time-space Cauchy problems, the reductions also cause 
problems in treating the boundary conditions. 

The proposed coupled MPS-MFS is a kind of meshless 
method which includes the characteristics of both domain- and 
boundary-type meshless methods.  The proposed MPS-MFS 
model transforms the wave equation to the Poisson-type equa-
tion with a time-dependent source term.  Thus the hyperbolic 
problem becomes an elliptic boundary value problem.  The dual 
reciprocity boundary element method (DRBEM) is similar to 
the coupled MPS-MFS model, which was developed for solving 
the wave equation [21].  However, the DRBEM requires the 
time-consuming construction of good surface mesh and accu-
rate numerical quadrature.  The coupled MPS-MFS meshless 
schemes [1] were developed to solve non-homogeneous elliptic 
problems.  Besides, the schemes of coupled MPS-MFS were 
applied to analyze the conductive problems for functionally 
graded materials [23] and time-dependent partial differential 
equations [10]. 

In this paper, the time-dependent loading of the system 
equations is handled by the Houbolt method [14, 20, 25, 30].  
Then the physical solution is separated into the particular and 
the homogeneous solutions at each time step.  The particular 
solution is dependent on radial basis functions (RBFs) while 
the homogeneous solution is dealt with by the Laplace fun-
damental solution.  In the following sections, we will explain 
the details of the time-marching MPS-MFS wave model and 
the numerical procedures.  Three numerical examples are 
provided for validating the proposed meshless method.  All of 
the numerical results compare well with the analytical solu-

tions or solutions obtained by finite difference method (FDM) 
or the finite element method (FEM).  From the numerical tests, 
it is evident that the proposed transient MPS-MFS wave model 
is a promising meshless numerical tool for physical applica-
tions. 

II. GOVERNING EQUATION 
The multi-dimensional wave equation can be written as: 

 
2

2 2
2 ,  in ,  0,c t

t
φ φ∂
= ∇ Ω >

∂
 (1) 

where, Ω is the computational domain with boundary ∂Ω = 
∂Ω1 ∪ ∂Ω2, ( , )x tφ  is the physical variable, c is the wave 
speed, t denotes time and x  is the space vector.  In Cauchy or 
initial value problems, the initial conditions are described as 
follows: 
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=
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where, the subscripts I and II are used to denote first- and 
second-kind initial conditions, respectively.  The boundary 
conditions are listed as follows: 
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where, n  is the unit normal vector outward to the boundary,  
a is a function of space and time.  The subscripts D and N 
denote Dirichlet- and Neumann-type boundary conditions, 
respectively. 

III. NUMERICAL METHOD 

The governing equation is considered as a Poisson-type 
equation with time-dependent source term.  The governing 
equation and boundary condition can be rewritten as follows: 

 
2

2
2 2

1 ,  in ,  0,t
c t

φφ ∂
∇ = Ω >

∂
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 ( ) ( , ),  , 0.B b x t x tφ = ∈∂Ω >  (7) 

where, B( ) denotes the boundary operator.  In order to deal 
with the transient term of wave equation, the Houbolt method 
is selected to discrete the time operators.  The Houbolt method 
[14, 20, 25, 30] is an three-steps implicit and unconditionally 
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stable time-integration scheme which can be obtained by the 
Lagrange interpolation of the wave potential φ from time level 
tn–2 = (n – 2)Δt through to time level tn+1 = (n + 1)Δt.  The time 
operators as the velocity and acceleration of wave field are 
approximated as follows: 

 
1

1 1 21 (11 18 9 2 ),
6

n
n n n n

t t
φ φ φ φ φ

+
+ − −∂⎛ ⎞ ≈ − + −⎜ ⎟∂ Δ⎝ ⎠

 (8) 

 
12

1 1 2
2 2

1 (2 5 4 ).
n

n n n n

t t
φ φ φ φ φ

+

+ − −⎛ ⎞∂
≈ − + −⎜ ⎟∂ Δ⎝ ⎠

 (9) 

Here, Δt is the time-interval and the superscripts of φ rep-
resent the time level ( ) ( , )n nx x tφ φ= .  After dealing with the 
time domain problems by using the Houbolt FD scheme, we 
obtain a Poisson-type equation as the following. 

 2 1 1 1 2
2 2
1( ) (2 5 4 ).n n n n n

c t
φ φ φ φ φ+ + − −∇ = − + −

Δ
 (10) 

In the MPS-MFS, the solution of the problem can be written 
as: 

 1 1 1,n n n
P Hφ φ φ+ + += +  (11) 

where, φP is the particular solution which satisfies the non- 
homogeneous equation and φH is the homogeneous solution 
which satisfies the Laplace equation.  The particular solution 
φP can be approximated by the radial basis functions (RBFs) as 
the following: 

 1 1

1

( ),
FN

n n
P j j

j

F rφ β+ +

=

=∑  (12) 

Here, F( ) is the integrated radial basis function and βj is  
the coefficient of the basis function, NF is the number of the 
field points and the subscript j denotes the index of the col-
location points.  A typical distribution of the field and source 
points is depicted in Fig. 1.  The function F(  ) can be obtained 
by analytical integration from the following equation: 

 2 ( ) ( ),F r f r∇ =  (13) 

where, f(r) is the radial basis function.  In order to demonstrate 
the conveniences of RBFs, the local type RBF as compactly 
supported RBF (CSRBF) and global type RBF as multi- 
quadric RBF (MQRBF) are selected for describing the par-
ticular solution, respectively.  The CSRBF [3] and MQRBF  
[9] are listed as follows. 

CSRBF: 

Boundary
Field points
Source points
Boundary points

20

10

0

-10

-20

Y

-20 -10 0
X

10 20
 

Fig. 1.  Diagram of the points distribution for MPS-MFS. 
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MQRBF: 

 
1

2 2 2( ) ( )MQf r r c= +  (15) 

where, r is the distance between the field points, λ is the 
scaling factor of the CSRBF, cMQ is the shape parameter of 
MQRBF.  The corresponding radial basis function F(r) can be 
obtained by analytically integrating procedure, the results of 
integrated RBFs are listed as follows. 
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Integrated MQRBF: 
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The homogeneous solution can be obtained by the linear 
combination of fundamental solutions: 

 ( )1 1

1

,
BN

n n
H j j

j
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=
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where, NB is the number of the boundary points, the subscript  
j denotes the index of the source points, αj is the intensity of 
the source points and G is the fundamental solution (also 
called the free-space Green’s function) which can be written as 
follows: 

 ( ) ( )
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Were x  and ξ  are the space-location of the field and source 
points, respectively.  In Eq. (19), the  denoted the Euclid-
ean norm.  According to the definitions of particular solutions 
and homogeneous solutions, we can rewrite the Eqs. (6) and (7) 
as follows. 
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The linear system can be written in the following matrix 
form: 
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where, the sub-elements of the linear system are 
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In order to deal with the setup problem, the Euler scheme is 
used for taking the subcomponents φn−1 and φn−2 into the vec-
tor S as follows: 
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The sub-vectors β and α can be obtained by solving the 
linear system as the Eq. (22).  After the linear system is solved, 
the solution in the computational domain can be obtained from 
the definitions of particular solutions and homogeneous solu-
tions as the following: 
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IV. NUMERICAL EXAMPLE 
The proposed meshless method is tested by considering 

three numerical examples.  These are analyzed and validated 
to prove the accuracy and efficiency of the proposed meshless 
numerical scheme and also to display the advantages of the 
proposed wave model.  We use the L2 norm error (EL

2) to es-
timate the accuracy, which is defined as: 
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where NT is the number of the resolve points. 
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Table 1.  The EL2 comparisons for the 1D wave problem. 
MPS-MFS 

Model FDM ELMFS 
CSRBF MQRBF 

Δt 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 
t = 2.5 9.18E-02 3.39E-02 6.24E-03 4.56E-03 2.13E-02 6.53E-04 2.15E-02 5.01E-04 
t = 5 5.72E-02 2.46E-02 7.43E-03 4.16E-03 1.79E-02 1.02E-03 1.82E-02 7.95E-04 
t = 7.5 1.27E-01 4.13E-02 1.32E-02 8.15E-03 5.07E-02 8.75E-04 5.12E-02 4.82E-04 
t = 10 1.40E-01 5.27E-02 1.16E-02 9.96E-03 6.56E-02 2.20E-03 6.63E-02 1.43E-03 

 
 

MPS-MFS (CSRBF, t = 2)
MPS-MFS (CSRBF, t = 3)
MPS-MFS (CSRBF, t = 4)
MPS-MFS (CSRBF, t = 5)

Analytical solution (t = 2)
Analytical solution (t = 3)
Analytical solution (t = 4)
Analytical solution (t = 5)

3

1.5

0

-1.5

-3

φ

0 π/4 π/2
x

3π/4 π
 

Fig. 2. The evolution of displacement for the string vibration problem by 
CSRBF. 

 
 

1. String Vibration Problem 
In the first example, the string vibration problem is selected 

to test the performances of the wave models in one-dimensional 
domain.  In this example, the wave speed c = 1 is selected in 
wave field for simulation.  The computational domain is 0 < x < 
π.  The initial conditions are selected as: 
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The fixed boundary conditions are chosen as the following 
forms: 
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The analytical solution is obtained by the method of sepa-
ration of variables: 

 ( , ) cos sin cos 2 sin 2 .x t t x t xφ = −  (29) 

In this case, the ELMFS, the MPS-MFS and the FDM wave 
models used 41 points for calculation and the time-interval Δt  

FDM (dt = 0.05)
FDM (dt = 0.02)

ELMFS (dt = 0.05)
ELMFS (dt = 0.02)
MPS-MFS (CSRBF, dt = 0.05)
MPS-MFS (CSRBF, dt = 0.02)
MPS-MFS (MQRBF, dt = 0.05)
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 E

rr
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0 2.5 5
Time

7.5 10
 

Fig. 3.  The EL2 of the string vibration problem. 
 
 

equal to 0.05 and 0.02 are selected for comparison.  Fig. 2 
displays the numerical results by the MPS-MFS wave model 
with CSRBF and time-interval Δt = 0.02.  Fig. 3 depicted the 
history of EL

2 by the ELMFS, the MPS-MFS and the FDM 
wave models.  From the Table 1 and Fig. 3, it is clearly shown 
that the error curves of the FDM model always oscillate near 
10-2.  And also, we detect that the accuracy of ELMFS and 
MPS-MFS models are better than FDM model.  At the same 
time, the effects of the time-interval for ELMFS model are not 
very sensitive.  When the time-interval Δt = 0.05 is used for 
MPS-MFS model, the error curves almost cover with the error 
curve of FDM (Δt = 0.02).  The best result is obtained by 
MPS-MFS model with time-interval Δt = 0.02.  From this 
numerical case, we consider the performance of ELMFS and 
MPS-MFS models are better than the FDM model.  Besides, 
the accuracy of MQRBF for MPS-MFS model is better than 
CSRBF (but not much difference) in this case.  It is convinced 
that the proposed MPS-MFS model is a high accuracy wave 
model. 

2. Wave Vibration in 2-D Irregular Domain 
We next consider a more complicated wave vibrating prob- 

lem in an irregular domain with a smooth edge and wave speed 
c = 1.  The computational domain Ω and its boundary ∂Ω are 
defined as follows: 
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Table 2.  The EL2 comparisons for the 2D wave problem. 
MPS-MFS 

Model FEM 
CSRBF MQRBF 

Points 4,693  11,339  15,981 433 1,209 433 1,209 
t = 12 6.24E-04 2.44E-04 1.18E-04 1.03E-03 2.21E-04 1.11E-03 2.81E-04 
t = 24 2.23E-04 8.52E-05 3.70E-05 1.10E-03 2.10E-04 1.18E-03 2.48E-04 
t = 36 1.53E-03 5.87E-04 2.67E-04 8.50E-04 2.68E-04 8.92E-04 3.97E-04 
t = 48 2.94E-03 1.13E-03 5.27E-04 1.40E-03 4.44E-04 1.48E-03 6.98E-04 
t = 60 2.24E-03 8.59E-04 4.07E-04 1.27E-03 3.75E-04 1.38E-03 5.90E-04 
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where, RC is defined by: 
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The initial displacement and velocity are selected as fol-
lows: 
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The boundary condition is given as: 

 
( , )
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10 10 10x y
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and the analytical solution is: 

 2( , , ) 3 cos cos sin .
10 10 10

x y tx y t π π πφ = +  (34) 

In this case, we used 433 and 1,209 points for MPS-MFS 
model calculation.  In order to verify the correctness of nu-
merical results for the proposed MPS-MFS wave model, we 
also solved the same problem by the FEM (combine with the 
Houbolt FD scheme and linear triangle elements with 4,693, 
11,339 and 15,981 points).  Fig. 4 depicts the evolution of the 
EL2 obtained by the MPS-MFS and the FEM.  We discover that 
there is no large difference between the error curves from the 
MPS-MFS (by CSRBF with 1,209 points) and the FEM (15,981 
points).  Besides, the accuracy of MPS-MFS by CSRBF is 
better than MQRBF in this case (but not very large).  In the EL2 
curve obtained by the MPS-MFS model (433 points), the error 
curves always oscillate near 10-3.  Besides, the MPS-MPS 
model shows the good performance with smaller number of 
points (1,209 points) than the FEM results with larger number  
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Fig. 4.  The EL2 history of the two-dimensional wave vibration problem. 
 
 

of points (15,981 points) as shown in Table 2.  In this test, the 
proposed time-marching MPS-MFS model uses very few 
collocation points to deal with this irregular-domain problem 
and still yields as accurate results as the FEM, which uses a 
very dense mesh and many points. 

Furthermore, we change the wave speed (c = 1.5), initial 
and boundary conditions to test the wave propagation problem 
with the same domain shape.  The hump shape of the initial 
displacement and zero initial velocity are listed as follows: 

 
2 24 ( 5)
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and the fixed boundary condition is: 

 
( , )

( , , ) 0.
x y

x y tφ
∈∂Ω

=  (36) 

We used 1,209 collocation points with a time-interval Δt =  
8 × 10-3 to simulate this problem.  The same problem was also 
simulated by the FEM with mesh dependent results (11,339 
and 15,981 points).  Figs. 5 (a)-(d) displayed the evolution 
history of the displacement at (x, y) = (0, 5), (0, 13), (0, 0) and 
(−5, −5), respectively.  From Figs. 5 (a)-(d), we can observe  
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Fig. 5.  The potential time history of the wave propagation problem (a) at (0, 5), (b) at (0, 13), (c) at (0, 0), and (d) at (–5, –5). 

 
 

that the solutions from MPS-MFS are still similar to the re- 
sults by FEM, however the present method only use very small 
amount of points and one order of points is used by the FEM.  
Figs. 6 (a)-(f) depict the evolution of the complex wave phe-
nomena. 

3. Wave Vibration in 3-D Irregular Domain 
We next consider a wave vibration problem in a three- 

dimensional irregular domain without boundary effects.  In 
this simulation, the wave speed c = 2 is selected.  The com-
putational domain boundary is described as the following: 
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where, RC is defined as: 
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The initial potential and initial velocity are selected as: 
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and the boundary condition is obtained from the analytical 
solution which is: 

3( , , , ) cos cos cos sin .
8 8 8 4
x y z tx y z t π π π πφ =  (40) 
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Fig. 6.  The evolution of the wave propagation problem (a) t = 0, (b) t = 2.4, (c) t = 4.8, (d) t = 7.2, (e) t = 9.6, and (f) t = 12. 
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Fig. 7.  The evolution of the wave potential in 3D irregular problem (a) t = 0.25, (b) t = 0.75, (c) t = 1.25, (d) t = 1.75, (e) t = 2.25, and (f) t = 2.75. 
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Table 3.  The EL2 comparisons for the 3D wave problem. 
MPS-MFS 

Model FEM 
CSRBF MQRBF 

Points 10,786 21,783 32,526 1,389 3,233 1,389 3,233 
t = 5 3.70E-03 2.30E-03 1.73E-03 1.14E-03 1.19E-04 8.83E-04 9.48E-05 
t = 10 4.38E-03 2.64E-03 1.96E-03 1.90E-03 2.40E-04 1.44E-03 2.18E-04 
t = 15 2.42E-03 1.30E-03 8.84E-04 1.44E-03 1.68E-04 1.19E-03 1.40E-04 
t = 20 3.88E-03 2.72E-03 2.08E-03 1.16E-03 1.73E-04 7.95E-04 1.71E-04 
t = 25 1.12E-02 7.30E-03 5.56E-03 2.23E-03 2.30E-04 1.65E-03 1.63E-04 
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Fig. 8.  The EL2 of the three-dimensional wave problem.  

 
In this case, we used 1,389 collocation points (with 361 

boundary points), as well as 3,233 collocation points (with 648 
boundary points) and a time-interval Δt = 2.5 × 10-3.  In order 
to demonstrate the accuracy of numerical results, the same 
problem is solved by the FEM with linear tetrahedral by 
10,786 points, 21,783 points and 32,526 points, respectively.  
In Figs. 7 (a)-(f), we present the MPS-MFS solution profiles at 
x = 0, y = 0 and z = 0 which are obtained by MQRBF.  Fig. 8 
depicts the evolution of the EL2 obtained by the MPS-MFS and 
the FEM.  From Fig. 8 and Table 3, EL2 by the MPS-MFS 
(1,389 points) and the FEM (32,526 points) are almost the 
same.  In the EL2 curve obtained with the MPS-MFS (both 
CSRBF and MQRBF, 3,233 points), the error curves always 
oscillate near 10-4 and are smaller than the FEM results with a 
larger number of points.  And also, the accuracy of MPS-MFS 
model by MQRBF is better than CSRBF in this case (but not 
very large).  From these comparisons, we conclude that the 
proposed MPS-MFS model is a highly accurate and efficient 
numerical tool for solving the multi-dimensional wave prob-
lem with irregular domain even when using very few colloca-
tion points. 

V. CONCLUSION 
In this paper, a novel numerical method based on the MPS, 

MFS and Houbolt FD method is developed to approximate the 

solutions of multi-dimensional wave equations.  The Houbolt 
method is used to avoid the difficulty of constructing the linear 
algebraic system of the Cauchy conditions.  The resulting 
partial differential equations are handled by the coupled MPS- 
MFS model.  In addition, the proposed meshless model is free 
from the numerical quadrature and mesh generation.  Three 
numerical examples in one-, two- and three-dimensional do-
mains are selected to verify the efficacy of the proposed 
method.  From the numerical results, it can be observed that 
accurate solutions in irregular domains can be obtained easily 
by the proposed method with very few collocation points.  The 
numerical results demonstrate the accuracy, consistency and 
applicability of the proposed meshless numerical model for 
multi-dimensional wave equations with irregular geometries. 
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